412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Митчел Уилсон » Американские ученые и изобретатели » Текст книги (страница 11)
Американские ученые и изобретатели
  • Текст добавлен: 21 октября 2016, 19:58

Текст книги "Американские ученые и изобретатели"


Автор книги: Митчел Уилсон



сообщить о нарушении

Текущая страница: 11 (всего у книги 17 страниц)

Скорость света

Только в XVII веке попытка измерить скорость света увенчалась успехом. Молодой датчанин Ремер заметил, что тень одной из лун Юпитера периодически появлялась на поверхности планеты на 16 минут 36 секунд раньше, чем при наблюдении в другое время года. Ремер решил, что причиной разницы во времени является то обстоятельство, что один раз в году Земля находится на кратчайшем расстоянии от Юпитера, а через шесть месяцев – в максимальном удалении. Ремер полагал, что разница в несколько минут равна времени, в течение которого свет пересекает земную орбиту. Разделив это расстояние на 16 минут 36 секунд, он получил 186 тысяч миль в секунду.

Только через сто семьдесят три года, в 1849 году, стало возможным измерение скорости света, проходящего между двумя точками на поверхности Земли. Выбрали расстояние в 10 миль. Французский ученый Физо поставил эксперимент, посылая импульсы света на удаленное зеркало и измеряя время, требующееся на возвращение луча. Свет разбивался на импульсы следующим образом. Луч проходил сквозь промежутки между выступами на окружности быстро вращающегося диска. При достаточно быстром вращении диска импульс света доходил до зеркала и возвращался обратно как раз за то же время, в течение которого диск поворачивался на небольшой угол – на ширину одного промежутка между выступами. На диске Физо было 720 выступов, и он делал ровно 25 оборотов в секунду. Зная расстояние от источника света до зеркала и обратно, Физо подсчитал скорость света и получил 194 тысячи миль в секунду.

Примерно через 20 лет, когда Майкельсон преподавал в Аннаполисе, проблема скорости света приобрела новое, чрезвычайно важное значение. Недавно сформулированная Максвеллом электромагнитная теория света утверждала, что скорость света должна быть меньше в воде, чем в воздухе. С другой стороны, из корпускулярной теории Ньютона следовало, что скорость света в воде больше, чем в воздухе. В 60-е и 70-е годы XIX века выяснение этого противоречия стало наиболее актуальным исследованием в физике. Науке необходим был способ точного измерения скорости света в любой среде.

Майкельсон говорил: «Тот факт, что скорость света непостижима для человеческого представления и, с другой стороны, существование принципиальной возможности ее измерения с чрезвычайной точностью, делают эту задачу одной из самых увлекательных проблем, когда-либо стоявших перед исследователем».

Знание скорости света было важно также для многих астрономических проблем навигации. Конгресс даже выделил средства известному американскому астроному Саймону Ньюкомбу для работы над этой проблемой. В 1877 году юный младший лейтенант Майкельсон неожиданно придумал метод измерения скорости света с помощью простейшего аппарата. Результаты его работы были опубликованы в журнале «Америкэн Джорнэл оф Сайенс» шесть месяцев спустя, в мае 1878 года.

В то лето тесть Майкельсона дал ему 2 тысячи долларов на усовершенствование аппарата. Путь луча был увеличен более чем в 30 раз и доведен до 700 метров, смещение изображения равнялось 13,3 сантиметра вместо двух. Максвелл предсказывал, что скорость света должна равняться 300 тысячам километров в секунду. Результат Майкельсона составлял 299 895 ±30 километров в секунду. Он подтвердил предположение Максвелла с точностью до одной десятитысячной.

В течение всей своей жизни Майкельсон постоянно возвращался к этому измерению, пытаясь бесчисленными способами еще более уточнить результат. В 1926 году, когда ему было семьдесят четыре года, он применил систему, в которой луч света посылался с вершины горы Вильсон на вершину Сан-Антонио, то есть на 22 мили и обратно. Вращающееся зеркало было изготовлено с чрезвычайной точностью, и оно приводилось в движение специально разработанным методом. Майкельсон подтвердил результат своих предыдущих измерений.

