355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Митио Каку » Космос Эйнштейна. Как открытия Альберта Эйнштейна изменили наши представления о пространстве и времени » Текст книги (страница 4)
Космос Эйнштейна. Как открытия Альберта Эйнштейна изменили наши представления о пространстве и времени
  • Текст добавлен: 9 октября 2016, 14:59

Текст книги "Космос Эйнштейна. Как открытия Альберта Эйнштейна изменили наши представления о пространстве и времени"


Автор книги: Митио Каку



сообщить о нарушении

Текущая страница: 4 (всего у книги 13 страниц) [доступный отрывок для чтения: 5 страниц]

Но почему раньше никто не задумывался о таких запасах энергии? Эйнштейн сравнил это с ситуацией, когда сказочно богатый человек держит свое добро в секрете и никогда не тратит из него ни единого цента.

Банеш Хоффман, бывший студент, писал: «Представьте себе дерзость такого шага… Любой комок земли, любое перо, любая пылинка становится чудесным резервуаром неосвоенной энергии. В то время не было никакого способа это проверить. Тем не менее, представляя в 1907 г. свое уравнение, Эйнштейн говорил о нем как о важнейшем следствии теории относительности. Его необычайная способность видеть далеко вперед подтверждается тем фактом, что это уравнение было проверено… только через 25 лет».

Принцип относительности заставил кардинально пересмотреть классическую физику. Прежде физики верили в сохранение энергии, в первый закон термодинамики, согласно которому энергия не появляется и не исчезает. Теперь же они рассматривали как постоянную величину суммарное количество вещества и энергии.

В том же году беспокойный ум Эйнштейна разобрался еще с одной проблемой – проблемой фотоэлектрического эффекта. Еще в 1887 г. Генрих Герц заметил, что луч света, падая на металл, при определенных обстоятельствах вызывает слабый электрический ток. Здесь работает тот самый принцип, на котором основана значительная часть современной электроники. Солнечные батареи преобразуют обычный солнечный свет в электрическую энергию, которой питаются, к примеру, наши калькуляторы. Телекамеры воспринимают световые лучи от объекта и превращают их в электрические токи, которые в конечном итоге образуют телевизионную картинку на экране.

Однако в начале XX в. все это было полной загадкой. Луч света каким-то образом вышибал электроны из металла, но как он это делал? Ньютон в свое время считал, что свет состоит из крохотных частиц, которые он называл «корпускулами», но теперь физики убедились в том, что свет – это волна и, согласно классической волновой теории, его энергия не зависит от его частоты. К примеру, хотя частоты красного и зеленого света различны, сами лучи должны, по идее, обладать одинаковой энергией, а следовательно, когда они падают на металл, энергия выбиваемых электронов тоже должна быть одинаковой. Аналогично классическая волновая теория утверждала, что если увеличить интенсивность света, просто добавив ламп, то энергия этих электронов должна возрасти. Работа Филиппа Ленарда, однако, продемонстрировала, что энергия выбиваемых из металла электронов строго зависит от частоты или цвета светового луча, а не от его интенсивности, что противоречило утверждениям волновой теории.

Эйнштейн попытался объяснить фотоэлектронный эффект при помощи новой «квантовой теории», которую в 1900 г. предложил в Берлине Макс Планк. Надо отметить, Планк предпринял едва ли не самый радикальный отход от классической физики; он предположил, что энергия – не непрерывная величина, подобная жидкости; она существует в виде определенных дискретных пакетов, называемых «квантами». Энергия каждого кванта пропорциональна частоте света, а коэффициент пропорциональности представляет собой новую физическую константу, известную сегодня как «постоянная Планка». Одна из причин того, что мир атома и кванта такой причудливый, заключается в том, что постоянная Планка – очень маленькое число. Эйнштейн рассуждал, что если энергия существует в виде дискретных пакетов, то и свет может оказаться квантованным. (Пакет, или «квант света» по Эйнштейну, позже, в 1926 г., химик Гильберт Льюис окрестил «фотоном», или частицей света.) Эйнштейн рассуждал, что если энергия фотона пропорциональна соответствующей частоте света, то энергия выбитого из металла электрона тоже должна быть пропорциональна этой частоте, в противоположность классической физике. (Забавно отметить, что в популярном телесериале «Звездный путь» экипаж «Энтерпрайза» выпускает во врага «фотонные торпеды». В реальности простейшим пусковым устройством для фотонных торпед является обычный фонарик.)

