355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Михаил Николаенко » Самоучитель по радиоэлектронике » Текст книги (страница 3)
Самоучитель по радиоэлектронике
  • Текст добавлен: 26 октября 2016, 22:05

Текст книги "Самоучитель по радиоэлектронике"


Автор книги: Михаил Николаенко



сообщить о нарушении

Текущая страница: 3 (всего у книги 13 страниц)

Глава 2
Каскады электронных схем

В данной главе рассматриваются общие вопросы разработки электронных схем. Каждый читатель в соответствии со своим уровнем подготовки сможет почерпнуть в данном разделе новые знания об особенностях существующих схем.

Материал, изложенный ниже, поможет разработать и изготовить различные электронные устройства собственными силами. Речь пойдет о проектировании схем, в которых используются только простые компоненты, доступные каждому любителю. Изложение рассчитано на читателя с техническим складом ума, которому уже приходилось собирать электронные устройства, пользуясь готовыми наборами деталей или схемами средней сложности из специальных журналов. Как правило, для этого необходимо изучить принципиальную схему устройства и иметь некоторые навыки по его настройке. После приобретения определенного опыта можно без большого труда самостоятельно конструировать разные типы схем. При этом любитель (в отличие от профессионала) может выбирать разновидность схемы на свой вкус и по своим возможностям.

2.1. Простейшие схемы

2.1.1. Полярность питающего напряжения

В отечественной литературе по электронике часто приводятся электрические схемы из зарубежных источников в оригинальном исполнении, без учета требований ЕСКД. И если с графическими и буквенными обозначениями электрорадиоэлементов начинающий радиолюбитель еще может разобраться, то определение полярности питающего напряжения вызывает определенную трудность. Этот вопрос особенно актуален, когда осуществляется питание от двуполярного источника и на схеме имеется обозначение как VСС, так и VSS. Неопытного любителя такая ситуация может завести в тупик. В такой ситуации надо четко запомнить: для питания схем с полупроводниковыми элементами n-p-n типа используется положительное напряжение +UCC (в иностранных источниках VСС), а для схем с элементами p-n-р типа – отрицательное напряжение – UCC (в иностранных источниках VSS).

2.1.2. Делитель напряжения

Часто возникает необходимость рассчитать схему делителя напряжения, один из резисторов которой является переменным. Такая задача появляется, когда требуется получить опорное напряжение для операционного усилителя с относительно точной регулировкой в узком диапазоне. В этом случае полезно задать ток, потребляемый делителем. Данный параметр часто важен и сам по себе, особенно когда схема работает от батарейки и желательно обеспечить минимальную потребляемую мощность.

На рис. 2.1 представлен делитель с тремя резисторами, один из которых является потенциометром. Допустим, необходимо получить регулятор напряжения от 1,5 до 2,5 В.


Рис. 2.1. Делитель напряжения

Вначале зададим максимальный ток, который будет протекать по делителю, равным 500 мкА при напряжении питания 5 В. Отсюда сразу можно определить номинал потенциометра. Он равен 2 кОм (при условии падения напряжения на нем 1 В при токе 500 мкА). Используя тот же ход рассуждений, получаем номиналы остальных резисторов: 3 и 5 кОм. Разумеется, эти значения уточняются в зависимости от выбранной серии резисторов.

2.1.3. Дифференцирующая цепочка

Дифференцирующая цепочка широко применяется в самых разнообразных схемах. Она используется, в частности, для генерации коротких импульсов, синхронизованных с фронтом прямоугольного сигнала, которые служат, например, для запуска симистора. Положительные и отрицательные перепады напряжения, поступающие на дифференцирующую цепочку, преобразовываются в импульсы различной полярности, которые при необходимости легко разделить (рис. 2.2). Параметры резистора и конденсатора выбирают с учетом нужной длительности выходных импульсов τ в соответствии с соотношением τ ~= RC.


Рис. 2.2. Дифференцирующая цепочка

2.1.4. Интегрирующая цепочка

Интегрирующая цепочка весьма важна для практики электронных схем. Одна из ее функций заключается в преобразовании частоты импульсной последовательности в постоянное напряжение, уровень которого пропорционален частоте. Для получения такого соотношения длительность импульсов не должна зависеть от частоты следования. В простейшем случае интегрирующая цепочка содержит только два компонента: резистор и конденсатор (рис. 2.3).