Два года спустя, в 1928 году, в возрасте семидесяти шести лет, Майкельсон получил средства для измерения скорости света в вакууме. Деньги на это ему дали обсерватория Маунт-Вильсон, Чикагский университет, фонд Рокфеллера и корпорация Карнеги. Ассистентами Майкельсона были Ф. Г. Пиз и Ф. Пирсон. Сотрудники Береговой геодезической службы Соединенных Штатов разметили и вымерили расстояния для громадного прибора на ранчо Эрвин. Вакуум предполагалось создать в трубе из гофрированного стального проката длиной почти в милю. Труба имела 3 фута в диаметре и доставлялась на место опыта 60-футовыми секциями.

Посредством многократного отражения свет должен был проходить расстояние в 8 миль, вымеренное с точностью до одной миллионной. Во всей системе создавалось разрежение, равное одной полуторатысячной части земной атмосферы. Выкачивание воздуха продолжалось 48 часов. Все время то одна, то другая часть выходила из строя, вакуум нарушался, и приходилось снова начинать долгий процесс откачки.

Если первый прибор в Аннаполисе стоил 10 долларов, то эта система обошлась в 50 тысяч долларов. Это был самый грандиозный проект Майкельсона. В то время как шла работа, здоровье его начало сдавать. Пирсон произвел непосредственные измерения под руководством умирающего.

В 1930 году были произведены сотни наблюдений. Всего было поставлено почти 3 тысячи опытов. Скорость света в вакууме оказалась равной в среднем 299774 километрам в секунду. Научная статья, написанная Майкельсоном перед смертью, называлась точно так же, как и его первая работа, напечатанная в 1878 году в Аннаполисе – «О методе измерения скорости света».

Эфирный дрейф

Майкельсон был величайшим мастером приборов. Его измерения скорости света стали примером классической точности. Его шедевром был прибор такой удивительной чувствительности, что им можно было с одинаковой легкостью измерить крохотную длину одной световой волны и диаметр звезды, которая в двести пятьдесят раз больше Солнца. Прибор Майкельсона дал Эйнштейну первое экспериментальное подтверждение его революционной теории относительности.

Майкельсон изобрел этот прибор – интерферометр в 1880 году, два года спустя после того, как впервые измерил скорость света; ему было тогда всего двадцать восемь лет.

Об Одаренности ученого можно судить по глубине его проникновения в наиболее трудные проблемы своего времени. Майкельсон выдержал это испытание. Самым волнующим научным достижением того времени была теория Максвелла, утверждавшая, что вселенная заполнена веществом, которое называется эфир. Еще за двести лет до Максвелла первым выдвинул гипотезу о существовании эфира Христиан Гюйгенс. Ко времени Максвелла эфиру приписывали уже множество различных свойств.

Сэр Оливер Лодж, один из пионеров радио, считал, что эфир – «некая беспрерывная субстанция, заполняющая все пространство. Ее колебания являются светом; ее можно разделить на положительное и отрицательное электричество; сгустки ее составляют материю; из-за собственной непрерывности, а не путем столкновений, она передает любое действие и противодействие, на которое способна материя».

Поскольку каждая теория в физике XIX века основывалась на существовании эфира, Майкельсон задался целью установить, действительно ли он существует.

Метод Майкельсона был основан на том же явлении, которое вызывает радужные цвета на тонкой пленке масла на поверхности лужи. Большая часть солнечного света отражается от наружной поверхности масляной пленки, в то время как остальной свет проникает внутрь пленки и отражается от ее нижней поверхности. При определенных углах падения света оба отражения накладываются одно на другое. Волны света, так же, как волны в воде, взаимно уничтожают или усиливают друг друга в зависимости от того, совпадает ли гребень одной волны с впадиной или гребнем другой. Есть некоторая разница в длине волн тех цветов, которые составляют белый цвет. При интерференции света некоторые цвета исчезают, и вместо них на масле появляется черная полоска. Там же, где цвета усиливаются, видны полосы хроматически чистых цветов спектра.

Интерферометр Майкельсона, спроектированный им во Франции, расщеплял луч света надвое, подобно тому как две поверхности масляной пленки разделяют солнечный свет. Майкельсон заставил каждый луч света проходить свой особый путь, а потом соединял их снова. Если два пути света слегка отличались друг от друга – как если бы один из них отражался от наружной, а другой от нижней поверхности тонкой масляной пленки, – наблюдатель мог видеть-попеременные светлые и темные полоски. Так как длина световой волны известна, то можно подсчитать неуловимо ничтожную разницу в расстоянии, которое проходил каждый луч.