Предложенная Эйнштейном новая картина – квантовая теория света позволяла делать прямые предсказания, которые можно было проверить экспериментально. Увеличивая частоту светового луча, можно было, если верить этой теории, измерить плавный рост генерируемого в металле напряжения. Эта историческая статья (которая со временем удостоится Нобелевской премии по физике) была опубликована 9 июня 1905 г. под заголовком «Об одной эвристической точке зрения, касающейся возникновения и превращения света». Выход этой статьи означал «рождение фотона», а также квантовой теории света.

Еще в одной статье, написанной все в том же 1905 «чудесном году», Эйнштейн разобрал проблему атома. Хотя атомная теория показывала замечательные результаты в определении свойств газов и химических реакций, прямых доказательств существования атомов по-прежнему не было, на что любили указывать Мах и другие критики. Эйнштейн рассудил, что существование атомов, возможно, удастся доказать, понаблюдав их действие на крохотные частицы в жидкости. Понятие «броуновское движение», к примеру, относится к небольшим случайным перемещениям маленьких частиц, взвешенных в жидкости. Это явление было открыто в 1828 г. ботаником Робертом Броуном, который, наблюдая пыльцу под микроскопом, заметил, что мельчайшие зерна пыльцы совершают странные хаотичные движения. Поначалу он решил, что эти зигзагообразные движения аналогичны движению мужских половых клеток – сперматозоидов, но затем обнаружил, что такие же странные дерганые движения можно наблюдать во взвеси крохотных зерен стекла или гранита.

Некоторые ученые предполагали, что броуновское движение, возможно, вызывается случайными столкновениями молекул, но никто не мог сформулировать разумную теорию этого явления. Однако Эйнштейн сделал следующий шаг, который оказался решающим. Он рассудил, что, хотя атомы слишком малы, чтобы их можно было видеть, их размер и поведение можно оценить исходя из суммарного воздействия на более крупные объекты. Если всерьез поверить в атомную теорию и разумно применить ее, то можно, анализируя броуновское движение, рассчитать физические размеры атомов. Предполагая, что случайные движения частички пыли в воде вызваны случайными ударами триллионов и триллионов молекул воды, он сумел вычислить размер и вес атомов, получив таким образом экспериментальное доказательство существования атомов.

Это было по меньшей мере поразительно! При помощи простого микроскопа Эйнштейн сумел вычислить, что в одном грамме водорода содержится 3,03 × 1023 атомов, что достаточно близко к реальной величине. Статья называлась «О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно-кинетической теорией теплоты» (18 июля 1905 г.). В этой несложной статье, по существу, было дано первое экспериментальное доказательство существования атомов. (По иронии судьбы всего через год после того, как Эйнштейн вычислил размер атомов, физик Людвиг Больцман покончил с собой, отчасти из-за постоянных насмешек, которым он подвергался за развитие атомной теории.)

После написания этих трех исторических статей Эйнштейн передал одну из своих более ранних работ (о размере молекул) своему консультанту профессору Альфреду Кляйнеру в качестве диссертации. В тот вечер они прилично выпили вместе с Милевой.

Поначалу диссертация Эйнштейна была отвергнута. Однако 15 января 1906 г. Цюрихский университет присвоил-таки Эйнштейну степень доктора философии. Теперь он мог называть себя «д-р Эйнштейн». Рождение новой физики произошло в жилище Эйнштейнов по адресу Берн, улица Крамгассе, 49. («Дом Эйнштейна» можно увидеть там и сегодня. Можно заглянуть в красивое эркерное окно, выходящее на улицу, и прочесть надпись на табличке, в которой говорится, что за этим окном была создана теория относительности. На другой стене можно увидеть изображение атомной бомбы.)

