355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Михаил Николаенко » Самоучитель по радиоэлектронике » Текст книги (страница 12)
Самоучитель по радиоэлектронике
  • Текст добавлен: 26 октября 2016, 22:05

Текст книги "Самоучитель по радиоэлектронике"


Автор книги: Михаил Николаенко



сообщить о нарушении

Текущая страница: 12 (всего у книги 13 страниц)

5.3. Методика устранения неисправностей

5.3.1. Поиск тепловых неисправностей

Тепловые неисправности печатного монтажа обнаружить очень трудно, а порой и вовсе невозможно. Кроме того, проявляться они могут не постоянно, что создает ложный эффект их самоустранения.

Повышение температуры, с одной стороны, бывает причиной выхода прибора из строя, а с другой стороны – может помочь в выявлении причины неисправности. В этом случае для проверки допустимо использовать термическое испытание. Иногда причину неисправности можно обнаружить, если подключать все компоненты один за другим на короткое время к источнику напряжения и прикладывать к ним палец, проверяя степень нагрева. При этом надо быть осторожным, чтобы не обжечься.

Существует и другой вариант проверки: струя воздуха от фена направляется на различные участки схемы. Это также позволяет выявить возможные неполадки. Если сузить отверстие для выхода воздуха, то его поток можно направлять с большей точностью.

Еще один из путей решения этой проблемы – способ выборочного охлаждения. Суть его заключается в обнаружении неисправного компонента путем локального понижения температуры. Порядок действий следующий:

1. Включить устройство и выждать, пока не проявится неисправность (при необходимости можно прибор немного нагреть, скажем, феном или на батарее отопления).

2. Взять из морозильника кусочек льда и завернуть его в полиэтилен для предупреждения возможных замыканий при таянии.

3. Выключить устройство и приложить лед на 10–20 с к корпусу тестируемой детали (микросхеме).

4. Включить и посмотреть, проявилась ли неисправность.

5. Повторять последние два пункта до устранения неисправности.

При охлаждении детали, дающей тепловой сбой, неисправность исчезнет. Останется только выпаять негодный элемент и заменить новым.

5.3.2. Ремонт источника питания

Наиболее вероятные причины неисправностей, которые следует устранять в первую очередь, касаются источника (или источников) питания вышедшей из строя схемы. После проверки подключения и предохранителей выполняется внешний осмотр, в процессе которого иногда удается выявить неисправность трансформатора по коричневатому цвету его обмотки. Это обычно свидетельствует о перегреве трансформатора, в результате чего могла нарушиться межвитковая изоляция. Залитые модели, рассчитанные обычно для работы на пределе своих возможностей, имеют ограниченный срок службы, что связано с плохими условиями отвода тепла.

Следующий этап поиска касается схем выпрямления и фильтрации. В первую очередь следует проверить, не произошло ли короткое замыкание в конденсаторе, особенно если расплавился предохранитель. Подключение мультиметра в позиции омметра к конденсатору приводит к зарядке или разрядке последнего в зависимости от полярности измерительных щупов. Следовательно, прибор может показать короткое замыкание, которого на самом деле нет. Поэтому тестирование следует проводить достаточно долго, чтобы закончилось протекание тока зарядки. В установившемся режиме (если конденсатор исправен) тестер должен показать практически бесконечное сопротивление.

Затем можно перейти к поиску возможных неисправностей в стабилизаторах. После того как схема будет проверена (при необходимости с использованием технической документации), следует обратить внимание на вход стабилизатора.

Иногда во входной цепи стоит мощный резистор, предназначенный для понижения напряжения до приемлемой величины. Этот резистор может перегреться, что в конце концов приведет к разрыву цепи. В этом случае, прежде чем его заменить, все же рекомендуется тщательно исследовать оставшуюся часть схемы.

