Текст книги "Репортаж из XXI века"
Автор книги: Михаил Васильев
Соавторы: Сергей Гущев
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 3 (всего у книги 25 страниц)
Машины из лучей и струй
Механика – одна из древнейших наук. У ее истоков гениальные открытия великого ученого древности – Архимеда. Убежденный в могуществе, которое дает человеку знание законов механики, он, как утверждает предание, однажды воскликнул: «Дайте мне точку опоры, и я переверну мир!» Среди творцов механики – целое созвездие блестящих имен. Леонардо да Винчи и Галилей, Эйлер и Ломоносов, Ньютон и Остроградский, Лагранж и Циолковский, Мещерский и Чаплыгин и еще многие и многие вложили свой труд в развитие науки о движении тел и влиянии сил.
Законам механики подчиняется все. И стремительный бег планет, и вращение гигантского маховика, и медленное падение пылинки, танцующей в воздухе. По ее формулам рассчитаны и яростное лезвие пламени, рвущееся из сопла реактивного двигателя, и легчайшие взаимосвязи шестеренок в механизме ваших наручных часов, и запутанное движение частиц в потоке воды, вращающем тяжелый ротор гидротурбины. Нет инженера, который не изучал бы в том или ином объеме механику. Что бы ни пришлось проектировать ему – каркас переброшенного через пропасть моста или фундамент высотного здания, обтекаемый корпус подводной лодки или тонкий профиль пропеллера, траектории движения элементарных частиц в камере синхрофазотрона или полет космической ракеты к соседней планете, – всюду придется ему обращаться к механике.
В конечном итоге развитием механики определяется уровень машиностроения.
Но не исчерпала ли эта наука себя, раз уже изучены все возможные взаимодействия тел – твердых, жидких, газообразных – с силами статическими, то есть не изменяющимися ни по величине, ни по направлению, пульсирующими, знакопеременными и т. д.? Не стала ли она в наше время своеобразной инженерной арифметикой, к четырем действиям которой уже ничего нельзя прибавить? Каковы перспективы развития механики в будущем, и не только близком, а и далеком, отнесенном к рубежу XXI века?
С этим вопросом мы обратились к выдающемуся советскому ученому в области механики академику Анатолию Аркадьевичу Благонравову.
– О, нет! – улыбнулся ученый, выслушав наш вопрос. – Даже классическая механика в самом узком-значении этого слова еще отнюдь не исчерпала себя. И не исчерпает, вероятно, никогда.
Механика – одна из самых связанных с практикой наук. И ее развитие идет в ногу с требованиями практики и промышленности.
Оглянитесь назад. На рубеже нашего века лежит рождение авиации. Было ясно: близок день, и летательный аппарат тяжелее воздуха поднимется в небо. Наиболее проницательные ученые предвидели, что именно ему, аэроплану, а не аэростату и дирижаблю, принадлежит окончательная победа над пятым океаном. Техника требовала от науки методики точных расчетов таких летательных аппаратов. И на эти требования ответил своими работами гениальный русский*ученый Николай Егорович Жуковский. Он дал формулы, которые позволили вычислить и подъемную силу крыла, и тянущую силу пропеллера, и толкающую силу корабельного винта, и усилие, передаваемое паром лопатке турбины. Труды Жуковского – это по существу рождение целой новой отрасли механики, называемой ныне аэродинамикой.
Видите, еще и ста лет не прошло, как выделилась из механики целая новая отрасль – со своей особой областью изучения, своей особой методикой, своим особым математическим аппаратом.
А вот и еще более близкий пример. Вы знаете, как увеличил скорость самолета пришедший на смену поршневому реактивный двигатель. Встала реальная возможность создания аппаратов, обгоняющих в полете звук собственного мотора, – встала проблема сверхзвукового полета. Первые же опыты показали, что созданная Жуковским классическая аэродинамика (видите, меньше чем за полвека своего существования аэродинамика стала классической!) уже не удовлетворяет создателей сверхзвуковых самолетов, потому что при таком полете возникает ряд явлений, не укладывающихся в старые представления. И механики изучают новые условия, устанавливают новые закономерности, дают новые формулы. Начало этой совершенно особой области аэродинамики положил в своих теоретических работах выдающийся советский ученый С. А. Чаплыгин. И полет со скоростью, в два и в три раза превышающей скорость звука, перестал уже быть редкостью для современных скоростных самолетов.