Таким образом, 1905 г. стал в истории науки настоящим annus mirabilis[7]7
  Годом чудес (лат.). – Прим. ред.


[Закрыть]
. Если мы попытаемся отыскать еще один чудесный год, сравнимый с этим, нам придется вернуться в 1666 г., когда 23-летний Исаак Ньютон открыл закон всемирного тяготения, предложил интегральное и дифференциальное исчисление, формулу бинома и теорию цвета.

Эйнштейн за 1905 г. успел изложить фотонную теорию, дать доказательство существования атомов и обрушить основы ньютоновой физики. Каждое из этих достижений было достойно международного признания. Однако, к разочарованию автора, все это было встречено оглушительным молчанием. Казалось, его работу попросту никто не заметил. Обескураженный Эйнштейн продолжал жить своей жизнью, растить ребенка и спокойно работать в патентном бюро. Может быть, мысль об открытии новых миров в физике – всего лишь несбыточная мечта.

В начале 1906 г., однако, внимание Эйнштейна привлек первый проблеск реакции. Он получил одно-единственное письмо, но пришло оно от самого, может быть, значительного физика того времени Макса Планка, мгновенно разглядевшего радикальные следствия работ Эйнштейна. В теории относительности Планка привлекло то, что некая величина – скорость света – возводилась в ранг фундаментальной физической константы. Постоянная Планка, к примеру, отделяла мир классической физики от субатомного квантового мира. Мы, люди, защищены от странных свойств атомов благодаря тому, что постоянная Планка очень мала. Планк почувствовал, что Эйнштейн тоже сделал из скорости света новую физическую константу. Получалось, что мы защищены от не менее причудливого мира космической физики громадностью этой константы.

По мнению Планка, эти две константы – постоянная Планка и скорость света – обозначили границы территории, на которой действовали «здравый смысл» и ньютонова физика. Мы не в состоянии увидеть таинственную и непонятную по природе своей физическую реальность из-за того, что постоянная Планка так мала, а скорость света так огромна. Если теория относительности и квантовая теория противоречили здравому смыслу, то только потому, что мы проживаем всю свою жизнь в крохотном уголке Вселенной – в защищенном мире, где скорости малы по сравнению со скоростью света, а объекты настолько велики, что мы никогда не сталкиваемся с постоянной Планка. Природе, однако, нет дела до нашего здравого смысла, она создала Вселенную на основе элементарных частиц, которые постоянно летают со скоростями, близкими к скорости света, и подчиняются формуле Планка.

Летом 1906 г. Планк поручил своему помощнику Максу фон Лауэ посетить скромного государственного служащего, который вынырнул, казалось, ниоткуда, чтобы бросить вызов наследию Исаака Ньютона. Они должны были встретиться в приемной патентного бюро, но, как ни смешно, не обратили друг на друга внимания, потому что фон Лауэ ожидал увидеть перед собой внушительного авторитетного мужчину. Когда же Эйнштейн наконец представился, фон Лауэ был удивлен: перед ним стоял совершенно другой, удивительно молодой и небрежно одетый чиновник. Они подружились на всю жизнь. (Однако фон Лауэ разбирался в сигарах. Когда Эйнштейн предложил ему сигару, фон Лауэ постарался незаметно выбросить ее в реку Ааре, когда тот отвернулся; в этот момент молодые люди, беседуя, шли по мосту.)

Получив благословение Макса Планка, работа Эйнштейна начала постепенно привлекать внимание и других физиков. По иронии судьбы особенно сильно работой бывшего студента заинтересовался один из старых профессоров Эйнштейна из Политехникума, называвший его в свое время за пропуски лекций «ленивой собакой». Математик Герман Минковский тоже взялся за дело и доработал уравнения относительности, пытаясь переформулировать наблюдение Эйнштейна о том, что по мере разгона время превращается в пространство, и наоборот. Минковский перевел все это на язык математики и пришел к выводу, что пространство и время образуют некую четырехмерную сущность. Внезапно все вокруг заговорили о четвертом измерении.