Между входами и выходами, а также по отношению к общей точке не должно существовать замыканий. Если произошло короткое замыкание, для выяснения его причины необходимо демонтировать стабилизатор. Во время повторной сборки схемы рекомендуется проверить изоляционные прокладки из слюды и других материалов. Если источник питания по-прежнему не функционирует, нужно исследовать другие компоненты схемы. Необходимо искать любые следы нагрева или неисправности как на печатной плате, так и под ней. На проводящих дорожках иногда образуются разрывы, а контактная площадка может отслоиться от платы.

После проверки всех активных и пассивных компонентов наступает очередь интегральных схем. Их проверка облегчается, если они вставлены в специальные панели. В таком случае схемы вынимаются одна за другой, и проверяется наличие замыкания на выходе источника питания до исчезновения дефекта. Для подключения источника питания к логическим ИС обычно служат верхний правый вывод (14 или 16) для положительного полюса и нижний левый (7 или 8) для общей точки. Однако имеются исключения, например ИС типа CD4049 и CD4050. Множество операционных усилителей, например LM324, TL084 и др., также имеют стандартное расположение выводов (+ (плюс) на выводе 4, а «земля» или – (минус) на выводе 11). Иногда обнаруживается неизвестный компонент (модель невозможно идентифицировать или она засекречена во избежание копирования). Впрочем, вполне может оказаться, что расположение выводов соответствует принятым стандартам и данный компонент можно тестировать. Когда причина неисправности найдена, схемы по очереди ставятся на место и каждый раз проверяется работа источника питания.

На практике редко встречаются серийные ИС, вставляемые в панели, за исключением программируемых схем. При этом крайне трудно осуществить поочередную отпайку интегральных схем. Такая операция рискованна как для компонентов (из-за нагрева), так и для печатной платы (из-за отслаивания дорожек) даже при использовании высококачественного отсоса для припоя. Если мы имеем дело с двусторонней платой, результаты могут быть просто катастрофическими.

В качестве возможного варианта решения проблемы допустимо рассечь дорожки металлизации, подводящие напряжение питания, резаком, следя за тем, чтобы не повредить близлежащие соединения. Лак, покрывающий дорожку, должен быть счищен с обеих сторон разреза, чтобы потом удалось выполнить мостик из припоя для восстановления соединения. (Еще раз напоминаем, что необходимо быть особенно внимательными при работе с двусторонними печатными платами.) Затем выполняется тестирование – так, как описано выше.

Соединения выводов неисправного компонента также проверяют перед подключением к источнику питания. Это позволяет выявить другие возможные причины неполадок. Если в результате проверки неисправности не обнаружены (не найдено короткое замыкание и отсутствует напряжение), то следует вновь вернуться к трансформатору, одна из обмоток которого может быть разорвана.

Тестирование при помощи омметра должно показать на вторичной обмотке сопротивление ниже 10 Ом, а на первичной – порядка 100 Ом. Эти величины справедливы только для небольших трансформаторов (мощностью ниже 30 ВА). Желательно сравнить трансформатор с идентичным исправным прибором. Разумеется, между разными обмотками не должно быть никакой электрической связи. Необходимо внимательно проверить отсутствие закороток на печатной плате: их устранение потребует полного демонтажа.

Наконец, отметим, что при многочисленных измерениях, которые обычно проводятся относительно общего (заземляющего) вывода, в качестве базовой точки можно использовать выход стабилизатора (положительный вывод), к которому несложно присоединить зонд осциллографа или мультиметра.

5.3.3. Особенности проверки оптического детектора

В некоторых устройствах для определения положения компонентов используются оптоэлектронные датчики (детекторы излучения). Они применяются, например, в детекторах конца прохода каретки с головкой принтера или в индикаторах наличия кассеты в видеомагнитофоне. В нормальном режиме работы такие датчики защищены от света крышкой корпуса.

Во время проверки оптические детекторы могут быть засвечены слишком ярким светом. Об этом следует помнить при наличии сбоев, поскольку неисправность оптических детекторов может привести к неожиданным последствиям и иногда даже к порче механических компонентов (выход из строя автоматической системы управления).