Рис. 2.3. Интегрирующая цепочка

Их номиналы выбираются в зависимости от минимальной частоты сигнала. Обычно задают такое произведение RC, чтобы оно было не меньше максимального периода следования импульсов. Например, цепочка 10 кОм/1 нФ вполне подойдет для частоты сигнала, превышающей 100 кГц. Если взять более низкое значение RC, на постоянное выходное напряжение будут накладываться заметные колебания пилообразной формы, искажающие преобразованный сигнал.

2.1.5. Подавитель дребезга контактов

Часто бывает так, что при нажатии на кнопку замыкание ее контактов происходит несколько раз из-за так называемого дребезга. В цифровых схемах это приводит к неправильной работе устройства. Устранить этот недостаток способна простая схема, использующая RS-триггер (рис. 2.4), например К555ТР2. Такой компонент может служить полезным дополнением к кнопочному выключателю, расположенному на лицевой панели.


Рис. 2.4. Подавитель дребезга контактов

2.1.6. Частотные фильтры

На рис. 2.5 приведено несколько классических схем пассивных и активных фильтров низких и высоких частот. Они используются в разнообразных устройствах, начиная с НЧ усилителей и заканчивая цифро-аналоговыми преобразователями. На каждой схеме указаны формулы для вычисления частоты среза фильтра FС.


Рис. 2.5. Простые схемы ФНЧ (а, б, в) и ФВЧ (г, д, е)

Приведенные схемы справедливы для операционных усилителей, которые питаются однополярным отрицательным напряжением. При этом напряжения на входах и выходах отсчитываются относительно общей точки источника питания. Для схем с двуполярным питанием можно создать искусственную точку опорного уровня. В устройствах, работающих на частотах ниже 100 кГц, можно использовать операционный усилитель любого типа.

2.1.7. Удвоитель напряжения

Удвоитель напряжения (в общем случае умножитель напряжения) представляет собой определенное соединение диодов и конденсаторов. Этот принцип построения давно используется для получения очень высоких напряжений, например, в телевизорах или в устройствах для ионизации газа. Небольшая схема, представленная на рис. 2.6, применяется для получения постоянного напряжения, приблизительно вдвое превышающего напряжение на входе.


Рис. 2.6. Удвоитель напряжения

Для работы схемы необходим сигнал прямоугольной формы низкой частоты. В данной схеме используются только положительные импульсы, что отличает ее от классических удвоителей, работающих от сети или от синусоидального напряжения, снимаемого с вторичной обмотки трансформатора.

2.1.8. Каскады с открытым коллектором

В литературе по электронике и технической документации часто встречается термин «открытый коллектор». Он связан с транзисторными каскадами и интегральными схемами. Примерами могут служить логические ИС семейства ТТЛ или другие схемы, предназначенные для обеспечения питания, стабилизации или усиления. В такой конфигурации транзистор n-p-n или p-n-р типа включен по схеме с общим эмиттером, а его коллектор остается свободным для использования разработчиком устройства (рис. 2.7а,б).

Выше уже описывалось одно из преимуществ этой концепции – возможность параллельного соединения нескольких идентичных схем. Выходы элементов с открытым коллектором соединяются, на этом основано построение логических устройств с тремя состояниями.


Рис. 2.7. Схемы с открытым коллектором

Другой классический пример применения таких элементов – это согласование по уровню двух схем, работающих при разных напряжениях питания. В любом случае на выходе каскада с открытым коллектором должен быть включен резистор, соединенный с источником напряжения +UCC или – UCC (для транзисторов типа n-p-n или p-n-р соответственно). Он фактически выполняет функцию нагрузочного резистора в цепи коллектора. При параллельном включении двух или более каскадов достаточно будет одного общего резистора (рис. 2.7в). Его номинал определяется в зависимости от токов, которые должны протекать по коллекторным цепям транзисторов.

2.1.9. Двухтактный каскад

Двухтактный каскад – это каскад на двух транзисторах, обычно используемый на выходе быстродействующих цифровых устройств. Кроме того, он входит в состав многих управляющих схем на МОП транзисторах. Двухтактный каскад включают также на выходе большинства генераторов синусоидального напряжения, работающих на низкоомную нагрузку (обычно 50 Ом). Его применение обеспечивает улучшение согласования генератора с нагрузкой. Базовая схема проста (рис. 2.8а): у двух комплементарных транзисторов, включенных по схеме с общим коллектором, соединены эмиттеры и базы. Транзистор n-p-n типа присоединен к положительному полюсу источника питания, а транзистор p-n-р типа – к отрицательному. Транзисторы открываются поочередно, и напряжение на выходе практически повторяет по форме входной сигнал.