На карте для определения положения точки необходимы две координаты (широта и долгота). Если добавить третье измерение – высоту, можно определить положение в пространстве любого объекта, хоть кончика собственного носа, хоть конца Вселенной. Таким образом, видимый мир вокруг нас трехмерен. Некоторые писатели, такие как Герберт Уэллс, и раньше в своих книгах рассматривали время как четвертое измерение; в этом случае любое событие можно определить тремя координатами и моментом времени, в который это событие произошло. Например, если вы хотите встретиться с кем-то в Нью-Йорке, можно сказать: «Встречаемся в доме на углу 42-й улицы и Пятой авеню, на двенадцатом этаже, в полдень». Четыре числа точно определяют любое событие. Но четвертое измерение Уэллса было всего лишь идеей без всякого математического или физического содержания.

Минковский переписал уравнения Эйнштейна таким образом, чтобы раскрыть эту красивую четырехмерную структуру, навсегда увязав пространство и время в единую четырехмерную ткань. Минковский писал: «Теперь и навсегда пространство и время растворились до состояния легчайших теней, и только их союз сохранит хоть какую-то реальность».

Поначалу Эйнштейн не был особенно впечатлен этим результатом. Более того, он саркастически написал: «Главное – содержание, а не математика. Математикой можно доказать что угодно». Эйнштейн считал, что в основе теории относительности лежат базовые физические принципы, а не красивая, но бессмысленная четырехмерная математика, которую он именовал «лишней эрудицией». Для него главным было получить ясную и простую картинку (вспомните поезда, падающие лифты, ракеты), а математика приходила позже. В то время он считал, что математика – всего лишь бухгалтерия, необходимая для фиксирования происходящего на картинке.

Эйнштейн писал полушутя: «С тех пор как на теорию относительности набросились математики, я сам перестал ее понимать». Со временем, однако, он в полной мере оценил мощь работы Минковского и ее глубокие философские следствия. Минковский, по существу, показал возможность объединения двух на первый взгляд разных концепций при помощи симметрии. Пространство и время теперь следовало рассматривать как различные состояния одного и того же объекта. Аналогично энергию и вещество, а также электричество и магнетизм можно было связать через четвертое измерение. Объединение через симметрию стало одним из ведущих принципов Эйнштейна на всю оставшуюся жизнь.

Представьте себе снежинку. Если повернуть ее на 60°, форма снежинки останется прежней. Математики говорят, что объекты, сохраняющие форму при вращении, «ковариантны». Минковский показал, что уравнения Эйнштейна, подобно снежинке, остаются ковариантными при повороте пространства и времени как четырехмерных объектов.

Иными словами, рождался новый физический принцип, который дополнительно прояснял работу Эйнштейна: уравнения физики должны быть ковариантны относительно преобразований Лоренца (то есть сохранять свою форму при преобразованиях Лоренца). Эйнштейн позже признает, что без четырехмерной математики Минковского теория относительности «могла надолго остаться в пеленках». Замечательно, кстати, что новая четырехмерная физика позволяла ученым сжать все уравнения теории относительности до удивительно компактной формы. Каждый студент-электротехник или физик, впервые столкнувшийся с серией Максвелла в виде восьми дифференциальных уравнений в частных производных, уверен в их невероятной сложности. А новая математика Минковского сжала уравнения Максвелла и сократила их число до всего лишь двух. (Более того, при помощи четырехмерной математики можно доказать, что уравнения Максвелла представляют собой простейшие уравнения, описывающие свет.) Впервые физики смогли оценить мощь симметрии в своих уравнениях. Ученые, говоря о «красоте и элегантности» в физике, очень часто имеют в виду, что симметрия позволяет объединить большое количество различных явлений и концепций в единую, замечательно компактную форму. Чем красивее уравнение, тем большей симметрией оно обладает и тем большее число явлений может описать в кратчайшей форме.

Таким образом, сила симметрии позволяет нам объединить разрозненные события в гармоничное неделимое целое. Поворот снежинки, к примеру, позволяет увидеть единство всех ее точек. Поворот в четырехмерном пространстве объединяет концепции пространства и времени, превращает одно в другое по мере увеличения скорости. Красивая, элегантная концепция, согласно которой симметрия объединяет несопоставимые, казалось бы, сущности в гармоничное целое, вела Эйнштейна вперед следующие 50 лет.

