355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Михаил Калинко » Тайны образования нефти и горючих газов » Текст книги (страница 2)
Тайны образования нефти и горючих газов
  • Текст добавлен: 12 октября 2016, 03:03

Текст книги "Тайны образования нефти и горючих газов"


Автор книги: Михаил Калинко


Жанр:

   

Химия


сообщить о нарушении

Текущая страница: 2 (всего у книги 12 страниц)

За рубежом были открыты месторождения газа и нефти в Северном и Средиземном морях, в прибрежных частях океанов – Атлантического (у берегов Африки и Южной, Центральной и Северной Америки), Индийского (в Персидском и Суэцком заливах, у берегов Индии и Австралии), Тихого (в Яванском, Южно-Китайском и других морях и проливах) и Северного Ледовитого (вблизи берегов и островов Канады). Были обнаружены гигантские месторождения нефти на севере Аляски, на юго-востоке Мексики, гигантские месторождения газа в Иране, Персидском заливе и других регионах мира (см. рис. 2).

Расширение поисков нефти и газа, охватившее не только все континенты и острова, но и океаны, моря, крупные озера, было обусловлено ростом потребности в этих ископаемых. Не будет преувеличением утверждение о существовании прямой и обратной связи между научно-технической революцией и использованием нефти и газа: чем полнее реализуются все потенциальные возможности этих ископаемых, тем интенсивнее развитие НТР, а, с другой стороны, развитие НТР позволяет существенно увеличить количество добываемых нефти и газа.

Интересно рассмотреть, как менялось использование нефти и газа в истории развития человечества. 4-6 тысяч лет назад на Среднем Востоке битум использовался для приготовления раствора при кладке стен и в качестве клея для закрепления кремней и аппликаций, а в бассейне Инда – для покрытия дна искусственных водоемов. Битум применялся в это время и как средство для предохранения деревянных частей зданий (балок, Дверных и оконных переплетов и т.д.) от гниения.

Геродот и Аристотель сообщали об использовании газа для варки пищи, а, судя по археологическим находкам, нефть для освещения использовалась еще в древнем Вавилоне. Нефтяные лампы применялись во времена Римской империи в Сицилии, Египте и других Районах.

За 2000-3500 лет до н. э. битум использовался в качестве цемента в различных скульптурных произведениях – украшениях колонн, статуях и др. С древнейших времен он применялся для предохранения деревянны; судов от воды, для защиты фруктовых деревьев и вино градников от вредителей и т.д.

С доисторических времен и до настоящего времени нефть использовалась в медицинских целях. В 1539 году для нужд медицины из Венесуэлы в Испанию было отправлено несколько тысяч бочек нефти. О применении нефти в медицине писали древнегреческие, древнеримские, средневековые арабские и европейские ученые Некоторые типы нефтей (например нафталанскую) используют в медицине и в настоящее время. Битум при меняли в древнем Египте для мумификации трупов, а в средние века – для получения тепла и света. Уже в тс, время применялись методы перегонки нефти для очистки ее от опасных легких фракций и тяжелых остатков, дающих много копоти. Методы очистки и перегонки неф ти были описаны в трудах Геродота, Аристотеля, Пли ния Старшего и др.

Битумы, в том числе и нефть, применялись в военные целях еще во времена Пелопонесских войн (в 431-404 годах до н. э.). Плиний Старший описал применение нефтепродуктов при атаке Лукуллой города Самосата (Тиграпоцерта), а Филостратус Старший (170-245 годы) – использование нефти индусами для поджог;) стен. С 650 года известно о применении "греческого огня" (смесь нефти, серы и селитры), секрет которого в Европе узнали лишь в 1250 году.

Одной из причин неудач похода князя Игоря на половцев в 1184 году явилось присутствие в войске хана Кончака специалиста, "умеющего стрелять огнем и зажигать грады". В 1253 году Кублай Хан создал специальный корпус (1000 человек) поджигателей нефтью. В арабском руководстве по военному искусству (1300 год) описывались катапульты для горящей нефти

Любопытно, что необычные свойства битумов использовались в черной магии и в древние (например, в Вавилоне за 4-1 тысячу лет до н. э.) и в средние (IX век) века.