Можно привести много примеров из недавнего прошлого, когда в связи с запросами практики возникали целые новые ветви механики. Так, А. Н. Крылов создал теорию непотопляемости корабля. И. В. Мещерский заложил основы механики тела переменной массы. Кстати, к таким телам относится и взлетающая ракета, масса которой все уменьшается за счет убыли сгорающего топлива. Есть и целый ряд других примеров. Так можно ли нашу науку – древнюю механику, от древа которой отпочковалось в самые последние десятки лет множество новых великолепных ветвей, можно ли считать эту науку исчерпавшей себя? Да, конечно же, нет!
В каждой из областей механики есть и сегодня удивительные нерешенные задачи. Вспомните хотя бы течение жидкости в трубе или открытом канале.
Точные формулы описывают такое течение, только если оно осуществляется с небольшими скоростями, – так называемое ламинарное течение жидкости. Но если мы будем постепенно увеличивать скорости течения, у нас характер его вдруг резко изменится: в нем появятся неравномерности, вихри. Такое течение называется турбулентным. В большинстве технических устройств, например в обычном водопроводе, нам приходится иметь дело с турбулентным течением. А рассчитывать его точно мы до сих пор не умеем. Обычно инженеры применяют в таких случаях приближенные формулы.
Но, конечно, особенно стремительно развиваются, особенно важные задачи решают те отрасли механики, которые имеют дело с сверхвысокими скоростями.
Нет, дело не только в том, что космическая ракета, возвращаясь на Землю, входит в атмосферу со скоростью в несколько километров в секунду. Дело в том, что и среда, в которую входит наша ракета, совсем не похожа на те, с которыми имела дело классическая механика. Она очень разрежена, а отдельные ее частицы, движущиеся, как правило, тоже с очень высокой скоростью, ионизированы. Это по существу плазма.
С плазмой встречаются не только возвращающиеся из космического пространства ракеты в крайних слоях атмосферы. С плазмой, имеющей температуру в неколько миллионов градусов, работают ученые, пытающиеся овладеть секретом термоядерной энергии. Плазменный поток из реактивного сопла, позволяющий осуществить прямое превращение тепловой энергии в электрическую, видимо, заменит в ближайшие десятилетия тяжелые паровые и газовые турбины – и с ним работают ученые. Гигантские потоки плазмы фотографируют астрономы, изучающие солнечные протуберанцы. Да и само Солнце и все звезды состоят из плазмы. Радиоголос межзвездной плазмы улавливают чуткие уши радиотелескопов. Можно без преувеличения сказать, что вся Вселенная состоит в основном из плазмы, а вещество в твердом, жидком и газообразном состоянии встречается в ней в виде исключения.
Механика плазмы – газоподобного вещества, взаимодействующего, однако, в противовес газу, с электромагнитными полями, обладающего и другими любопытнейшими отличиями от газа, – только создается. Сколько еще неразгаданного у этой ветви нашей науки!
Несколько слов о машинах и механизмах будущего.
Архимед имел дело с рычагами – системами твердых тел.
Паскаль открыл основные законы гидравлики. По существу с этого времени и начинается широкое применение в машинах и механизмах «жидких звеньев». В настоящее время они не редкость в самых распространенных машинах. Гидравлические прессы на заводах, гидравлические передачи усилий к тормозам легкового автомобиля, гидравлические коробки перемены передач – всего не перечислить.
Но уже – с изобретения английского кузнеца Ньюкомена – в машины пришли пар и газ. Сегодня «газовые звенья» мы можем увидеть в паровых и газовых турбинах, в паровых машинах и двигателях внутреннего сгорания, в ракетных двигателях.
Еще позже своеобразными звеньями механизмов стали электромагнитные поля, лучи света. Да, да. Разве в счетчике готовых изделий, сходящих с конвейера, луч света, падающий от источника на фотоэлемент, не является как бы рабочим звеном механизма?!
Чем ближе к нашим дням, тем чаще встречаются в машинах и механизмах гидравлические, пневматические, электромеханические и электронные элементы. И, как правило, замена механизма из твердых звеньев другим, более современным, ведет к улучшению механизма, и прежде всего к повышению производительности и быстроходности, а иногда и к упрощению конструкции.