Парадоксально, но Эйнштейн, завершив создание специальной теории относительности, начал терять к ней интерес; он предпочитал размышлять о другом, более глубоком вопросе – о проблеме гравитации и ускорения, выходивших на первый взгляд за пределы специальной теории относительности. Эйнштейн дал жизнь теории относительности, но, как любящий родитель, сразу же заметил в ней потенциальные недостатки и попытался их исправить. (Об этом мы подробнее поговорим позже.)

Тем временем начали появляться экспериментальные доказательства некоторых его идей, что, естественно, сделало автора более заметным членом физического сообщества. Эксперимент Майкельсона – Морли был не единожды повторен, каждый раз выдавая один и тот же отрицательный результат и бросая таким образом тень сомнения на всю эфирную теорию. Эксперименты по фотоэффекту подтвердили уравнения Эйнштейна. Более того, в 1908 г. эксперименты с высокоскоростными электронами подтвердили вроде бы, что масса электрона увеличивается с ростом скорости. Вдохновленный постепенно скапливавшимися экспериментальными результатами в пользу его теорий, Эйнштейн подал документы на должность лектора (приват-доцента) в соседнем Бернском университете. Приват-доцент – должность ниже профессорской, но у нее было преимущество: можно было параллельно продолжать работу в патентном бюро. Помимо печатных работ, Эйнштейн представил и свою диссертацию по теории относительности. Поначалу глава кафедры Айме Фостер ответил ему отказом, заявив, что теория относительности невразумительна, однако вторая попытка Эйнштейна увенчалась успехом.

В 1908 г., когда доказательства того, что Эйнштейн совершил крупный прорыв в физике, появлялись одно за другим, его кандидатура всерьез рассматривалась в качестве претендента на куда более престижный пост в Цюрихском университете. Однако тут Эйнштейн столкнулся с серьезной конкуренцией со стороны старого знакомого Фридриха Адлера. Оба претендента на этот пост были евреями, что работало против них, но Адлер был сыном основателя Австрийской социал-демократической партии, которой симпатизировали многие члены факультета, и было похоже, что Эйнштейна в этой гонке обойдут. Поэтому заявление самого Адлера, который решительно высказался в пользу Эйнштейна, вызвало общее удивление. Адлер хорошо разбирался в людях и верно оценил масштаб личности Эйнштейна. Он красноречиво описал выдающиеся качества Эйнштейна как физика, но отметил: «Еще студентом он вызывал презрительное отношение профессоров… Он не понимает, как находить общий язык с важными людьми». Благодаря необычайному самопожертвованию Адлера Эйнштейн получил место в университете и начал свое стремительное восхождение по академической лестнице. Он вернулся в Цюрих, но уже не безработным физиком, неудачником и «белой вороной», а профессором. Сняв в Цюрихе квартиру, он с радостью узнал, что Адлер живет в этом же доме этажом ниже; они стали хорошими друзьями.

В 1909 г. Эйнштейн прочел свою первую лекцию на своей первой крупной конференции по физике в Зальцбурге, где присутствовали многие знаменитости, включая и Макса Планка. В докладе «Развитие наших взглядов на природу и состав излучения» он убедительно представил миру формулу E = mc2. Эйнштейн, привыкший экономить на завтраках, изумлялся роскоши, царившей на той конференции. Он вспоминал: «Празднества завершились в отеле “Националь” самым роскошным банкетом, какой мне приходилось видеть в жизни. Это заставило меня сказать женевскому аристократу, сидевшему рядом со мной: “Знаете, что сделал бы Кальвин, окажись он здесь?.. Он воздвиг бы громадный столб и сжег бы всех нас за грешную расточительность”. Тот человек больше не сказал мне ни слова».