С нефтью и другими битумами связано много легенд возникавших в разное время. Так, Плутарх пишет, что обнаружение выхода нефти на берегу Амударьи (древнее название Оке) во время подготовки места для царской палатки Александр Македонский расценил как одно из "величайших предзнаменований", полученных им от божества. Прорицатели же утверждали, что "оно предвещает поход славный, но тяжкий и суровый", и это предзнаменование положило конец колебаниям Александра и определило его решение о походе в Индию.

В начале VI века существовала легенда о том, что нефть, пропитывающая породы в районе озера Тегернзее (ФРГ), является кровью гиганта Тирзуса, который не пускал чужеземцев в долину Рейна. Статуя Тирзуса и в наше время имеется в церкви деревни Вильтен.

Значительно позже, в XIX веке, нефти приписывали вредное влияние. Так, по сообщению Н. И. Воскобойникова и С. Г. Гурьева, в 1832 году Черноморская войсковая канцелярия запрещала в течение лета открывать нефтяные колодцы и копальни и добывать из них нефть, считая, что "испарения оных во время росы иссушают хлебные растения и производят неурожай в окрестных местах".

Первым импульсом к возникновению индустриальных методов добычи битумов в XVIII-XIX веках было установление возможности использования их в качестве мастики ("сейшельская мастика") для покрытия сначала мостов, потом площадей и улиц в городах Париже, Лионе, Петербурге и др. Постепенно расширялась область использования нефти (сначала в целом, а затем ее средних фракций) в качестве источника света: уже в 1815 году ею освещали улицы Праги. Однако резкое увеличение потребления нефти связано с изобретением керосиновой лампы. Оно, в свою очередь, вызвало необходимость разработки методов перегонки нефти – выделения из нее керосиновой фракции. Интересно, что у нас в стране методы перегонки нефти разрабатывались самостоятельно, начиная еще с XVIII века, Ф. С. Прядуновым на Ухте (1745 год), Ю. Надыровым у г. Сергиевска (1754 год) и братьями Василием, Герасимом и Макаром Дубиниными в Моздоке (1823 год). На Западе этот метод был "заимствован" из технологии переработки битуминозных углей.

При получении керосина бензин и мазут рассматривались в качестве отходов. С изобретением форсунки мазут стали использовать в качестве топлива, а бензин сравнительно долго представлял собой вредный и опасный отход производства, от которого необходимо было избавляться. В Грозном, например, специально копали поглотительные колодцы, в которые сливали бензин.

Использование других нефтепродуктов для разных целей тоже внедрялось очень медленно. Так, еще в 1880 году, когда были разработаны методы получения из нефти смазочных масел, считалось, что для смазки трущихся деревянных деталей наиболее эффективным является деготь, а для смазки трущихся металлических деталей сало. Смазочные масла со временем вытеснили растительные и животные жиры, парафиновые свечи оказались более дешевыми, чем восковые, начали применять анилиновые красители и т. д.

Вторым импульсом к резкому увеличению потребления нефти явилось широкое использование двигателей внутреннего сгорания для наземного (в первую очередь автомобильного), водного и воздушного транспорта в течение первых десятилетий XX века.

Вторая мировая война, как известно, была "войной моторов". В ней участвовало 40 миллионов автомобилей и тягачей, 150 тысяч танков, 200 тысяч самолетов.

Третьим импульсом к значительному возрастанию потребления нефти, а затем и газа явилась их очевидная более высокая эффективность по сравнению со всеми существующими источниками энергии. До сих пор жидкое горючее не имеет себе равных как источник энергии для наземного и воздушного видов транспорта. А разве можно заменить природный газ в качестве источника энергии и тепла для крупных городов? В самом деле, сколько бы нужно было иметь котельных, чтобы согреть и снабдить теплой водой такое количество домов, как в Москве, и какое огромное стояло бы над городом облако дыма, особенно под новый 1979 год, когда столбики термометров опускались до – 38,4 °С. если бы все котельные топились каменным углем или даже нефтью? В действительности небо над Москвой было голубым и, в том числе, благодаря тому, что почти все ТЭЦ города отапливались газом.