Двухтактный каскад обладает одним недостатком: он не может полностью воспроизвести сигнал, который в отрицательный полупериод опускается до нуля. В таком случае перепад напряжения на выходе оказывается меньше, чем на входе, из-за конечного остаточного напряжения на открытом транзисторе. Этот недостаток не играет никакой роли, когда каскад используется для управления схемой на МОП транзисторах, но важен для выходных каскадов. С целью устранения описанной проблемы необходимо обеспечить симметричное питание двухтактного каскада, то есть применить дополнительный источник отрицательного напряжения (рис. 2.8б).


Рис. 2.8. Двухтактный каскад

2.1.10. Компаратор на транзисторе

Для сравнения двух напряжений не обязательно обращаться к операционному усилителю. С подобной задачей вполне может справиться простая и дешевая схема компаратора на транзисторе, которая представлена на рис. 2.9.


Рис. 2.9. Компаратор на транзисторе

Транзистор p-n-р типа сравнивает опорное напряжение на эмиттере с частью контролируемого напряжения, поданной на базу через резистивный делитель R1R2. Когда напряжение на базе падает ниже опорного, транзистор открывается и выход компаратора (коллектор транзистора) переходит в состояние с высоким потенциалом. Такая схема может использоваться, например, для контроля напряжения батареи питания.

2.1.11. Гистерезис в электронике

Термин «гистерезис» происходит от греческого слова «запаздывание» и означает появление задержки в развитии одного физического явления по отношению к другому. Гистерезис играет большую роль в технике и, в частности, в электронике. Он проявляется каждый раз, когда выполняется операция сравнения двух величин с некоторой точностью.

Суть данного явления можно пояснить на примере работы термостата независимо от наличия или отсутствия электронного регулятора. Рассмотрим термостат, настроенный на поддержание температуры 20 °C с помощью электрического нагревателя. Если бы управляющая нагревателем биметаллическая пластина, деформирующаяся при изменении температуры, не обладала гистерезисом, нагреватель включался бы и выключался очень часто, что приведет к быстрому износу контактов. В действительности регулятор включается при 19 °C, а выключается примерно при 21 °C. При этом механическая инерционность биметаллической пластины и тепловая инерционность нагревателя порождают явление гистерезиса, переключение режимов происходит с небольшой частотой, а температура в термостате колеблется в некотором интервале вблизи заданного значения (рис. 2.10а).


Рис. 2.10. Схема реализации гистерезиса

В электронике все процессы развиваются гораздо быстрее, и нередко приходится искусственно создавать задержку для снижения частоты переключения. В качестве примера на рис. 2.10б приведена схема компаратора на базе операционного усилителя.

Устройство сравнивает регулируемое напряжение Uвх с опорным Uoп, которое задается с помощью батарейки. Результат сравнения выводится на светодиодный индикатор. Чтобы усилить проявление гистерезиса и снизить частоту мигания индикатора, используют резистор, через который часть выходного сигнала передается на вход операционного усилителя. При этом снижается коэффициент усиления каскада и задерживается включение и выключение индикатора.

2.2. Операционные усилители

2.2.1. Присоединение неиспользуемых входов

Иногда один из операционных усилителей (ОУ) микросхемы, в корпусе которой размещаются два или четыре ОУ, не применяется. Подчас это делается преднамеренно, как, например, при использовании микросхемы LM324 ((счетверенный ОУ), которая дешевле, чем сдвоенный аналог LM358. В этом случае возникают проблемы паразитных колебаний и избыточного потребления тока. Для их разрешения неиспользуемые входы следует соединить по схеме повторителя напряжения, то есть вход + (плюс) с общей точкой, а вход (минус) с выходом (рис 2.11).


Рис. 2.11. Присоединение неиспользуемых входов ОУ

2.2.2. Уровень выходного сигнала

Операционный усилитель может с одинаковым успехом использоваться как в аналоговых приложениях (в усилителях и генераторах), так и в цифровых. В его характеристиках среди прочих указывают максимальный уровень выходного сигнала по отношению к напряжению питания. Известная микросхема LM324, например, имеет типичный уровень сигнала 1,5 В. Таким образом, при питании 5 В напряжение на ее выходе никогда не превысит 3,5 В. Это может мешать запуску логической схемы, порог переключения которой не адаптирован к такому уровню, или обеспечению питания нагрузки, требующей более высокого напряжения. В этом случае включение реле на 5 В становится ненадежным. Светодиод никогда полностью не погаснет, а будет гореть с меньшей интенсивностью. В подобных случаях на выходе операционного усилителя рекомендуется поставить буферный каскад на транзисторе.