В докладе Эйнштейна впервые в истории была ясно и четко представлена слушателям концепция дуализма в физике – концепция, согласно которой свет может обладать одновременно свойствами и волны, как полагал Максвелл в предыдущем веке, и частицы, как полагал Ньютон. Частицей или волной увидит свет наблюдатель, зависит от эксперимента. В низкоэнергетических экспериментах, где длина волны света велика, полезнее волновая картина. Для высокоэнергетического луча, где длина волны света чрезвычайно мала, лучше подходит картина частицы. Позже выяснилось, что эта концепция (которую несколько десятилетий спустя припишут датскому физику Нильсу Бору) отражает фундаментальную природу вещества и энергии и дает богатейший материал для исследований в квантовой теории.

Став профессором, Эйнштейн остался человеком богемы. Один из студентов живо вспоминал его первую лекцию в Цюрихском университете: «Он появился в аудитории одетым довольно бедно, в слишком коротких брюках и с листочком бумаги размером с визитную карточку, на котором он набросал свои заметки к лекции».

В 1910 г. у Эйнштейна родился второй сын Эдуард. Эйнштейн, никогда не любивший подолгу сидеть на одном месте, уже занимался поисками новой работы, в частности потому, что некоторые профессора хотели удалить его из университета. В следующем году ему предложили должность с более высоким жалованьем в Немецком университете Пражского института теоретической физики. По иронии судьбы его кабинет там располагался рядом с лечебницей для душевнобольных. Размышляя над загадками физики, он нередко задумывался и над тем, кто на самом деле здоров – так называемые нормальные люди или обитатели лечебницы.

Тот же 1911 г. был ознаменован первым Сольвеевским конгрессом в Брюсселе, организованным на деньги богатого бельгийского промышленника Эрнеста Сольве, который хотел представить миру работы ведущих ученых. Эта конференция стала важнейшим научным событием своего времени и дала Эйнштейну шанс встретиться и обменяться идеями с гигантами физики. Он увиделся с Марией Кюри, дважды лауреатом Нобелевской премии, и завязал с ней добрые отношения на всю жизнь. В центре внимания ученых на конференции были теория относительности и фотонная теория Эйнштейна. Темой конференции была «Теория излучения и кванты».

Одним из вопросов, живо обсуждавшихся на конгрессе, был знаменитый «парадокс близнецов». Эйнштейн и прежде упоминал о странных парадоксах, связанных с замедлением времени. О парадоксе близнецов первым заговорил физик Поль Ланжевен; он предложил простой мысленный эксперимент, призванный прояснить некоторые кажущиеся противоречия теории относительности. (В то время газеты были полны сенсационными историями про Ланжевена, который был несчастливо женат, и про его скандальный роман с овдовевшей Марией Кюри.) Ланжевен рассматривал двух близнецов, живущих на Земле. Один из близнецов перемещается некоторое время со скоростью, близкой к скорости света, а затем возвращается на Землю. На Земле, допустим, прошло 50 лет, но близнец в ракете за счет замедления времени постарел всего на 10 лет. Когда близнецы наконец встречаются, они оказываются разного возраста – тот из них, кто летал в ракете, на 40 лет моложе своего брата.

А теперь посмотрите на ситуацию с точки зрения того близнеца, который летал в ракете. Он может сказать, что сам он находился в покое, а прочь уносилась Земля, так что часы должны были замедлиться у земного близнеца. В этом случае при будущей встрече моложе окажется земной, а не ракетный близнец. Но, поскольку движение относительно, какой же из близнецов на самом деле окажется моложе? Поскольку на первый взгляд две ситуации представляются симметричными, эта задачка и сегодня остается болезненной занозой для любого студента, который пытается разобраться с теорией относительности.

Для разрешения этой загадки, как указал Эйнштейн, надо учесть тот факт, что ускоряется близнец в ракете, а не на Земле. Ракете придется замедлиться, остановиться, а затем двинуться в обратную сторону, что, очевидно, создаст серьезный стресс для близнеца в ракете. Иными словами, ситуации не симметричны, потому что ускорения, не подпадающие под постулаты, на которых основана теория относительности, переживает только один близнец – тот, который в ракете; он и будет на самом деле моложе.