Природный горючий газ обладает другими особенностями, облегчающими его использование в огромных количествах: его легко транспортировать и можно хранить в больших объемах вблизи пунктов потребления. Так, природный газ транспортируется из Сибири и Средней Азии в центральные районы европейской части СССР, а из Оренбургского месторождения – даже в разные страны Европы, В сжиженном виде газ с помощью специальных судов – метановозов перевозится через моря и океаны.

Вблизи крупных промышленных центров создают подземные хранилища газа, откуда он отбирается во время "пиковых" нагрузок и которые вновь заполняются газом во время снижения его потребления. Таким образом удается как бы исправлять "ошибки" природы и создавать искусственные газовые месторождения там, где это необходимо человеку.

Если в холодное время года и в холодных странах газ и нефтепродукты служат прекрасным источником тепла, создающим нормальные условия для жизни людей, то в тропических странах в теплое время года энергия этих полезных ископаемых используется для производства "холода" не только в стационарных, но и в передвижных установках – автобусах, грузовых и легковых автомашинах. Это во многом облегчает жизнь людей при высоких температурах, позволяет сохранять продукты питания и т. д.

В послевоенное время потребность в нефти и углеводородных газах существенно увеличилась в связи с тем, что они стали сырьем для целой отрасли промышленности – нефтехимической, без которой в настоящее время немыслим технический прогресс. Синтетические каучуки, спирты, строительные материалы, моющие средства, гербициды, инсектициды и многие другие вещества и материалы, применяющиеся во всех отраслях народного хозяйства и в быту, производятся из нефти и природного газа (рис. 3-5).

Производство различных синтетических продуктов позволяет не только получать вещества, не имеющие аналогов в природе (пластмассы и Др.), но и экономить огромные количества пищевых продуктов – зерна и картофеля при производстве синтетического спирта, растительных и животных жиров при производстве синтетических моющих средств и т. д.

Вот почему темпы роста добычи нефти и газа исключительно велики (рис. 6). В 1980 году в мире было добыто 3,06 млрд. т нефти и свыше 1,5 трлн. м3 газа.

Интересна динамика добычи нефти в России. В течение первой половины XIX века, вплоть до 1862 года, в стране ежегодно добывалось от 3200 до 6000 т нефти.

Рис. 3. Нефтепродукты

Рис. 4. Основная продукция нефтехимической промышленности

Рис. 5. Использование природных углеводородных газов в народном хозяйстве

Начиная с 1862 года, в течение 20 лет нефтяная промышленность России испытывала ускоряющийся подъем. Наибольшее количество нефти (11,5 млн. т) было добыто в России в 1901 году, затем оно начало снижаться.

В истории развития советской нефтегазодобывающей промышленности по абсолютной величине добычи нефти и газа и географическому размещению основных добывающих баз четко выделяются следующие главные эта пы: 1917-1928 годы – восстановление кавказских промыслов; 1929-1940 годы – рост добычи нефти в основном за счет открытий на Кавказе; 1941-1945 годы – сокращение добычи нефти в кавказских районах и ее развитие в Волго-Уральской провинции; 1946-1950 годы – послевоенное восстановление промыслов на Кавказе и рост добычи нефти в Волго-Уральской провинции; 1951-1970 годы – интенсивное наращивание добычи нефти за счет открытий в Волго-Уральской провинции, а с 1971 года – этап интенсивного наращивания добычи нефти за счет открытий в Западной Сибири.

Рис. 6. Динамика добычи нефти и газа. Добыча: а – нефти в России – СССР, США и в мире; б – газа в СССР

Всего же из недр нашей страны извлечено 8,7 млрд. т нефти и 3,85 трлн. м3 газа. Количество добытого газа больше, так как извлекавшийся вместе с нефтью попутный газ долгое время не использовался и не учитывался.