5.3.4. Проверка логических состояний

Проводя поиск причины неисправности, важно иметь ясное представление о работе логической схемы устройства. При анализе выполняемой логической функции необходимо проверить соответствие состояний выхода сигналам на входах. Так, простой инвертор должен иметь на выходе уровень, обратный уровню на входе. Амплитуда сигналов также имеет большое значение. Напряжение 4,5 В на выходе схемы, питаемой от напряжения 5 В, должно настораживать всегда, за исключением некоторых случаев (например, непосредственное подключение светодиода к выходу без дополнительного транзистора).

Если на входе схемы стоят кнопки или переключатели, необходимо проверить соответствующие соединения и проследить пути прохождения сигналов. При наличии счетчика следует проверить работу его тактового генератора, отсутствие блокировки по входу установки начального состояния, а также продвижение сигналов на выходах. Если на работу логической схемы влияет переменный резистор, то вполне возможно, что сбой вызван нарушением его установки в результате удара или вибрации. Появление пульсаций напряжения источника питания интегральной схемы также может быть признаком неисправности. Рекомендуется обратить внимание на показания осциллографа, которые могут зависеть от подключения общего провода.

Интересен случай проверки интегральной схемы, которую невозможно идентифицировать, поскольку изготовитель сознательно пытался скрыть номер модели. При наличии некоторого опыта тип схемы можно распознать по компонентам, которые ее окружают. Так, генератор-счетчик типа CD4060 практически всегда снабжен конденсатором и двумя резисторами, которые подключены к его выводам 9, 10 и 11. Наличие положительного полюса питания на выводе 4, так же как и отрицательный потенциал на выходе, обычно свидетельствует о том, что речь идет об операционном усилителе.

Во всех случаях неоценимую помощь могут оказать справочные издания и многочисленные схемы, публикуемые в технических журналах.

5.3.5. Маркировка демонтируемых компонентов

Любая операция демонтажа неисправного прибора должна начинаться с тщательной маркировки всего набора снимаемых элементов. Следует тщательно записать цвет каждого провода, отметить ориентацию соединительных элементов, даже если для них существует единственный вариант включения. Желательно пронумеровать детали типа «вилка» и «гнездо» с помощью маркера. Также имеет смысл пометить все резьбовые детали, винты различных размеров и механические детали, сборка которых вызывает трудности. Чтобы ничего не потерять, рекомендуется разложить детали по пакетам.

При наличии подвижных элементов (кулачков, кареток и т. д.) следует точно запомнить или даже лучше зарисовать их положение, поскольку оно может оказаться важным для электронных схем управления при включении.

Приложения

Приложение 1. Расположение и назначение выводов разъемов

В практике радиолюбителя часто приходится перепаивать некоторые разъемы для подключения устройств друг к другу, а расположение и назначение выводов вы не знаете или забыли. Приведенные ниже сведения помогут восполнить этот пробел. При подключении нештатных устройств, используя эти разъемы, рекомендуется придерживаться стандартного назначения некоторых выводов во избежание неприятностей при случайном подключении такого разъема к аппаратуре.

Разъемы DIN (СРЗ и СР5) в 70-80-е годы XX века широко применялись в отечественной аудиоаппаратуре. В табл. П1.1 представлены некоторые варианты использования выводов разъемов.


Разъемы D-SUB стандарта RS232 используются в качестве низковольтных компьютерных соединителей и имеют от 9 до 78 контактов. Например, разъем DB9 (табл. П1.2) используется в качестве последовательного порта (СОМ-порт) для подключения периферийных устройств к ПК.


Разъем DB25, как правило, используется в качестве параллельного порта (LPT-порт) для подключения принтера к ПК (табл. П1.3). К этому порту можно также подключать самодельные устройства, управляемые компьютером.



Разъем Peritel (SCART) используется в основном для соединения между собой бытовой видеоаппаратуры (табл. П1.4).