Оригинальность идеи Майкельсона состояла в том, что, прежде чем соединить оба луча, он направлял их под прямым углом друг к другу.

Если один световой луч идет в направлении движения Земли в пространстве, то есть в эфире, а другой направлен к первому под прямым углом, то должна быть заметная разница в расстояниях, пройденных обоими лучами. Поясним это на таком примере. Представьте себе двух равных по силе пловцов в реке с сильным течением и шириной в милю. Одному пловцу предложили бы пересечь реку и вернуться обратно, второму – проплыть милю вниз по течению и обратно. Пловца, пересекавшего реку, все время сносило бы вниз по течению, и вернулся бы он несколько ниже того места на берегу, откуда отправился. Второй пловец проплыл бы первую часть пути легко, но возвратился бы с большим трудом. На заплыв ему понадобилось бы значительно больше времени, чем первому. Зная время, затраченное каждым пловцом, можно узнать скорость течения.

Световой эксперимент Майкельсона с интерферометром был основан на том же принципе; полосы интерференции должны были показать скорость движения эфира по отношению к Земле. Но Майкельсон, установив свой чувствительный прибор, не обнаружил никакого признака движения сквозь эфир. Он был настолько убежден в точности своих измерений, что мог бросить вызов любой теории и ученому своего времени. В докладе, напечатанном в журнале «Америкэн Джорнэл оф Сайенс» в 1881 году, он уверенно заявил: «Таким образом доказано, что гипотеза неподвижного эфира неверна».

Интерферометр Майкельсона измеряет расстояние с точностью, в тысячи раз большей, чем у лучших оптических микроскопов. Луч света из источника (вверху) превращается в параллельный пучок расположенной ниже линзой и затем разбивается на два луча полупрозрачным посеребренным зеркалом, установленным под углом 45°. Одна половина луча направляется на зеркало (слева вверху), другая – проходит сквозь полупрозрачное зеркало и падает на нижнее зеркало, также установленное под углом 45°, которое направляет свет на подвижное зеркало слева внизу.
Оба луча отражаются и вновь соединяются в один посеребренным зеркалом, которое направляет их к наблюдателю (справа), видящему узор из светлых и темных полос. Если нижнее зеркало сдвинуть влево или вправо, полосы также сдвигаются, так что величину перемещения можно подсчитать с фантастической точностью.

Большинство ученых с гневом отвергало выводы Майкельсона. Два человека – Фитцджеральд в Дублине и Лоренц[23]23
  Лоренц Гендрик Антон (1853–1928) – крупнейший нидерландский физик. Создатель электронной теории, на основании которой объяснил ряд электрических и оптических явлений. Его работы явились исходными при создании теории относительности.


[Закрыть]
в Лейдене, независимо друг от друга, предложили объяснение, сохранявшее теорию эфира, если только наука согласится с предположением,’ что предметы, движущиеся навстречу эфиру, подобно одной трубке интерферометра, сокращаются в длину вдоль направления своего движения, в зависимости от того, как близко их собственная скорость приближается к скорости света. При обычных скоростях сокращение практически равно нулю. При скорости, равной половине скорости света, сокращение может увеличиваться почти до 15 процентов.

Многие физики считали идею Лоренца-Фитцджеральда такой же фантастичной, как и концепцию Майкельсона, и предпочитали не высказывать суждений до тех пор, пока не станут известны новые данные. В 1901 году Кауфман показал, что электроны, излучаемые радием, по-видимому, увеличивают свою массу в тот момент, когда скорость их вылета приближается к скорости света. Молодому Альберту Эйнштейну, который родился всего за два года до эксперимента Майкельсона, казалось, что разрешить загадку можно, введя совершенно новые постулаты:

1) все законы физики одинаковы в системах, движущихся прямолинейно и равномерно по отношению друг к другу, поэтому наблюдатель, находящийся в одной системе, не может обнаружить движения этой системы при помощи наблюдений, сделанных только в ее пределах;

2) скорость света в любой системе независима от скорости источника света;

3) это означает, что скорость света должна быть независима от относительной скорости источника света и наблюдателя.