Разве не проще прямое превращение тепловой энергии пара во вращательное движение, осуществляемое в турбине механизмом, состоящим из сопла, струи пара и колеса с лопастями, чем такое же превращение в паровой машине при посредстве цилиндра, поршня и массы дополнительных устройств?
И этот процесс внедрения нетвердых деталей в машины и механизмы будущего будет все ускоряться.
Техника будущего – техника сверхвысоких скоростей и сверхвысоких параметров. Можно легко представить, что все механизмы, которым придется иметь дело с температурами, скажем, выше 3500 градусов, не будут или почти не будут содержать твердых звеньев. И все это – бесконечное поле для новых исследований, новых открытий в новых областях механики.
У техники будущего и еще одна черта, которую я не могу не отметить. Это все большее и большее внедрение автоматики.
Нет сомнения, что уже в ближайшие два десятилетия подавляющее большинство промышленных предприятий у нас будут автоматическими и автоматизированными. В первую очередь автоматическими станут те производства, где требуется массовая продукция или где труд людей чрезвычайно тяжел.
Мне представляется, что появятся типовые заводы-автоматы, выпускающие хлеб, конфеты, ткани, обувь, одежду, из промышленных изделий – подшипники, шестерни, может быть, целые коробки перемены передач и т. д. Безусловно, будет полностью автоматизирован подземный труд шахтеров. Человек только изредка будет спускаться в забой, чтобы отремонтировать механизмы.
Автоматы – в том числе и кибернетические автоматы – войдут в быт людей. Нет, это вовсе не беспочвенная фантазия – «домашний» автомат, сначала специализированный, а потом все более универсальный, которому вы, уходя на работу, отдаете распоряжения вытереть пыль в квартире, протереть стекла, приготовить обед… Вечером такой автомат будет читать вам вслух газету или книгу, а, может быть, и подбирать литературу по интересующему вас вопросу.
Думаю, первые такие автоматы появятся даже не в XXI, а в нашем веке.
В последние годы советским ученым много пришлось заниматься вопросами космических полетов. О, как велика в их осуществлении роль автоматики! Ведь человек с его медленной реакцией бессилен управлять стремительными манипуляциями космического снаряда.
Первыми вышли за пределы земной атмосферы автоматы. Они первыми исследовали верхние слои атмосферы, околоземную часть космоса, проложили трассы к Луне. Автоматы населяли и первую в мире советскую искусственную планету, и лабораторию, запущенную к Венере. Я убежден, что и в дальнейшей разведке космоса первыми будут автоматы. Они раньше человека «высадятся» на Луне, на Марсе, на Венере. Они первыми преодолеют пояс астероидов и прорвутся к большим планетам нашей солнечной системы. Они так близко подлетят к Солнцу, как никогда не сможет приблизиться человек.
Есть планеты – такие, как например Юпитер или Сатурн, на которые, может быть, и совсем не ступит нога человека в прямом, а не в фигуральном значении слова. Их исследование смогут осуществить только автоматы. Работающие от ядерной энергии, чрезвычайно надежные автоматические маяки-исследователи в течение столетий и тысячелетий будут передавать по радио сведения о происходящем на зыбком дне метановых атмосфер этих планет…
Но вслед за автоматами всюду, куда можно, придет человек. Автоматы, даже самые совершенные, не смогут заменить глаза человека, его слуха, прикосновения его пальцев.
Превращение элементов – вот будущее металлургии
Все науки, в том числе и самые отвлеченные, самые теоретические, родились из требований практики. Астрономия родилась из необходимости в точном календаре и точных способах ориентации во время морских путешествий, геометрия понадобилась земледельцам для измерения участков вспаханной земли. Но, вероятно, одной из самых прикладных наук, никогда не порывавших своих связей с практикой, всегда была наука о металле…
Мы беседуем с академиком Иваном Павловичем Бардиным. Мы пришли к нему в самом конце трудового дня. Он явно устал. Но его лицо молодеет, а в глазах загораются огоньки, когда он произносит эти слова: «наука о металле».