Соединители типа RJ имеют от 2 до 10 контактов. Их удобно использовать не только для телефонных линий (RJ-11) и подключения компьютеров в сети (RJ-45), но и для быстрого соединения различных самодельных устройств. Вилочная часть имеет обозначение ТРх-6Р4С (для RJ-11), розеточная – TJx-8P8C (для RJ-45), где х– цифровое или буквенное значение, определяющее разновидность разъема. В табл. П1.5, П1.6 представлена цветовая маркировка жил телефонного провода, прямого провода (компьютер-концентратор) и кросс-кабеля (компьютер-компьютер).



Приложение 2. Химические источники тока

Радиоэлектронные приборы, работающие автономно, имеют встроенный источник питания того или иного типа. Рассмотрим некоторые химические источники тока (ХИТ).

Для питания бытовой и радиолюбительской аппаратуры чаще других используют марганцево-цинковые элементы и батареи с различными электролитами (солевым, хлоридным или щелочным) или воздушной деполяризацией. Широкое распространение получили также ртутно-цинковые, серебряно-цинковые и литиевые ХИТ. Конструктивно ХИТ обычно имеет форму цилиндра (цилиндр малой высоты называют таблеткой или пуговицей).

По рекомендации МЭК такие ХИТ имеют в обозначении:

• букву, определяющую электрохимическую систему (L – алкалиновая, S – серебряно-цинковая, М или N – ртутно-цинковая и др.);

• букву, говорящую о форме элемента (R – цилиндрическая, от англ. Ring – круг; F – прямоугольная, от англ. Foursquare – квадрат);

• число от 1 до 600, условно определяющее размеры элемента.

Применяя ХИТ той или иной системы, следует, конечно, знать ее возможности, особенности эксплуатации и т. п.

Солевые элементы и батареи

Первый тип – это марганцево-цинковые элементы. Это, прежде всего, хорошо известные батареи Лекланше с солевым электролитом (водным раствором хлорида аммония и хлорида цинка). Они могут эксплуатироваться при температурах от -5 до +50 °C. Имеют заметный саморазряд и недостаточно хорошую герметичность. Дешевы. Могут иметь надпись Marganese-Zihc.

Другой тип – угольно-цинковые ХИТ с водным раствором хлорида цинка. Энергетические показатели этих источников примерно в 1,5 раза выше, чем у элементов и батарей предыдущей группы. Могут эксплуатироваться при температурах от -20 до +55 °C. Имеют меньший саморазряд и лучшую герметичность. Допускают больший разрядный ток. В табл. П2.1 приведены данные солевых элементов и батарей по международным (МЭК) и государственным (ГОСТ, ТУ) стандартам.


Щелочные (алкалиновые) элементы и батареи

Электрохимическая система аналогична электрохимической системе марганцево-цинковых элементов, но в качестве электролита здесь используется щелочь в виде водного раствора гидрооксида калия. Алкалиновый элемент можно перезаряжать до 10–15 раз, но его повторная отдача не превысит 35 % начальной. Для перезарядки годятся элементы, сохранившие герметичность и имеющие напряжение не менее 1,1В. Алкалиновые ХИТ могут эксплуатироваться при температурах от-30 до +55 °C. Допускают значительные разрядные токи. На корпусе элемента обычно имеется надпись Alkaline. Применяются в устройствах со средним и высоким энергопотреблением: фотовспышки, электробритвы, диктофоны, плейеры, магнитофоны, телефоны, радиостанции, мощные фонари. В табл. П2.2 приведены данные алкалиновых элементов и батарей по международным (МЭК) и государственным (ГОСТ, ТУ) стандартам.


Воздушно-цинковые элементы

Электрохимическая система: цинк-воздух-гидрооксид марганца. Гидрооксид марганца МпООН окисляется кислородом воздуха до МnО2. Для подвода и удержания О2 используют специальные конструкции и материалы катода (элемент активизируется лишь после извлечения пробки, открывающей доступ воздуху). ХИТ с воздушной деполяризацией обладают высокой емкостью и длительным сроком хранения и могут работать при температурах от -15 до +50 °C. Они выпускаются в ограниченном количестве и в основном используются в слуховых аппаратах.