До революции в России добывали только попутный газ, добыча которого в 1913 году составляла 17 млн. м3. В 1940 году в Советском Союзе было добыто 3,2 млрд. м3 газа. В 1942 году началась эксплуатация Седьиольского газового месторождения (Коми АССР), а в 1947 году на базе Елшанского месторождения был построен магистральный газопровод Саратов – Москва. Особенно быстро стала развиваться добыча газа в пятидесятые годы, когда были открыты газовые месторождения Шебелинское, Северо-Ставропольское, Газлинское и др. В 1979 году в СССР было добыто 407 млрд. м3 газа.

Глава II. Тайна состава нефти и природных горючих газов

Тайна состава

Слово "тайна" неоднократно встречается в этой книге, так как многое из того, что касается нефти и природных горючих газов, действительно, окружено тайной. В первую очередь это относится к составу нефти и природных горючих газов, который за 150 лет еще не окончательно изучен. Однако многое из того, что известно, тоже стало понятным не сразу, и потребовались усилия многих поколений исследователей, чтобы приблизиться к познанию состава нефтей и природных углеводородных газов.

История раскрытия этой тайны тесно связана с историей развития химии вообще, а затем и органической химии и тоже полна догадок и заблуждений на пути к истине. Так, до начала XVIII века считалось, что нефть содержит горючее начало, которое связывали с наличием серы.

Например, французский химик П. Ж. Макер (1718-1784 годы) считал, что нефть является лишь "одним родом" масел, которые "состоят из флогистона, соединенного с водой посредством кислоты и, кроме того, некоторого количества земли, различного в различных маслах". Однако уже в начале XIX века начали определять элементный состав нефти и природных газов сперва, конечно, не совсем точно, а затем удовлетворительно. Отнюдь не случайно Д. Дальтон апробировал Установленный им закон на примере состава метана и этилена и в 1808 году установил, что болотный газ имеет формулу СН2, а "маслородный" – СН. Пожалуй, именно с этого времени стало очевидным, что и нефть и сопровождавший ее природный газ состоят преимущественно из углеводородов.

Однако, хотя авторы и указывали на непостоянство и сложность состава нефти, они даже отдаленно не могли представить действительную степень этой сложности; это касается и состава природных горючих газов.

Но рассмотрим все по порядку. Родоначальник современной химии А. Л. Лавуазье (1743-1794 годы), который, по выражению Ф. Энгельса, "впервые поставил на ноги всю химию",[3] 3
  Маркс К., Энгельс Ф. Соч., 2-е изд., т. 24, с. 20.


[Закрыть]
уже в то время понял, что органические вещества состоят из углерода и водорода и имеют гораздо более сложное строение, чем неорганические соединения, а Я. Берцелиус (1779-1848 годы) считал, что реакции между органическими соединениями не подчиняются установленным химическим законам, так как эти соединения обладают «жизненной силой».

Господству этого представления пришел конец благодаря опытам Ф. Вёлера, который в 1828 году синтезировал мочевину. Это, собственно, и положило начало органической химии.

В 1817 году французский химик X. Соссюр установил, что итальянская нефть содержит углеводороды (см. ниже), а английские химики в 1833 году пришли к выводу о том, что атомарное отношение углерода и водорода в нефтях подчиняется формуле СnН2n+2.

Большое значение для понимания состава нефти имело установленное в 1843 году Ф. Жераром для органических соединений гомологических рядов.

Для познания состава нефти много дали исследования Д, И. Менделеева, который в своем курсе "Органическая химия" указывал на наличие многих рядов углеводородов.

Если в первой половине прошлого столетия состав нефти изучался в основном в познавательных целях и в учебных курсах углеводороды рассматривались просто как группа соединений (например "углеродистые во-дороды" в упомянутом курсе Д. И. Менделеева), то с 50-60-х годов XIX столетия углеводороды нефтей (в России кавказских, в США пенсильванских) начала изучать как промышленное сырье.

В 1934 году В. Трайбс открыл в нефти металлоорганические азотистые соединения – порфирины, являющиеся производными хлорофилла и гемоглобина. Но наиболее значительная часть современной информации о составе нефти была получена в последние десятилетия.