Его, родившегося в очень небогатой семье, не помышлявшей о том, чтобы сделать сына образованным человеком, натолкнули на путь служения науке сестра матери – учительница и ее муж – студент. Дальнейшая биография Бардина – это история талантливого молодого человека без родственных связей, без знакомств, без родового имения пробивающего себе путь в жизни. Окончив институт, он не смог найти работу в России и поехал в Америку. Там, сунув в карман диплом инженера, простым рабочим трудился на заводе. По возвращении ему, по его собственным словам, выпало счастье работать со знаменитым металлургом М. И. Курако. Затем – огненная черта революции, разделившая, опять же по собственным словам Ивана Павловича, жизнь на две части. Строительство гиганта и первенца советской индустрии – Кузнецкого комбината и огромная организационная и научная работа по расширению и совершенствованию металлургии всей нашей страны. Да, можно понять, почему этот человек, который наибольшим счастьем в своей жизни считает строительство Кузнецкого комбината, волнуется, произнося такие простые слова: «наука о металле».
– Она, эта наука, – продолжает Иван Павлович, – зародилась много тысячелетий назад, еще тогда, когда человек использовал только редкие самородки металлов. Затем он научился получать металлы из руд. И сегодня еще продолжаются его поиски на этом пути. Новые методы получения металлов и металлических изделий из тех или иных руд – и сегодня одна из важнейших задач науки о металле. Как видите, за многие тысячелетия своего существования эта наука отнюдь не исчерпала себя.
Действительно, можем ли мы сказать, что общепринятая сегодня технология получения самого распространенного в современной технике металла – железа – наилучшая из всех возможных?
Обычная схема этого технологического процесса такова: прошедшая обогатительную фабрику железная руда поступает в доменную печь, где перемешивается с коксом и нагревается. Железо восстанавливается и насыщается углеродом, – из домны мы получаем чугун. Затем этот чугун плавим и в специальных печах выжигаем из него углерод – получаем стальные слитки. Перед тем как отдать их тяжелым валкам блюмингов, слябингов и других прокатных станов, металл снова не раз приходится нагревать. А почему бы не выкинуть из этой технологии все промежуточные энергоемкие, трудоемкие и дорогие процессы и не получить непосредственно из руды чистое железо или сталь требующегося состава, причем сразу в форме готового изделия – рельса, швеллера, двутавровой балки? Почему бы не сделать этот прерывистый сегодня процесс – сначала заготовили руду, потом выплавили чугун, потом его перерабатываем в сталь и т. д. – непрерывным?
По-моему, это безусловно возможно, и будущая металлургия откажется от принятой сегодня технологии. Современные домны, мартеновские печи и бессемеровские конверторы, блюминги и слябинги – все эти аксессуары современной техники не будут приняты техникой будущего.
Конечно, нельзя считать, что, например, через ближайшие десять лет мы начнем ломать доменные печи и на их месте воздвигать какие-то новые устройства для получения чистого железа. Нет, доменный процесс еще не исчерпал себя, он поддается дальнейшему совершенствованию, доменные печи мы строим и еще долго будем строить. Доменная печь и сегодня сложнейший агрегат, снабженный огромным количеством автоматических устройств, обслуживаемый всего несколькими рабочими. Домна завтрашнего дня станет полностью автоматической. Управлять ее работой будет счетно-электронная машина, получившая соответствующую «программу действия» на все возможные случаи отклонения процесса от расчетного.
В ближайшие годы процесс получения металла станет непрерывным. Из домны непрерывно будет поступать чугун – и сегодня домна, дающая 2000 тонн чугуна в сутки, производит его более тонны в минуту. Сквозь горячую струю только что выплавленного чугуна будет продуваться кислород – жаркое пламя встанет над ванной, в которой пойдет этот процесс. Пламя унесет с собой излишний углерод, серу, фосфор – все те примеси, которые ухудшают качество металла. Уже не струя чугуна, а сталь польется в кокили разливочной машины непрерывного действия. А выйдя из кокилей, стальные слитки сразу же будут поступать к валкам прокатных станов и превращаться в изделия. Такой непрерывный технологический процесс автоматизировать проще, чем сегодняшний, прерывистый.
Вероятно, – это еще не ближайшие годы, а несколько более отдаленная перспектива, – коренным образом изменится вся конструкция домны. Устройство, в котором происходит восстановление металла, будет горизонтальным агрегатом – вроде большой вращающейся трубы. В нее с одной стороны подадут хорошо очищенную порошкообразную руду – окисел металла без всяких посторонних примесей, а с другой стороны – восстанавливающий газ, например водород. При таком технологическом процессе можно получать металл в виде мелкого порошка, который после добавки соответствующих легирующих элементов идет на переплавку или сразу на прессование.