Ртутно-цинковые элементы и батареи

Электрохимическая система: цинк-оксид ртути-гидрооксид натрия. Источники тока имеют высокие энергетические показатели. Работоспособны лишь при положительных температурах (от 0 до +50 °C). При малых токах разряда и стабильной температуре напряжение на элементе остается почти неизменным. Практически не имеют газовыделения. Из-за наличия ртути экологически вредны и к применению не рекомендуются. Их можно отличить по надписи Mercuri. В табл. П2.3 приведены данные ртутно-цинковых элементов и батарей по международным (МЭК) и государственным (ГОСТ, ТУ) стандартам.


Серебряно-цинковые элементы и батареи

Электрохимическая система: цинк – одновалентное серебро – гидрооксид калия или натрия. Источники обладают малым саморазрядом, имеют хорошие энергетические характеристики и почти неизменное напряжение в процессе работы (при неизменной температуре). Температурный диапазон – от 0 до +55 °C. Их отличают по надписи Silver или Silber. В табл. П2.4 приведены данные серебряно-цинковых элементов и батарей по международным (МЭК) и государственным (ГОСТ, ТУ) стандартам.


Литиевые элементы и батареи

Используется электролит с диоксидом марганца на основе органических соединений. Сюда входят более десяти электрохимических систем. Напряжение на элемент– от 1,5 до 3,8 В. Энергетические и габаритно-весовые показатели выше, чем у ртутно– и серебряно-цинковых элементов: по массе – в 3 раза, по объему – в 1,5–2 раза. Литиевые источники обладают исключительно малым саморазрядом (сохраняют более 85 % емкости после 10 лет хранения). Элементы работоспособны в интервале температур от -30 до +65 °C. Они герметичны и имеют довольно стабильное напряжение. Выпускаются в основном в «таблеточном» исполнении для часов, калькуляторов, фотоаппаратов, компьютеров и других небольших приборов. В микромощных устройствах, где важна надежность контактов, используют литиевые источники с выводами под пайку. На корпусе обозначены как Lithium. В табл. П2.5 приведены данные литиевых элементов по шифру типоразмера.



Особенности обозначений и надписей

При использовании элементов питания мы часто сталкиваемся с тем, что с виду одинаковые элементы имеют различные обозначения. В связи с этим выбор аналога нужного элемента иногда вызывает определенные трудности. В табл. П2.6 приведено соответствие обозначений солевых и щелочных элементов разных стандартов, а в табл. П2.7 и П2.8 – дисковых серебряно-цинковых и ртутно-цинковых элементов.



Примечание к табл. Элементы, обозначенные звездочкой (*), а также с буквой W после косой черты (/W) в конце обозначения имеют существенно меньшее внутреннее сопротивление по сравнению с другими аналогами и предназначены для использования в часах с подсветкой и будильником.


О некоторых особенностях элементов и батарей зарубежного производства, а также преимущественном их назначении можно судить по сделанным на них надписям:

• Camera – для фотокиноаппаратуры;

• Cigarette Lighter – для карманной зажигалки;

• Communication Device – для средств связи;

• Fishing Float – для поплавка;

• Game – для электронной игрушки;

• Hearing Aid – для слухового аппарата;

• Lighter – для зажигалки;

• Measuring Equipment – для измерительных приборов;

• Medical Instrument – для медицинских приборов;

• Microphone – для микрофона;

• Mini Radios – для миниатюрного радиоприемника;

• Photographic Light Meter – для фотоэкспонометра;.

• Pocket Bell – для карманного будильника;

• Standart – универсальный элемент (батарея);

• Watch – для часов;

• Wristwatch – для наручных часов.

Приложение 3. Зарядка аккумуляторов

Обычно выделяют два больших семейства аккумуляторов: свинцовые и никель-кадмиевые. Первые применяются во всех транспортных средствах со стартерами (и в некоторых других областях). Вторые, менее тяжелые и громоздкие, используются для питания радиотелефонов, переносных компьютеров, видеокамер и другой аппаратуры. Сегодня различные модели обоих типов представлены в большом ассортименте, и каждый может выбрать то, что ему требуется. Условия перезарядки для обоих семейств различны, и эти правила необходимо строго соблюдать. Ниже представлены основные рекомендации по зарядке аккумуляторов.

