412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Михаил Васильев » Металлы и человек » Текст книги (страница 3)
Металлы и человек
  • Текст добавлен: 26 сентября 2016, 17:23

Текст книги "Металлы и человек"


Автор книги: Михаил Васильев



сообщить о нарушении

Текущая страница: 3 (всего у книги 30 страниц)

Сплавы

Смешайте гречневую крупу и рис. В этой смеси вы легко можете увидеть и отделить отдельные крупинки гречки и риса. Это – механическая смесь.

Возьмите щепотку обыкновенной поваренной соли. Химики давным-давно установили, что в ее состав входят два химических элемента – натрий и хлор. Однако и в самый сильный микроскоп вы не сможете различить и отделить частицы металла натрия и пузырьки газообразного элемента – хлора. Каждый атом хлора непременно связан в кристаллах поваренной соли с атомом натрия. Это – химическое соединение.

В стакан воды всыпьте ложку сахарного песку. Размешайте. Сахарный песок растает, даже намеков на присутствие в воде сахара не сможете вы заметить с помощью увеличительного стекла или микроскопа. Молекулы сахара затерялись среди молекул воды. Это – раствор.

А что же такое сплав?

Если вы зададите этот вопрос специалисту, он ответит вопросом же:

– Какой конкретно сплав вы имеете в виду? Какие элементы и в каких количествах входят в него?

А в некоторых случаях он попросит еще уточнить, как был получен этот сплав. Ибо сплавы могут быть и механической смесью, и химическим соединением, и твердым раствором.

Металлурги брали сурьму и свинец, сливали два расплава и тщательнейшим образом перемешивали. Сплав застывал. Ученые помещали под микроскоп кусочек сплава, и перед ними возникала мозаика крохотных кристаллов. Причем одни из них были образованы сурьмой, другие – свинцом. Типичная механическая смесь кристаллов двух металлов. Механические смеси образуются также при сплавлении алюминия с кремнием, висмута с кадмием и т. д.

Ученые заметили, что, как правило, такие сплавы – механические смеси – при изменении процентного содержания входящих в них компонентов изменяют свою температуру плавления, причем она всегда ниже, чем температура самого тугоплавкого компонента. Сплав с таким процентным содержанием компонентов, при котором он имеет минимальную температуру плавления, называют эвтектическим.

Сплав замещения.

Сплавы – механические смеси – очень широко применяются в технике. Ведь они состоят из кристалликов, имеющих разные физические свойства, и это позволяет получать, казалось бы, немыслимые обычно сочетания полезных качеств.

Возьмем, к примеру, широко распространенные антифрикционные подшипниковые сплавы, представляющие механическую смесь свинца, олова, меди и сурьмы. В мягкой, податливой основной массе свинца и олова располагаются твердые, износостойкие кристаллы сурьмы. Такое сочетание свойств обеспечивает длительную службу, хорошую прирабатываемость и малый коэффициент трения в подшипниках, залитых таким сплавом.

Словно повинуясь беспощадному зову, устремлялось судно к магнитной скале…

Многие металлы обладают неограниченной возможностью растворения друг в друге. Так, в меди может быть растворено неограниченное количество никеля, в алюминии – магния. Однако нередко встречаются и сочетания металлов, обладающих весьма ограниченной растворимостью друг в друге. Так, свинец плохо растворяется в цинке. Если слить расплавленные цинк и свинец, то образуются два слоя: сверху – цинк с растворенным в нем свинцом, снизу – свинец, в котором растворен цинк.

Чтобы разобраться, в чем тут причина, заглянем в кристаллическую структуру сплавов.

Когда сплав находится в жидком состоянии, нам ясно: молекулы одного металла находятся между молекулами другого в хаотическом общем движении.

Но вот сплав застывает. Атомы начинают образовывать кристаллы.

И оказывается, что в таком растворе атомы растворенного металла просто-напросто становятся на места атомов растворителя в образуемой ими кристаллической решетке.