…Каждое существо имеет свой срок жизни. Говорят, что черепахи живут по 300 лет, а лошади редко доживают до 30-ти. Но, оказывается, имеют «срок жизни» и металлы. Конечно, длительность жизни металла в значительной степени зависит от условий, в которых ему предстоит жить. У столового ножа есть все шансы прожить дольше металла, пошедшего на изготовление самолетного мотора. Ведь нагрузка на этот нож, как правило, невелика, все внутренние изменения в его структуре совершаются крайне медленно. И, как медлительная черепаха, он может жить хоть триста лет. Иное дело – самолетный мотор. Его жизнь куда насыщеннее, чем жизнь самого стремительного коня! В его сердцевине – цилиндрах – клокочут яростные взрывы – по нескольку сотен, а то и тысяч в минуту. Его непрерывно сотрясает, он вибрирует, трепещет… И то, что сегодняшний средний срок жизни получаемого в массовых количествах металла наших моторов, станков и машин достигает 35 лет, – величайшее достижение металлургии.
Ну, а в будущем увеличится срок жизни металла?
Несомненно! Срок жизни металла может быть несравнимо более дли-тельным, чем сейчас. Живут же по нескольку сотен лет булатные клинки, металл которых защищен тонким слоем шлаков – окислов! Конечно, этот металл не получали в массовых количествах в доменных печах под повышенным давлением газов и в прочих невыгодных условиях крупного производства. Но мы должны добиться, чтобы и наш «массовый» металл не уступал по качеству драгоценному булату древних мастеров.
Конечно, сегодняшние легированные стали – вроде нержавеющей – значительно долговечнее, чем даже булат древних мастеров. Но это уже другое технологическое решение задачи: булатная сталь не содержит добавок хрома, никеля и других металлов, достигающих чуть ли не 25 процентов в наших нержавеющих сталях.
Бесспорно, железо – основной металл современной техники. Но не настает ли время, когда железу придется сдать свои позиции и уступить первое место другим металлам? Обычно считают, что железо может быть вытеснено медью – металлом электротехники, крылатым металлом алюминием и юным богатырем, по всем показателям счастливо соперничающим со сталью, – титаном. И соответственно считают, что век будущего будет медным веком (ведь электричество вторгается все в новые области человеческой культуры!), веком алюминия (широко распространенного, практически вездесущего в природе металла – легкого, близкого к меди по электропроводности, прочного в сплавах, как сталь, – металла авиации) или веком титана.
Лично я не думаю, что в ближайшее столетие железо резко сдаст свои позиции. Из железа (я имею в виду, конечно, его сплавы – и в первую очередь с углеродом: сталь и чугун) делаются ныне каркасы гигантских плотин и высотных зданий, корпуса океанских кораблей и машины бесчисленных назначений, трубы нефтепроводов и тонкие механизмы наручных часов, ажурное кружево мостов и железнодорожные вагоны. Вряд ли можно составить полный список вещей, которые делаются из железа! Можно сказать, что вся современная материальная культура, созданная человеком, зиждется на 3 миллиардах тонн железа, заключенного в машинах, сооружениях, средствах транспорта, предметах обихода и т. д. и т. п.
Конечно, стремительно растет и выработка некоторых цветных металлов. Но одновременно растет и количество получаемого железа. Если в 1880 году железо составляло 95,65 процента по весу от всей выработки металлов, то и почти через шестьдесят лет, в 1939 году, когда уже в значительной степени развились и электротехника и авиация, доля железа составила 94,06 процента. Полтора процента за полстолетия – вот темпы, которыми железо до настоящего времени сдавало свои позиции. И вряд ли в ближайшие полвека этот темп так уж резко изменится.