Свинцовые аккумуляторы

Свинцовые аккумуляторы с пробками или без пробок (запаянные) заряжаются при ограниченном токе. Его значение выбирают равным С/10, где С – емкость в ампер-часах. Требуемое напряжение зарядного устройства составляет 2,4 В на каждый элемент. Таким образом, аккумулятор с номинальным напряжением 12 В емкостью 5 А·ч, состоящий из 6 элементов по 2 В, будет заряжаться при напряжении 14,4 В (как у автомобильного генератора) и токе 0,5 А. Избыточная длительность перезарядки не приносит большого вреда. Если аккумулятор находится в нормальном рабочем состоянии, то при достаточном уровне зарядки потребление тока сокращается само по себе.

Никель-кадмиевые аккумуляторы

В процессе зарядки никель-кадмиевых (NiCd) и никель-металл-гидридных (NiMH) аккумуляторов рекомендуется использовать ток, составляющий десятую часть номинальной емкости (например, 60 мА для батареи емкостью 600 мА·ч), в течение 16 ч. В любом случае ток следует ограничить с помощью резистора, включенного последовательно с источником напряжения (желательно, стабилизированного). Если источник позволяет задать ограничение по току, нужно отрегулировать его на величину, не представляющую угрозы для батареи.

Наконец, не следует забывать о том, что напряжение аккумулятора в процессе зарядки увеличивается и что в конце операции оно может превысить заданное напряжение источника питания. Чтобы ток не протекал через источник в обратном направлении, рекомендуется подключить защитный диод.

Пользователям переносных компьютеров и сотовых телефонов хорошо знаком «эффект памяти». Если аккумулятор начинают перезаряжать, когда он еще не полностью разрядился, его емкость после отключения зарядного устройства будет равна той, что он имел до перезарядки. Иначе говоря, либо аккумулятор надо постоянно оставлять на зарядке, либо надо дождаться его полной разрядки, а затем зарядить. В противном случае срок службы батарей существенно сокращается. По этой причине «разумные» зарядные устройства полностью разряжают аккумулятор перед его зарядкой.

В настоящее время большой популярностью пользуются новые типы аккумуляторов: литий-ионные (Li-Ion) и литий-полимерные (Li-Pol), свободные от такого недостатка. Они значительно дороже, но имеют более широкие возможности применения.

Режимы зарядки аккумуляторов

Проблемы зарядки аккумуляторов по-прежнему актуальны.

Какое зарядное устройство лучше? Как определить момент окончания зарядки? Какой режим зарядки предпочтительнее? Ответы на эти и другие вопросы изложены ниже.

Зарядное устройство обязано, прежде всего, передать аккумулятору соответствующий электрический заряд. Но это требование дополняется обычно пожеланиями обеспечить быстроту зарядки аккумулятора, сохранить на протяжении длительного времени его номинальную емкость, сделать зарядку безопасной и др.

В зарядных устройствах любого типа важнейшим является определение момента окончания зарядки аккумулятора. Это делается несколькими способами.

Первый способ. При зарядке аккумулятора постоянным, не изменяющимся в процессе зарядки током ее прекращают вручную по истечении определенного времени. На такой режим ориентированы многие наиболее дешевые зарядные устройства. Зарядный ток в них составляет обычно I = 0,1Е, где I – зарядный ток в амперах, а Е – емкость аккумулятора в ампер-часах. В этом режиме емкостный КПД аккумулятора принимают равным 2/3 и, соответственно, длительность зарядки устанавливают равной 15 ч. Режим зарядки малым током (он может быть и меньше ОДЕ при соответствующем увеличении продолжительности зарядки) замечателен тем, что даже при значительной перезарядке аккумулятор не будет поврежден, во всяком случае – не взорвется.