2.2.3. Объединение выходов операционных усилителей

Иногда при использовании ОУ в качестве компараторов напряжения возникает необходимость объединения их выходов. Разумеется, такую операцию нельзя проводить с моделями, для которых подобный вид соединения не предусмотрен (например, LM324). Микросхема LM389 имеет на выходе каскад на n-p-n транзисторе с открытым коллектором и допускает такое соединение. Типичное применение такой схемы – отслеживание аналоговой величины (например, напряжения батареи) и выдача сигнала в случае ее выхода за пределы заданного диапазона (рис. 2.12). Оба усилителя включены по схеме компаратора, один для верхнего порога, другой – для нижнего.


Рис. 2.12. Объединение выходов ОУ

Когда контролируемое напряжение находится в допустимых пределах, на выходе каждого компаратора имеется состояние логической единицы (выходной транзистор выключен). Когда же напряжение выходит за заданные рамки, логическое состояние на выходе одного из ОУ изменяется на противоположное. Не следует забывать о подключении нагрузочного резистора, общего для всех компараторов, к положительному выводу источника питания.

2.2.4. Буферный усилитель

Микросхема CD4050 содержит шесть буферных усилителей, функция которых состоит в повышении мощности слабых сигналов до той величины, которая необходима для управления компонентами с высоким потреблением тока (например, светодиодами). Ряд усилителей можно без всяких проблем соединить параллельно – для того чтобы увеличить выходной ток или не оставлять свободными входы одного или нескольких усилителей. Такая схема также часто используется для управления мощными МОП транзисторами или источниками звуковых сигналов (рис. 2.13).


Рис. 2.13. Буферный усилитель

Аналогичным образом можно включать инверторы (микросхема CD4049). У этих микросхем есть одна особенность: их положительный вывод питания обозначен номером 1 (у большинства микросхем это номер 16).

2.2.5. Опорный уровень

Операционные усилители часто используют для усиления переменного сигнала. Однако для усиления отрицательной полуволны нужно создать положительный опорный уровень напряжения. Такую опору, равную Ucc/2, формируют с помощью резистивного делителя R1R2 в сочетании с фильтрующим конденсатором С2 (рис. 2.14а).


Рис. 2.14. Включение ОУ для получения опорного уровня (а)

В этом случае следует помнить о том, что усиливаемый аналоговый сигнал на самом деле наложен не на нулевой уровень, а на некоторое постоянное напряжение, которое обычно необходимо исключить перед подачей сигнала на следующий каскад. Для этой цели на выходе усилительной цепи ставят разделительный конденсатор С3, устраняющий постоянную составляющую напряжения.

Опорный потенциал может использоваться несколькими усилителями. Если их число велико или же требуется высокая стабильность опорного уровня, разумно построить небольшой источник питания, стабилизированный при помощи дополнительного операционного усилителя (рис. 2.14б).


… и стабилизированный источник опорного напряжения (б)

2.2.6, Аналоговые сумматор и вычитатель

Сумматор и вычитатель напряжений входят в число базовых аналоговых схем на операционных усилителях (рис. 2.15). Они находят широкое применение, особенно для обработки и усиления сигналов, поступающих от датчиков физических величин, например температуры, механической нагрузки или показателя кислотности воды. Чтобы достичь нужной точности, следует– соблюдать идентичность парных резисторов. Это требование играет более важную роль, чем точный подбор абсолютных значений сопротивлений.


2.2.15. Схемы аналоговых сумматора (а) и вычитателя (б)

2.2.7. Подача звуковых сигналов

Существует много различных зуммеров, или звуковых преобразователей. Эти устройства можно разделить на два семейства: простые зуммеры и зуммеры со встроенным генератором. Последние использовать проще, поскольку для их включения достаточно подать питание. Для работы простого зуммера нужен внешний генератор, но часто вместо него можно использовать источник сигнала, уже имеющийся в схеме. Таким источником может быть, например, неиспользуемый (или используемый) выход счетчика или тактового генератора. Когда для управления применяется микроконтроллер, нетрудно создать генератор, введя в программу логический цикл. В этом случае появляется возможность регулировать тональность звучания. С точки зрения схемотехники зуммер можно считать емкостной нагрузкой, поэтому во многих случаях параллельно ему следует подключать резистор (рис. 2.16).