Сплав внедрения.

Но так происходит только в тех случаях, когда величины атомов растворенного металла и металла-растворителя близки по размерам, не отличаются друг от друга диаметром, скажем, больше чем на 15 процентов. Такие сплавы и называют твердыми растворами замещения.

Таких сплавов современная металлургия знает множество. К ним относятся сплавы железа с хромом и никелем, кобальта с железом, меди с никелем.

Наши монеты, которые мы называем никелевыми, в действительности представляют собой раствор меди в никеле. Медь добавляется, чтобы монета меньше истиралась, изнашивалась. Медные монеты – тоже раствор, но уже алюминия в меди. Качество такого сплава также лучше, чем чистой меди.

В тех случаях, когда в металле со сравнительно крупными атомами растворяется вещество со значительно меньшими атомами, последние внедряются в кристаллическую решетку металла-растворителя на свободные места. Так же в ящике, в котором уложены крупные футбольные мячи, может между ними разместиться значительное количество крохотных мячиков для настольного тенниса. Такие сплавы называются растворами внедрения. К этому виду сплавов относится, например, сплав железа с азотом.

Иногда компоненты сплава вступают между собой в химическую реакцию. Таков, например, сплав вольфрама с углеродом. В этом сплаве возникает новое химическое вещество – кристаллы карбида вольфрама– со своими собственными и химическими и физическими свойствами. Оно образует с остальным металлом сплава механическую смесь.

Таким образом, один и тот же сплав может сочетать в себе и механическую смесь элементов и химическое соединение их – раствор друг в друге. Причем не только состав определяет ту или другую форму состояния сплава, но и то, как происходила его кристаллизация, каким термообработкам он был подвергнут, и так далее.

Вот почему не сразу можно ответить на вопрос, что же такое представляют собой сплавы. Вот почему требуются дополнительные конкретные данные.

Сплавов, применяемых в технике и промышленности, сегодня огромное количество.

Мы уже говорили, что сплавами железа с углеродом является все то, что мы в общежитии называем железом, чугуном сталью.

Бронзы – это сплавы меди с оловом, или алюминием, или свинцом.

Латуни – это сплавы меди с цинком.

Твердые сплавы, которыми токари-скоростники режут металл, – также сплавы вольфрама, углерода, кобальта.

Спиралька вашей электроплитки – это тоже сплав никеля с хромом.

И так далее и так далее.

Как и металлы, сплавы также объединяют нередко в своеобразные семейства. Так, существуют семейства легких, антифрикционных, магнитных, проводниковых, типографских сплавов, сплавов с высоким электрическим сопротивлением… Со многими из них нам еще придется встречаться.

А теперь поговорим и о чистых металлах.

Изгнание примесей

Что же они, дающие жизнь гигантским семействам сплавов, ничем и не могут быть полезны человеку в чистом виде? Если уже первобытные металлурги предпочитали сплав меди с оловом чистым меди й олову то, наверное, нам вообще не могут быть полезны чистые металлы?

Едва ли прошло больше пятнадцати лет с того времени, когда о сверхчистых металлах не имели понятия. Знали только технически чистые металлы, содержащие примесей не больше 0,5–0,05 процента, и химически чистые, не содержащие больше 0,001 процента примесей. Почти не учитывалось при оценке чистоты металла наличие растворенных в нем газов. Ученые едва догадывались о том, какое гигантское влияние могут оказывать на некоторые свойства веществ примеси, находящиеся в буквально микроскопических количествах, как изменяет качества металла растворенный в нем тот или иной газ.

Требования на сверхчистые металлы были выдвинуты развитием новых отраслей техники – атомной энергетикой, использованием полупроводников, производством жаропрочных материалов.

…Уран. Взрывается – физики говорят: расщепляется – его ядро. В разные стороны разлетаются два нейтрона – два снаряда, способных вызвать расщепление еще двух ядер урана, по… нейтроны попадают в ядра примесей – бора и лития и исчезают там, поглощенные этими ядрами. Реакция прекратилась.