Сформулированная в математических, терминах в 1905 году теория относительности Эйнштейна показала, что сокращение Лоренца-Фитцджеральда на самом деле существует, но оно не имеет ничего общего с эфиром. Она также предсказала, что масса любого предмета должна возрастать, когда его скорость приближается к скорости света.

В системе Эйнштейна ни одна точка вселенной не является более подходящей для измерения, чем любая другая. Всякое движение можно измерять лишь относительно наблюдателя, производящего измерения. Так же нет никакого момента времени, который наблюдатель может считать начальным.

Время и место относительны по отношению к наблюдателю, поэтому теория была названа теорией относительности Эйнштейна в отличие от теории Ньютона, которая предполагала существование абсолютного времени и пространства. В 1919 году общая теория относительности Эйнштейна получила еще большее подтверждение в результате астрономических наблюдений, и впервые внимание широкой публики было сосредоточено на человеке, который уже более 20 лет творил чудеса.

Триумф точности

Свой интерферометр, открывший революционное направление в физике, Майкельсон использовал в 1920 году в обсерватории Маунт-Вильсон для первого в истории измерения диаметра звезды на основе принципов, сформулированных им еще в 1890 году. Интерферометр можно также применять для измерения расстояний, которые нельзя определить даже с помощью микроскопа. Например, подшипники в автомобильной промышленности могут подвергаться испытанию на совершенство обработки с точностью до одной десятитысячной. Современные методы американского производства, целиком зависящие от абсолютной точности, многим обязаны стандартам, введенным Альбертом Авраамом Майкельсоном.

В обсерватории Маунт-Вильсон Майкельсон, установил на 100-дюймовом телескопе 800-фунтовый интерферометр, чтобы измерить диаметр звезды Бетельгейзе. Он показал, что диаметр гигантской звезды в 250 раз больше диаметра Солнца.

Майкельсон был художником. Процесс мышления и темперамент ученого и художника одинаковы. Выбор творческой личностью той или иной формы искусства зависит от специфики его таланта.

Математик и физик-теоретик близки к поэту и музыканту; экспериментатор скорее напоминает художника или скульптора. «Порой начинаешь относиться к машине, словно у нее есть душа и характер, – писал Майкельсон. – Я бы сказал, женский характер, требующий лести, уговоров, уламывания и даже угроз. Но в конце концов понимаешь, что это характер чуткого и искусного игрока, который в захватывающей игре готов немедленно воспользоваться промахом соперника, который „откалывает“ совершенно неожиданные номера, который никогда не доверяет случаю и, тем не менее, играет честно, строго соблюдая все правила, и не делает уступок сопернику, если тот этих правил не знает. Если выучишь эти правила и соблюдаешь их, то игра идет успешно».

Другой прибор, эшелонный спектроскоп, созданный Майкельсоном в 1898 году, с невиданной для того времени точностью анализа спектральных линий, был так же чувствителен и изящен, как и интерферометр. Когда Майкельсон достиг того, что он сам считал пределом оптической точности в этой области, он взялся за еще более смелую задачу – создание дифракционной решетки, превосходящей даже шедевры Роуленда. Майкельсон думал, что сможет в течение нескольких месяцев построить двигатель, управляющий резцом. Однако на создание шестидюймовой решетки со 110 тысячами линий потребовалось восемь лет. Она была на 50 процентов лучше, чем любая из ее предшественниц.

В 1919 году, чтобы решить загадку земных приливов, Майкельсон занялся определением вязкости планеты. Это был первый случай, когда Майкельсон взялся за проблему, поставленную другим ученым. Он зарыл две шестидюймовые желёзные трубы длиной в 500 футов на глубину в 10 футов, расположив одну в направлении восток-запад, а другую – север-юг. В точке соединения обеих труб он устроил камеру наблюдения. Трубы были наполовину заполнены водой. Применив методы интерференции, Майкельсон точно измерил изменения уровня воды во время миниатюрных приливов, которые происходили в трубах под действием Солнца и Луны. Если бы Земля имела полужидкую структуру, в уровне воды не происходило бы заметных изменений. С другой стороны, если бы Земля была совершенно твердой, в трубах должны были бы возникать маленькие приливы. Приливы в трубах оказались равны восьми тысячным сантиметра. Это соответствовало теории о вязкой структуре Земли.