Рис. 2.16. Простой зуммер

2.3. Световые индикаторы

2.3.1. Буквенная индикация из цифровой

Семисегментный индикатор позволяет отображать не только цифры, но и некоторые другие знаки и символы. Если творчески отнестись к поставленной задаче, можно обойтись без 16-сегментной модели или точечной матрицы, которые намного дороже и сложнее в применении. При этом вид отображаемой информации будет зависеть только от возможностей индикатора. На рис. 2.17 представлены некоторые примеры того, что может отображать

индикатор. Управление различными сегментами осуществляется при помощи специализированной логической схемы, как и в большинстве случаев применения символьной индикации.


Рис. 2.17. Буквенная индикация на семисегментных индикаторах

2.3.2. Алфавитно-цифровые индикаторы на жидких кристаллах

Кроме классических семисегментных индикаторов имеется семейство так называемых алфавитно-цифровых индикаторов. Они могут отображать цифры, буквы и некоторые другие символы на одной или двух строках из 8 или 16 знаков с фоновой подсветкой или без нее. Такие модули имеют довольно сложную электронную начинку и управляются микроконтроллером через стандартный параллельный интерфейс в сочетании с тремя дополнительными управляющими вводами (рис. 2, 18).


Рис. 2.18. Алфавитно-цифровой индикатор

Выводы Е и RS постоянно используются при работе, а вывод R/W, если он не используется для считывания содержимого внутренней памяти, должен быть заземлен через резистор.

Отметим, что индикатором можно управлять с помощью четырех битов вместо восьми. В этом случае, как ни странно, некоторые модели со строкой из 16 знаков начинают функционировать как двустрочные индикаторы, содержащие по восемь знаков на строку (реально же они остаются однострочными). Иначе говоря, после отправления восьмого знака необходимо выдать команду перехода на другую строку, чтобы получить возможность написать девятый знак.

Индикаторные модули позволяют регулировать контрастность изображения с помощью внешнего переменного резистора. Такое устройство необходимо, поскольку подключение соответствующего контакта к фиксированному напряжению не позволяет получить оптимальную контрастность. При подборе яркости фоновой подсветки, которую дают размещенные за индикатором светодиоды, лучше определить величину ограничивающего резистора экспериментальным путем, не полагаясь на инструкции производителя. Подсветка потребляет много энергии, поэтому желательно выбрать максимально допустимую величину резистора, обеспечивающую достаточное освещение при любых условиях.

2.3.3. Мультиплексирование многоразрядного индикатора

Как правило, семисегментным индикатором управляют посредством специализированной микросхемы декодирования (например, CD4511), включающей в себя четырехбитный дешифратор и несколько буферных каскадов для запуска каждого светодиода. Если для индикации необходимо использовать ряд цифр, задача существенно усложняется, поскольку при этом нужны схемы декодирования для каждой цифры (рис. 2.19а). В таком случае рисунок печатной платы принимает вид головоломки, поскольку индикатор может иметь самое различное размещение компонентов. Кроме того, резко увеличивается общий расход тока, поскольку токи, потребляемые каждым освещенным сегментом, суммируются.

Другой подход состоит в мультиплексировании индикации, когда нужные цифры отображаются одна за другой с частотой, при которой создается впечатление, что все они светятся постоянно. Если частота повторения слишком высока, яркость свечения снижается, при слишком низкой частоте появляется заметное мелькание. Подобная техника существенным образом упрощает электрические соединения и сокращает общее потребление энергии, поскольку в каждый момент времени горит только один индикатор.


Рис. 2.19. Схема мультиплексирования индикатора

На схеме, показанной на рис. 2.19б, осуществляется поочередное подключение общего электрода каждого из индикаторов (анода или катода). Когда некоторые сегменты активированы, загорается только тот индикатор, общий электрод которого также активирован, а остальные индикаторы погашены. Сначала управляющий сигнал поступает на общий электрод светодиодов первого индикатора, активируя его на определенный промежуток времени. По истечении этого интервала сигнал получает следующий индикатор и т. д. При этом необходимо точно соблюдать последовательность подачи управляющих сигналов на общий электрод и на соответствующие сегменты, что успешно выполняется некоторыми специализированными интегральными схемами (например, ICL7107). Вместо этого можно использовать микроконтроллер с соответствующим программным обеспечением.


    Ваша оценка произведения:

Популярные книги за неделю