Однако ситуация становится сложнее и непонятнее, если улетевший на ракете близнец не возвращается. В этом сценарии каждый из близнецов видит в телескоп, как другой замедляется во времени. Здесь ситуации полностью симметричны, и каждый близнец убежден, что для другого время идет медленнее и что именно другой близнец остается моложе. Точно так же каждый из близнецов убежден, что второй сжат в направлении движения. Но в итоге-то – кто из близнецов моложе и тоньше? Какой бы парадоксальной ни казалась эта ситуация, в теории относительности действительно возможно существование двух близнецов, каждый из которых моложе и тоньше другого. Простейший способ определить во всех этих парадоксах, кто из них на самом деле тоньше или моложе, состоит в том, чтобы свести близнецов вместе. Для этого потребуется сдернуть одного из близнецов с пути и доставить ко второму; при этом, строго говоря, и определится, который из близнецов двигался «на самом деле».

Хотя эти головоломные парадоксы удалось косвенным образом разрешить в пользу Эйнштейна, на атомном уровне при изучении космических лучей и в экспериментах на ускорителях ядерных частиц, этот эффект настолько слаб, что непосредственно увидеть его в лаборатории удалось только в 1971 г., когда самолеты с атомными часами долго летали на больших скоростях. Атомные часы способны измерять временны́е интервалы с астрономической точностью, поэтому ученые, сравнивая показания двух часов, могли убедиться в том, что чем быстрее движутся часы, тем медленнее для них идет время, в точности как предсказал Эйнштейн.

В другом парадоксе фигурируют два объекта, каждый из которых короче другого[8]8
  За прошедшие десятилетия были придуманы десятки парадоксов, иллюстрирующих безумную, на первый взгляд, природу специальной теории относительности. В них, как правило, фигурируют две системы отсчета, движущиеся с разной скоростью, из которых производятся наблюдения одного и того же объекта. Парадоксы возникают потому, что наблюдатели в каждой системе отсчета видят этот объект двумя совершенно разными способами. Почти все парадоксы могут быть разрешены с использованием двух подходов. Во-первых, уменьшение длины в одной системе отсчета должно компенсироваться растяжением времени в другой. Если мы забываем сбалансировать искажение пространства искажением времени, возникают парадоксы. Во-вторых, они возникают в тех случаях, когда мы забываем в конечном итоге свести две системы отсчета вместе. Окончательное определение того, кто на самом деле моложе или короче, может осуществляться только при сведении двух наблюдателей вместе в пространстве и времени и сравнении их между собой. Если же мы не сводим их вместе, мы можем иметь два объекта, каждый из которых короче и моложе другого, что невозможно в ньютоновой физике. – Прим. авт.


[Закрыть]
. Представьте себе охотника, который пытается поймать трехметрового тигра в клетку длиной не более полуметра. В обычных условиях это невозможно. А теперь представьте, что тигр движется так быстро, что сжимается до полуметра, так что, если опустить на него клетку, он окажется внутри. Естественно, после этого тигр резко затормозится – и удлинится. Если клетка сделана из сетки, тигр, увеличиваясь, ее разорвет. Если клетка сделана из бетона, то бедный тигр будет раздавлен.

А теперь взгляните на ситуацию с точки зрения тигра. Если тигр неподвижен, то клетка находится в движении и сжата до трех сантиметров. Как в такую маленькую клетку можно поймать трехметрового тигра? Ответ в том, что клетка, опускаясь, сжимается в направлении движения и становится параллелограммом, перекошенным квадратом. Таким образом, два конца клетки необязательно попадают в тигра одновременно. То, что одновременно для охотника, не является одновременным для тигра. Если клетка сетчатая, то передняя ее часть опустится на нос тигра первой и начнет рваться. По мере дальнейшего падения клетка будет рваться дальше вдоль тела тигра, пока задний ее конец не опустится зверю на хвост. Если клетка бетонная, то первым будет раздавлен нос тигра, а затем, по мере опускания клетки, все остальное последовательно до самого хвоста.