Кроме Нобелевской премии, присужденной ему в 1907 году, и медали Дрепера в 1910 году, Майкельсон был удостоен медали Копли Королевского общества и множества почетных дипломов американских и европейских университетов.

Он прожил долгую, богатую, полную жизнь, охватывающую период расцвета физики XIX века и огромную растерянность первых десятилетий XX века; он увидел проблески новых лучей, осветивших науку после открытия теории относительности и волновой механики. В течение его жизни американская физика поднялась до уровня передовой науки стран Европы.

Он умер как раз на заре новой эры. В той же книжке «Сайнтифик Монсли», где его молодой коллега Роберт Милликен поместил краткую биографию Майкельсона, появилась следующая заметка о V Вашингтонской конференции по теоретической физике: «Неожиданным событием явилось первое сообщение в нашей стране, сделанное профессорами Бором и Ферми, относительно химического открытия профессором Ганом и его коллегами распада урана на сравнительно легкий элемент барий, сопровождающегося освобождением приблизительно двухсот миллионов электроновольт энергии на каждый случай распада».

Роберт Милликен

Ученый поневоле

В конце весны 1889 года профессор Джон Ф. Пек, который читал лекции по греческому языку в небольшом колледже Оберлин (штат Огайо) обратился к одному из студентов, изучавших классические языки и литературу, с просьбой подучить физику, чтобы на будущий год преподавать элементарный курс этой науки.

– Но я не знаю физики.

– Каждый, кто хорошо усваивает греческий, может преподавать физику.

– Хорошо, – сказал студент, – но за все последствия отвечаете вы.

Последствиями оказались два наиболее фундаментальных исследования в области физики XX века. Милликен ответил профессору согласием, так как нуждался в деньгах. К изучению классики он не вернулся.

Роберт Милликен родился в 1868 году в штате Иллинойс в семье священника. Его детство прошло в небольшом, стоявшем на берегу реки городке Маквокета (штат Айова). «Мой отец и мать воспитали шестерых детей – трех девочек и трех мальчиков, живя на жалованье священника небольшого городка в тысячу триста долларов в год, – рассказывал он. – Мы носили костюмы и платья из синей бумажной ткани и ходили босиком, начиная с окончания школы в мае и до начала занятий в сентябре. Зимой мы, мальчики, распиливали ежедневно десять четырехфутовых бревен. Так продолжалось до тех пор, пока мы не напиливали десять кордов[24]24
  Корд равен 3,63 кубометра.


[Закрыть]
дров. Во время каникул по утрам мы должны были работать в саду, но после обеда у нас было свободное время для игр».

Дети плавали в реке, играли в бейсбол, два раза в день доили коров, вставали в три часа ночи, чтобы встретить бродячую цирковую труппу, выучились крутиться на самодельных параллельных брусьях и никогда не слыхали о том, что взрослый человек может заработать себе на жизнь, проводя время в лаборатории и работая над какой-то физикой. Для них слово «физика» связывалось с понятием о слабительном[25]25
  В американской разговорной речи слово «physic», созвучное со словом «физика», означает «слабительное».


[Закрыть]
.

Курс физики в средней школе Маквокеты вел сам директор, который в летние месяцы занимался главным образом поисками подземных вод при помощи раздвоенного орехового прутика и уж во всяком случае не очень-то верил во всю эту ерунду, напечатанную в учебнике: «Как это можно из волн сделать звук? Ерунда, мальчики, это все ерунда!» Но зато учителя алгебры Милликен с уважением вспоминал всю жизнь.

Когда ему исполнилось восемнадцать, он поступил в Оберлинский колледж – брат его бабушки был одним из основателей этого учебного заведения. На втором курсе колледжа он вновь прослушал курс лекций по физике, которые были ничуть не веселее тех, что ему читали в средней школе. Навыки в спортивных играх и атлетике, приобретенные в детстве на задних дворах, помогли ему получить место преподавателя гимнастики, а доход от преподавания физики в средней школе еще более укрепил его финансовое положение.

Милликен, надо сказать, добросовестно относился к своим преподавательским обязанностям. Чтобы идти впереди своих учеников, он изучал все учебники, какие только мог достать. В то время в американских колледжах было всего две книги по физике – переведенные с французского языка работы Гано и Дешанеля. При таких обстоятельствах Милликен действительно хорошо изучил предмет.