Второй способ. Аккумулятор заряжают постоянным током, многократно превышающим 0,1Е (в 10–20 раз). Зарядка прекращается автоматически по истечении заданного, более короткого времени. В режиме такой интенсивной зарядки обязательно должно соблюдаться следующее. Во-первых, аккумулятор необходимо предварительно разрядить (обычно до 1 В на банку); во-вторых, должна быть обеспечена строгая зависимость продолжительности зарядки от установленного значения зарядного тока и, в-третьих, обеспечено аварийное его отключение (например, по перегреву корпуса). К этой категории относятся многие зарядные устройства, появившиеся на нашем рынке, но, к сожалению, далеко не все они обеспечивают должную безопасность.

Третий способ. Ток зарядки – не обязательно постоянный. Зарядку аккумулятора прекращают при увеличении его температуры. Этот способ имеет серьезные недостатки (аккумулятор почти всегда перезаряжается, ненадежен тепловой контакт и др.) и используется, как правило, лишь для аварийного отключения аккумулятора.

Четвертый способ. Ток зарядки – фиксированный, как правило, многократно превышающий 0,1Е. По достижении на аккумуляторе заданного напряжения зарядка заканчивается автоматически. Этот принцип долгое время использовался в самых лучших зарядных устройствах, потеснив систему зарядки аккумулятора малым током.

Установка порогового напряжения здесь весьма критична. Обычно его значение выбирают в пределах 1,45-1,55 В на аккумуляторную банку, чаще – 1,48 В. Пороговое напряжение зависит, к тому же, от температуры окружающей среды и «возраста» аккумулятора.

Неизменный ток зарядки здесь, вообще говоря, необязателен. Но это упрощает учет потерь на подводящих проводах. Если же не учитывать эти потери, то на аккумуляторе будет установлено заниженное пороговое напряжение, что обернется недобором заряда, а установленное лишь на один милливольт выше реального приведет к тому, что процесс зарядки аккумулятора никогда не кончится. Вернее, кончится тем, что аккумулятор либо перегреется при малом зарядном токе, либо взорвется при большом. Во избежание этого некоторые зарядные устройства по достижении напряжения, чуть меньше порогового, переходят на дозарядку аккумулятора безопасным током, которым ее и завершают, или переключаются в режим «капельного» заряда, то есть поддержания напряжения аккумулятора на определенном значении. Контроль уровня заряда осуществляется по изменению напряжения на клеммах аккумулятора (так называемый DV-метод).

Пятый способ. Процесс зарядки контролируют по скорости увеличения напряжения на аккумуляторе: оно быстро увеличивается непосредственно перед ее завершением. Отследив этот момент, зарядное устройство уменьшает большой ток зарядки (он доходит в них до 2?) до малого, безопасного, которым зарядка и завершается. По причинам, изложенным в описании способа 4, оба эти тока также лучше иметь фиксированными, не изменяющимися во времени.

Шестой способ. Как и в предыдущем случае, при зарядке постоянным током состояние аккумулятора определяют по скачку напряжения. Для получения хороших характеристик зарядку ведут током не менее 2Е. В таких зарядных устройствах обычно используют аналого-цифровые преобразователи, которые позволяют заметить 1-процентный скачок напряжения и вовремя прекратить зарядку. Таким зарядным устройствам не нужны регулировки, связанные с изменением числа заряжаемых аккумуляторов. В качестве защитной меры в них контролируется продолжительность зарядки.

Однако ни один из рассмотренных выше способов зарядки сам по себе не является оптимальным. Поэтому нередко они сочетаются.

По установившейся терминологии зарядка аккумулятора может быть очень быстрой (до 15 мин), быстрой (до 1 ч), ускоренной (до 3–4 ч), нормальной (от 12 до 16 ч) и медленной.

Реальная емкость аккумулятора зависит от температуры и значений тока зарядки и разрядки. Наибольшая измеренная емкость получается при зарядке аккумулятора большим током и разрядке малым.


    Ваша оценка произведения:

Популярные книги за неделю