– Нам нужен уран, – говорят инженеры, проектирующие атомные электростанции, – в котором примесь бора не превышала бы 0,000001 процента!

– Нам нужен германий, – требуют физики, работающие над созданием полупроводниковых приборов, – в котором примеси меди не достигали бы и 0,0000001 процента. Да и вообще примеси очень нежелательны. Надо, чтобы германия было в нашем германии не меньше 99,99999 процента!

«Семь девяток», – говорят о такой чистоте инженеры.

Сегодня такие сверхчистые металлы производятся уже в промышленных масштабах. И чем больше знакомятся с ними ученые и инженеры, тем больше открывают совершенно удивительных качеств. Оказывается, что многие сверхчистые металлы обладают повышенной пластичностью, коррозионной стойкостью, жаропрочностью, электропроводностью. Сверхчистый алюминий мягок, как свинец. Освобожденный от примесей титан, который считали хрупким, прокатывается в листы и ленты. Оказалось, что даже самые неуловимые примеси в очень значительной мере ухудшают иные очень важные свойства металлов.

И началась борьба за чистый металл. Началась она в лабораториях и кабинетах ученых, затем перешла на опытные полупромышленные установки. А сегодня борьба за чистый металл идет уже в цехах заводов.

Техника сверхчистых металлов поставила целый ряд новых вопросов. Вот только один из них: как определить, какова чистота полученного металла? Химический анализ слишком груб для таких неуловимых количеств. Пытаться определить миллионную долю процента примеси в составе сверхчистого германия методами химического анализа – все равно что стараться выколоть левый глаз комару кухонным косарем. Даже спектральный анализ, поражавший некогда своей фантастической чувствительностью, отказывает, когда речь идет о «седьмой девятке». Пришлось разработать принципиально новые методы.

Делают, например, так. Полученный сверхчистый металл облучают нейтронами. Атомы примесей становятся радиоактивными и сообщают о себе. По величине этой радиоактивности и судят о количестве примесей.

Можно узнать количество примесей и по собственным свойствам германия. Если они удовлетворяют требованиям, значит, очистка произведена достаточно хорошо, значит, выдержано нужное количество «девяток» чистого металла.

И к каким только уловкам не прибегают, чтобы получить чистый металл!

Тщательнейшим образом очищают исходные материалы, ведут плавку в вакууме, стараются, чтобы расплавленный материал не соприкасался со стенками печи, с огнеупорными материалами… И так далее и тому подобное.

Существует и целый ряд специальных технологических процессов, применяемых для очистки металла.

Вот как, например, получают сверхчистые цирконий и титан.

Аппарат для этой цели представляет собой большой металлический бочонок, герметически закрываемый металлической же крышкой. Сквозь эту крышку внутрь бочонка проходят два провода и специальное устройство, с помощью которого можно разбить опускаемую в бочонок ампулу с йодом.

В аппарат загружают технически чистые титан или цирконий и наглухо закрывают крышку. Затем из аппарата откачивают весь воздух, создавая там разрежение в одну стотысячную атмосферного.

После этого ампулу с йодом разбивают. Агрессивнейший элемент – йод – вступает в реакцию с очищаемым металлом, образуя химические вещества, называемые йодидами.

Взрыв сверхновой звезды – это и есть момент рождения элементов.

Аппарат нагревают так, что йодиды начинают испаряться. Одновременно включают ток в провода, ведущие в аппарат. Они внутри аппарата соединены проволочкой из сверхчистого же металла, который предполагается получить. Эта проволочка накаляется электрическим током до температуры 1300–1400 градусов. При такой температуре йодиды разлагаются, чистый металл откладывается на поверхности проволочки, а газообразный йод может снова вступить в реакцию с новой порцией очищаемого металла.