По окончании колледжа в 1891 году Милликен продолжал преподавать физику в Оберлине, получая небольшое жалованье. Он был вынужден заниматься этим, ибо, как говорил он сам, «в тот год депрессии никакой вакансии не было». Однако преподаватели Оберлина значительно серьезнее относились к роли Милликена в науке, чем он сам, и без его ведома направили его документы в Колумбийский университет. Ему была предложена стипендия, и Милликен поступил в университет, ибо другой возможности получать регулярно 700 долларов у него не было. В Колумбийском университете он впервые встретился с людьми, глубоко интересовавшимися физикой. Милликен решил последовать их примеру и попытаться стать настоящим ученым, несмотря на то, что уже много лет терзался сомнениями относительно своих способностей.

В 1893 году наука в Америке была отсталой. Только люди, получившие образование в Европе, хорошо представляли себе, как именно следует вести научно-исследовательскую работу. На физическом факультете Колумбийского университета был только один такой человек – профессор Майкл Пьюпин, получивший образование в Кембридже Милликен говорил: «Слушая курс оптики, который читал доктор Пьюпин, я все больше удивлялся. Впервые в жизни я встретил человека, который настолько хорошо знал аналитические процессы, что, не готовясь к занятиям, приходил ежедневно в аудиторию и излагал свои мысли в виде уравнений. Я решил попытаться научиться делать то же самое».

Когда срок стипендии, назначенный Милликену для изучения физики, истек, она не была возобновлена: Пьюпин предпочел Милликену другого кандидата.

Когда до Пьюпина дошло, что Милликен остался без всяких средств, он, наконец, заинтересовался им всерьез. На следующий год именно по настоянию Пьюпина Милликен решил поехать учиться в Германию. Милликену пришлось признаться, что у него нет средств, и Пьюпин дал ему взаймы необходимую сумму. Пьюпин хотел подарить ему эти деньги, но Милликен не согласился и вручил Пьюпину расписку в получении денег.

Перед самым отъездом Милликен встретился еще с одним человеком.

В 1908 году Роберту Милликену еще предстояло достигнуть выдающихся результатов в исследовании электрона. Тогда ему было 40 лет. Двое его сыновей, Кларк и Гленн, тоже впоследствии стали учеными.

сыгравшим значительную роль в его жизни. Во время летней сессии Милликен побывал в недавно открытом Чикагском университете, где познакомился с А. А. Майкельсоном. Ни один человек никогда не производил на молодого ученого столь сильного впечатления.

Милликен находился в Европе, когда за серией экспериментальных работ последовал грандиозный взрыв всех классических теорий. В 1895 и 1896 годах прозвучали в науке имена Беккереля, Рентгена, Кюри и Томсона.

Брожение еще продолжалось, когда летом 1896 года Милликен получил от А. А. Майкельсона телеграмму с предложением занять место ассистента в Чикагском университете. Милликену было тогда 28 лет. «Я отдал мою одежду вместе с чемоданом в заклад капитану одного из судов Американской транспортной линии, заверив компанию, что я выплачу капитану стоимость проезда в Нью-Йорке и только после этого приду за вещами».

Следующие двенадцать лет Милликен провел в обстановке неутомимой научной активности, характерной для Чикаго в начале века. Чикагский университет собрал в своих стенах молодых людей, которых в скором времени ожидала широкая известность: астронома Джорджа Гейля, историка Джеймса Брестеда, экономиста Стефена Ликока, Роберта Ловетта и многих, многих других. В одном пансионе с Милликеном проживали двое юношей: Торстейн Веблен и Гарольд Икс.

Первые годы, проведенные в Чикаго, Милликен посвятил написанию удобоваримых американских учебников по физике и заботам о своей молодой семье. Майкельсон взвалил на него всю преподавательскую работу, которая не соответствовала нраву старика.

Милликен начал серьезно заниматься научно-исследовательской работой, когда ему было почти сорок лет. Проблемы для исследования обычно выбирались им из числа тех, которые так потрясли ученый мир, когда он еще был в Европе. Милликен, поневоле ставший физиком, поставил два эксперимента, которые и поныне являются классическим образцом изящества замысла и выполнения. Он заслужил полученную им Нобелевскую премию.


    Ваша оценка произведения:

Популярные книги за неделю