Но, конечно, и алюминий, и магний, и медь, и титан, и цирконий будут занимать все более почетное место. Особенно это относится к титану и цирконию. Обычно считают, что и тот и другой являются редкими металлами. Но во всяком случае по отношению к титану это неверно. Титана в земной коре (по весу) 0,6 процента – это один из наиболее распространенных элементов. Он обладает высокой прочностью (вдвое прочнее железа) при относительно небольшом удельном весе (значительно легче железа). Есть у титана и еще одно чрезвычайно ценное свойство – его высокая способность сопротивляться действию коррозии. Ведь этот жесточайший бич металла уносит около четверти всей мировой добычи железа. Но коррозия практически почти не страшна титану. В этом отношении он не уступает даже платине. Он спокойно противостоит кислотам, щелочам, солям. Многолетнее пребывание в морской воде не заставляет его покрыться тончайшей пленкой окисла. «Царская водка» – концентрированная смесь азотной и соляной кислот, против которой бессильны благородные металлы золото и платина, не действует на титан. По своей химической стойкости он «благороднее» самых прославленных драгоценных металлов.
Титан чрезвычайно жаростоек. Он плавится при температуре 1725 градусов. Это в среднем на 200 градусов выше температуры плавления стали. Все эти свойства и делают его чрезвычайно «опасным» соперником железа. И действительно, производство титана, начатое в мире в 1946 году, растет фантастически быстро. Если в 1948 году было выплавлено всего 10 тонн титана, то в 1954 году эта цифра поднялась до 7200 тонн, а в 1955 уже приблизилась к 20 тысячам тонн! Тут есть над чем задуматься железу.
Мы уже говорили: сталь живет 35 лет. А изделия из титана и циркония будут жить столетия. Они будут практически вечными. И в то же время значительно более легкими, чем изделия из железа.
Судьба титана напоминает судьбу алюминия. Он был получен сравнительно поздно. В 1790 году впервые была выделена в чистом виде окись титана – белый кристаллический порошок. Сто двадцать лет понадобилось для того, чтобы получить сверкающий серебристо-стальной металл – первые несколько граммов металлического титана. Прошло немногим более десяти лет с тех пор, как было впервые налажено промышленное получение титана, а сегодня его уже называют металлом будущего, пророчат ему широчайшее применение в авиации, газовых турбинах, космических ракетах и многочисленных других областях техники. Действительно, тут есть о чем задуматься железу.
Мне хочется коснуться еще одного вопроса – нового вида обработки стали с целью повышения ее механических свойств. Классическими видами такой обработки являются термические – закалка, отпуск, отжиг; химико-термические – цементирование, нитрирование и механические – например, наклеп. Опыты показывают, что в ближайшее время к этим видам обработки прибавится принципиально новый вид – облучение потоком нейтронов. При этом сталь приобретает совершенно новые, неожиданные и удивительные свойства.
Мы живем в атомный век. Человек овладевает не слабыми, ненадежными, временными связями атомов в веществе, а несравненно более важными и глубокими связями элементарных частиц атомного ядра. Достижения атомной техники найдут применение и в металлургии.
Я думаю, что на первых порах человек станет «конструировать» с помощью радиоактивного воздействия легированные стали требующегося состава, не вводя в них редких и дорогих легирующих добавок, а создавая их прямо в ковше расплавленной стали из атомов железа, углерода, может быть, серы и фосфора, может быть, из атомов распространенного элемента, специально для этой цели добавленного в расплав.
Это можно представить себе так. Движется наполненный до краев ковш с плещущей упругими волнами сталью. На несколько десятков секунд он останавливается около какой-то машины, похожей на те, что применяются в медицине для лечения злокачественных опухолей рентгеновскими лучами. Свинцовая груша со скрытым в ней источником радиоактивного излучения требующегося состава склоняется над ковшом, и в недрах расплава под влиянием потока лучей совершаются сложнейшие ядерные превращения. Через несколько минут сталь разливают по изложницам, но ее состав уже не тот, что был совсем недавно. И еще несколько дней – уже в затвердевшей стали – будет меняться этот состав, будет происходить под влиянием вызванной облучением собственной радиоактивности изменение химического состава металла. Вероятно, этим же способом – изменением структуры атомных ядер, искусственным превращением элементов – можно будет получать руды редких и рассеянных элементов. Возможно, появится целая отрасль промышленности – радиационная металлургия, которая будет заниматься изготовлением редких химических элементов из более распространенных. Но вряд ли, учитывая всю стремительность технического прогресса, радиационная металлургия разовьется в отрасль промышленности даже к началу XXI века. Это все-таки дело более отдаленного времени.