Когда на проволочке осядет требующееся количество сверхчистого металла, аппарат охлаждают. Пары йода осаждаются на его стенках. Только после этого охлаждают и извлекают полученный сверхчистый металл.

Для получения сверхчистого германия применяют метод вытягивания кристаллов из раствора.

Суть метода в том, что обыкновенно примеси имеют свойство охотнее растворяться или в твердом, или в жидком металле. Таким образом, при кристаллизации металла они или выталкиваются из кристаллов и застывающая в последнюю очередь часть металла оказывается наиболее засорена ими, или, наоборот, втягиваются в образующиеся кристаллы и остающийся металл получается более чистым. Однако в обычных условиях сразу же вслед за кристаллизацией за счет диффузии происходит выравнивание процентного количества примесей по всему объему металла.

Используя это свойство для очистки металлов, надо обеспечить, во-первых, непрерывное удаление образующихся кристаллов, во-вторых, непрерывное перемешивание остающегося расплава.

Практически это делается так. В ванну с расплавленным технически чистым германием опускают кристалл германия, укрепленный на специальном стержне, и начинают его медленно извлекать. В результате из расплава медленно вытягивается столбик сверхчистого кремния, нарастающего на затравочный кристалл. Для перемешивания расплава, для непрерывного удаления из района кристаллизации выбрасываемых кристаллами примесей стержень вращают. Весь этот процесс идет в вакууме или в атмосфере нейтрального газа.

Конечно, здесь рассказано только о принципе метода. А в действительности дело значительно сложнее. Перед плавкой кремний, например, моют в воде, прошедшей дважды дистилляционный аппарат. Плавку ведут в атмосфере водорода. Но ведь и в нем могут оказаться примеси. И водород пропускают через активированный уголь. Его очистительная способность растет с понижением температуры. С этой целью уголь охлаждают жидким азотом. И еще тысячи и тысячи предосторожностей принимают, чтобы не попала к металлу хотя бы пылинка. Например, примесь меди к сверхчистому германию, превышающая 0,0000000001 процента, уже дает знать о себе. Эта примесь иногда возникает при добавке к сверхчистому германию улучшающей его качество сверхчистой сурьмы. А ведь и сурьмы к германию добавляют не больше 0,000001 процента!

Сверхчистая сурьма

Встреча с сурьмой для меня всегда останется и встречей с людьми, которые ее добывают на окраине нашей страны, в самом сердце диких киргизских гор. Поэтому да простит мне читатель, что в строгий технический рассказ о сверхчистых металлах я позволю себе включить несколько строк, рассказывающих о человеке, судьба которого, вся жизнь которого неразрывно связана с судьбой советской цветной металлургии, хотя имя его не вошло в энциклопедии и не воспето поэтами…

– Теперь я познакомлю вас с первым комсомольцем нашего комбината, – сказал сопровождающий нас инженер. – Это человек, жизнь которого могла бы стать сюжетом для повести о судьбе пролетариата нашей страны. Ничего ни приукрашивать, ни пропускать не пришлось бы.

Мы только что вернулись из рудника, штольня которого открывается в горе в нескольких десятках метров отсюда. Там добывают руду сурьмы – элемента, которым не так уж богата наша планета. Затем мы познакомились с ее обогащением – сначала дроблением, затем размолом в шаровых мельницах и отделением частиц руды сурьмы от других примесей. В этом цехе мы и встретились с Федором Тимофеевичем Александровым, которого нам представили как первого комсомольца комбината.

Еще несколько минут, и мы сидим в тесной комнатке дежурного инженера фабрики. Перед нами немолодой уже человек с тонким загорелым, как у всех здесь, лицом, но по-молодому живыми глазами. Он рассказывает историю своей удивительной и в то же время обычной для рабочего его поколения жизни.

Чего только не случалось с ним с 1931 года, когда с первой группой рабочих и инженеров пришел он сюда, в эту долину, стиснутую горами со всех сторон, для того, чтобы построить здесь завод и рудник!