Остановимся сначала на общей характеристике нефти и природных углеводородных газов. Начнем с нефти. По физическим свойствам ее можно назвать парадоксом земной коры: в мощной толще горных пород, пропитанных водой и содержащих ее в самых различных состояниях, вдруг появляется вещество, по всем своим свойствам противоположное воде, "не любящее" ее – гидрофобное, плотность которого всегда меньше плотности воды и в отличие от нее не повышается с глубиной, а, как правило, понижается. Если вода стремится занять в породах в первую очередь самые мелкие поры и трещины, то нефть, наоборот, – самые крупные.

Нефть представляет собой жидкость, чаще всего коричневую, с зеленоватым или другими оттенками, иногда почти черную и очень редко бесцветную. Нефть всегда легче воды, ее плотность изменяется в широких пределах от 0,76 до 0,99 г/см3, чаще всего составляя 0,80-0,87 г/см3. Очень редко, но в значительных количествах встречается нефть с такой же, как у воды, плотностью – 1,0 г/см3 и даже более тяжелая, чем вода – 1,03-1,04 г/см3 (месторождение Окснард в Калифорнии). В соответствии с плотностью, как правило, меняется и вязкость нефти от 1,41 до 660 мПа⋅с: легкие нефти обычно маловязкие, средние по плотности нефти – вязкие и очень вязкие и, наконец, существуют полутвердые нефти (например, в песчаниках Ярегского месторождения на Ухте). Плотность и вязкость нефти зависят от многих факторов, в первую очередь от температуры и количества растворенных в нефти газов. Поверхностное натяжение у нефти (17-28 дин/см2) почти в 3 раза меньше, чем у воды (75 дин/см2), вследствие чего вода всегда вытесняет нефть из мелких пор в крупные.

Температура кипения нефти колеблется в широких пределах – от 70 до 250 °С. Одной из примечательных особенностей нефти является ее способность растворять огромное количество углеводородных газов – до 400 м3 в 1 м3 нефти (в зависимости от состава нефти и газа, величин давления и температуры) и самой растворяться в них (обратная, ретроградная растворимость) – до 400 г нефти в 1 м3 газа. При этом чем больше в нефти растворено газа, тем меньше ее плотность и вязкость.

Использование нефти в качестве энергетического сырья связано с ее максимальной для минеральных топлив теплотворной способностью 42 тыс. кДж/кг. Для сравнения отметим, что теплотворная способность (в кДж/кг) составляет: торфа – 10 500-14 700, каменного угля – 21 000-30 240, антрацита – 27 300-31 500.

Нефть обладает рядом интересных оптических свойств: она может люминесцировать – светиться под ультрафиолетовыми лучами, вращать плоскость поляризации светового луча и т.д. Молекулярный вес нефти обычно колеблется в пределах 240-290, иногда превышая эту величину. Изменение всех физических свойств нефтей связано с изменением их химического состава.

Из каких же элементов состоит нефть? Главным ее компонентом является углерод, составляющий от 83 до 87% нефти. Второе место занимает водород, содержание которого обычно колеблется в пределах 12-14%. Третье место в составе нефти принадлежит группе так называемых гетероэлементов: кислорода, азота и серы, суммарное содержание которых может достигать 5-8%, но обычно бывает меньше.

В нефти в весьма небольших количествах встречаются фосфор, ванадий, никель, железо, алюминий, кальций, магний, барий, стронций, марганец, хром, кобальт, молибден, бор и другие элементы (всего 44). Серу и различные элементы, содержащиеся в нефти, можно извлекать, в связи с чем нефть следует рассматривать не только в качестве энергетического сырья, но и как сырье для получения этих элементов.

В нефти и горючих газах углерод и водород содержатся в виде удивительнейших и огромнейших групп соединений – углеводородов, отличающихся исключительным разнообразием, изменчивостью состава и строения и широким распространением, особенно в растительных и животных организмах.