Эти парадоксы захватили воображение не только ученых, но и широкой публики. В юмористическом журнале Punch даже появился следующий шуточный лимерик:

 
Юная леди по имени Кэт
Двигалась много быстрее, чем свет.
Но попадала всегда не туда:
Быстро помчишься – придешь во вчера[9]9
  Лететь быстрее света, чтобы преодолеть барьер времени и попасть в прошлое, невозможно. По мере приближения к скорости света масса объекта возрастает почти до бесконечности, сам объект сжимается почти до бесконечно малой толщины, а время почти останавливается. Из этого следует, что скорость света – максимальная скорость во Вселенной. О возможных лазейках в этом ограничении мы поговорим позже, когда речь пойдет о кротовых норах и мостах Эйнштейна – Розена. – Прим. авт.


[Закрыть]
.
 
(Перевод А. И. Базя)

В это время друг Эйнштейна Марсель Гроссман, который был на тот момент профессором в Политехникуме, поинтересовался у Эйнштейна, не хочет ли тот поработать в своей alma mater в качестве ординарного профессора. Рекомендательные письма характеризовали Эйнштейна в самых лучших выражениях. Мария Кюри, например, писала, что «специалисты по математической физике единодушно оценивают его работу как первоклассную».

В результате через шестнадцать месяцев после переселения в Прагу Эйнштейн вновь вернулся в Цюрих и старый Политехникум. Возвращение в Политехникум (который с 1911 г. стал называться Швейцарским федеральным технологическим институтом), на этот раз в качестве знаменитого профессора, означало для Эйнштейна личную победу. Когда он покидал университет, его имя было запятнано, а профессора, такие как Вебер, активно противодействовали его карьере. Вернулся же он вождем новой революции в физике. В том же году он был в первый раз номинирован на Нобелевскую премию. Правда, Шведская академия по-прежнему считала его идеи слишком радикальными, да и среди нобелевских лауреатов раздавались голоса несогласных, которые выступали против номинирования его на премию. В результате Нобелевская премия 1912 г. досталась не Эйнштейну, а Нильсу Густаву Далену за работу по улучшению маяков. (По иронии судьбы сегодня маяки в значительной мере устарели благодаря появлению спутниковых систем навигации, в работе которых теория относительности Эйнштейна играет далеко не последнюю роль.)

В следующем году репутация Эйнштейна росла так стремительно, что им начали интересоваться в Берлине. Макс Планк жаждал заполучить эту восходящую звезду физики к себе, а Германия в то время была бесспорным мировым лидером в физических исследованиях, главный центр которых находился в Берлине. Эйнштейн некоторое время колебался – ведь он отказался от немецкого гражданства и до сих пор хранил горькие воспоминания юности, но предложение было слишком соблазнительным.

В 1913 г. Эйнштейн был избран в Прусскую академию наук, а чуть позже ему было предложено занять пост в Берлинском университете. Предполагалось сделать его директором Института физики Общества кайзера Вильгельма. Помимо громких должностей, которые мало что для него значили, это предложение было особенно привлекательным для Эйнштейна еще по одной причине: там от него не требовалось преподавать. (Хотя лекции Эйнштейна пользовались популярностью, так как было известно, что он доброжелательно и с уважением относится к своим студентам, преподавание отвлекало от главного, что его интересовало, – от общей теории относительности.)

В 1914 г. Эйнштейн прибыл в Берлин для встречи с членами факультета. Он немного нервничал под их внимательными и оценивающими взглядами. Позже Эйнштейн напишет: «Господа в Берлине ставят на меня как на призовую курицу-несушку. Что же до меня, то я даже не знаю, смогу ли снести еще хоть одно яйцо». Тридцатипятилетний бунтарь со странными политическими взглядами и еще более странным внешним видом вскоре вынужден был приспосабливаться к строгим чопорным порядкам Прусской академии наук, члены которой обращались друг к другу «тайный советник» и «ваше превосходительство». Эйнштейн задумчиво писал: «Кажется, большинство членов ограничиваются тем, что демонстрируют какое-то петушиное величие на письме; в остальном они вполне похожи на людей».


    Ваша оценка произведения:

Популярные книги за неделю