– Больше четверти века прожито с тех пор, – говорит Александров, – а я еще и сейчас помню до малейших деталей первую встречу с этой горной долиной. Как и сегодня, гремела река, зеленели склоны гор, голубело небо, но не было ни единого строения на месте этого зеленого поселка.

Он показал рукой в окно, сквозь которое были видны двух-и трехэтажные здания, утонувшие в зелени улицы, и, конечно, неизбежный здесь фон – угрюмые горы.

– Жили в палатках и землянках. С оружием не расставались. Вы проехали сегодня место, где мы разгромили последнюю банду басмачей. Склоны гор были усыпаны трупами. Мы подобрали неплохую коллекцию английского оружия. Это было в 1933 году.

Еще несколько месяцев – и мы дали первый образец металла… О, каким примитивным способом!

Выплавляли его в глиняных горшках объемом всего по 3–5 килограммов, в печках, которые сами здесь и сложили. Потом начали строить обогатительную фабрику. Одновременно учились для того, чтобы суметь работать на этой фабрике, когда встанут ее корпуса и задвигаются рычаги машин. Три года – с 1935 по 1937 – заняли курсы спецподготовки без отрыва от производства. С 1938 года на этой же фабрике меня назначили мастером – это должность, которую должен занимать инженер. А в 1942 году ушел добровольцем в армию.

Совсем недавно, кажется, кончилась война, и сразу же я вернулся сюда: соскучился без родной фабрики – невмоготу! Впрочем, еще раз пришлось мне побывать после этого за границей. В 1952 году ездил из глухих киргизских гор в Чехословакию – помочь там овладеть технологией обогащения цветных металлов. В порядке товарищеской помощи между братскими странами…

И в эти годы, вместившие так много, росли на моих глазах рудник, обогатительная фабрика, металлургический завод. Сегодня это совершенные предприятия, оборудованные по последнему слову науки и техники…

Вместе с Александровым мы идем по цехам, которые проходит сурьма. Вот цех, где стоят рядами гигантские металлические баллоны. В них происходит выщелачивание сурьмы из руды. Процесс этот идет при температуре, близкой к температуре кипения воды. В цехе никого нет – все управление им осуществляется автоматически. А вот и пульт этого автоматического управления – совсем недавно установили его заводские рационализаторы. Нет, он не выглядит величественно, этот фанерный щит, в котором вмонтированы контрольные приборы и аппарат управления. Но он безотказно, отлично управляет аппаратами цеха.

В следующем цехе происходит отделение жидкости, в которой растворена сурьма, от твердой породы. Производится это с помощью огромных дисковых вращающихся фильтров. Это большие барабаны, внутренняя полость которых разделена на отдельные отсеки. В них может создаваться разрежение, вакуум. В этот вакуум и засасывается жидкость сквозь пористую стенку барабана.

– Есть здесь одна деталь, – сказал Александров, – о которой я не могу не рассказать вам. Вот видите эту трубку, разбрызгивающую струйку воды по поверхности фильтра, покрытой слоем пустой породы, так называемым кеком. Кажется, пустяк, незаметная деталька. Предложил ее установить двадцатисемилетний инженер Павел Байбородов. Это его рационализаторское предложение. Оно позволяет улучшить отделение жидкости, содержащей сурьму, от измельченной пустой породы и приносит тысячи рублей годовой экономии. Неплохо?

Из фильтров жидкость, содержащая в себе сурьму, поступает в электролизное отделение. В больших ваннах электрический ток отбирает из раствора атомы сурьмы и бережно откладывает на одном из электродов. Мы ожидали увидеть блестящие, словно отполированные металлические поверхности. Нет, электролизная сурьма оказалась хрупким, черно-коричневого цвета, похожим на застывшую лаву веществом. Его обивают на специальном станке – тоже творении рационализаторов завода– и отправляют на переплавку в отражательные печи.

Тельферы роняют черный поток руды в печь. В другой печи, рядом, тем временем плавят шлак специального состава. Приходит в движение лента литейного конвейера, состоящая из бесконечной цепи изложниц– металлических форм для отливки. В каждую изложницу сначала наливают некоторое количество шлака, а потом заполняют ее доверху огненно-жидкой сурьмой. Сурьма выжимает шлак, и он обволакивает весь слиток, предохраняя его от окисления при соприкосновении расплавленного металла с кислородом воздуха. Так он и сходит с конвейера – в «рубашке» из шлака. Рубашку эту снимают, скалывая стекловидный шлак, и вот перед нами сверкающий двадцатикилограммовый слиток драгоценного металла.

Сурьма… Древние мастера Вавилона еще пять тысяч лет тому назад изготовляли из этого металла сосуды и украшения. С тех пор люди научились использовать для этих целей другие, более подходящие металлы. Но и сегодняшняя техника не отказалась от сурьмы. Она содержится в типографском сплаве, которым были набраны эти строки. В бесчисленных машинах работают содержащие сурьму подшипники. Добавка сурьмы ко многим металлам увеличивает их твердость, предохраняет от окисления.

Применяются и разнообразнейшие химические соединения сурьмы с кислородом, хлором, серой и т. д. Во всем мире добыли в 1956 году 35–40 тысяч тонн сурьмы. Большая часть этого металла не отличается особенной чистотой.

Лишь в самые последние годы в связи с развитием физики полупроводников ученым и инженерам потребовалась сверхчистая сурьма. Такая, чтобы процент примесей имел первую значащую цифру за четвертым или пятым нулем после нуля целых, чтобы на десятки и сотни тысяч атомов сурьмы было не больше одного атома чужеродных примесей. Здесь, на заводе, в сердце Средней Азии, изготовляют и этот сверхчистый металл, который, казалось бы, может родиться только в идеальных условиях институтских лабораторий.

Чтобы получить сверхчистый металл, слитки сурьмы, получение которых мы уже видели, сжигают в электропечи. В специальном конденсаторе улавливают белый дисперсный порошок – двуокись сурьмы. Этот порошок промывают соляной кислотой, беспощадно поедающей все самые незначительные примеси. Затем порошок освобождают от остатков кислоты, промывая дистиллированной водой. Триста пятьдесят литров воды приходится затратить, чтобы «отмыть» от кислоты один килограмм белого порошка двуокиси!

А затем из очищенной двуокиси сурьмы снова получают в электропечах металлическую сурьму. И снова… сжигают ее. Еще раз промывают кислотой, дистиллированной водой, снова получают металлическую сурьму и снова сжигают. И так несколько раз.

Затем слитки сурьмы, тонкие и длинные, как карандаши, кладут в графитовые корытца – изложницы и помещают в кварцевую трубку.

Начинается плавка. Ведут ее в атмосфере аргона – благородного газа, не вступающего ни в какие реакции. Кольцевая электропечь медленно движется вдоль очищаемого слитка. Металл в том месте, над которым находится электропечь, плавится, а как только она передвинулась дальше, снова застывает.

– Есть такой физический закон, – пояснил инженер, – когда какое-нибудь вещество кристаллизуется из расплава, примеси остаются в жидкой фазе. Именно поэтому льды, покрывающие соленые полярные моря, не содержат в себе соли. И здесь, кристаллизуясь, металл оставляет все примеси в расплаве. С зоной расплавленного металла они и выбрасываются к одному концу слитка. Конечно, и этот процесс повторяют много раз подряд. В результате получается слиток, большая часть которого состоит из сверхчистой сурьмы и один конец засорен примесями. Этот конец отламывают и пускают на переплавку.

…Передо мной на столе лежит крохотный кусочек металлической сурьмы. У него резкие линии кристаллических изломов, сверкающие зеркальным блеском, словно полированные грани. Это память о людях с далеких киргизских гор, добывающих и получающих драгоценный металл физики и техники.


    Ваша оценка произведения:

Популярные книги за неделю