По соотношению углерода и водорода углеводороды дифференцируются на три большие группы: 1) парафиновые, или насыщенные, в химии чаще всего выделяемые под названием алканов; 2) нафтеновые, или полиметиленовые, и 3) ароматические (арены). Парафиновые углеводороды имеют общую формулу CnH2n+2. Первые члены этой группы – газы: метан – СН4, этан – С2Н6, пропан – С3Н8 и бутан – С4Н10. Углеводороды с числом углеводородных атомов от 5 до 15 – жидкие, а с более высоким числом – твердые. Мало того, алканы одного и того же состава могут иметь молекулы нормального строения и изостроения, разветвленные. Благодаря этому, начиная с бутана, наряду с углеводородами нормального строения имеются углеводороды изостроения, причем число изомеров растет одновременно с числом углеродных атомов: у пентана два изомера, у гексана четыре, у октана 17, углеводорода O2H26 имеет более 300 изомеров, углеводород C13H28 – 800 изомеров и т. д.

Изобутан (СН3)2СН⋅СН3; точка кипения – 10,2°С

н – бутан СН3(СН2)2СН3; точка кипения – 0,5°С

Изопентан CH (СН3)2СH2СН3; точка кипения 28°С

н – центам СН3(СН2)3СН3: точка кипения 36°С

Третичный пентан, неопентан, тетраметилметан или 2,2-димстилпропа:' С(СН3)4 Точка кипения 9,45°С

Нафтеновые углеводороду, содержащиеся в нефти, имеют циклическое строение. Поэтому их иногда называют цикланами или насыщенными циклическими СnН2n. Циклы состоят из пяти (циклопентан) или шести (циклогексан) атомов углерода. При этом таких циклов бывает несколько, в связи с чем к названию добавляется приставка моно-, би-, три– или тетра-.

Циклическое строение

Кроме того, циклы имеют еще и боковые цепи. В этой группе, начиная с углеводорода С4Н8, встречаются изомеры, число которых также увеличивается с возрастанием числа углеродных атомов: у C6H12 – 13 изомеров, у C7H14 – 27 изомеров и т. д.

Боковые цепи

Ароматические углеводороды, имеющие общую формулу СnН2n-6, обычно содержатся в нефти в меньших количествах, чем углеводороды двух описанных выше групп. Они также имеют преимущественно циклическое строение, но между отдельными атомами углерода в них в отличие от нафтенов наряду с одинарными связями имеются и двойные.

Бензол

Тетралин

Тетрагидрофенантрен

Кроме того, в отдельных группах водород замещается метильной группой СН3. Ароматические углеводороды нефти могут содержать один, два и более циклов и соответственно называются моно-, би-, три– и тетра-циклическими.

Наконец, еще в нефти содержатся нафтеново-ароматические углеводороды.

Нафтеново-ароматические углеводороды

Всего в нефти к настоящему времени определено 425 индивидуальных углеводородов, в действительность же их значительно больше.

Гетероэлементы (сера, азот и кислород) обычно содержатся в нефти в виде сложных соединений, ядрами которых являются углеводороды, и значительно реже – в чистом виде. Общее число определенных гетеросоединений превышает 380, из них сернистых 250. Кроме того, в строении сложных органических соединений участвуют фосфор, уран, ванадий, никель, кобальт, иод, бор и другие элементы. Существенную часть в нефти составляют смолы и асфальтены, химическая природа которых достаточно точно не определена. При этом чем тяжелее нефть, тем выше ее плотность и тем больше она содержит смол асфальтенов.

В нефти содержатся еще и металлоорганические комплексы, представляющие собой по строению сложные полициклические углеводороды, в молекуле которых отдельные атомы водорода или метальные группы замещены атомами металлов. Среди них особое значение, как отмечалось, имеют порфирины, являющиеся производными хлорофилла и гемоглобина.

Всего в нефти индентифицировано более 900 индивидуальных химических соединений, причем ни в одном из ее образцов не определены полностью все имеющиеся в нем индивидуальные соединения.

К настоящему времени удалось изучить распределение в нефти изотопов некоторых элементов – углерода, серы и водорода (табл. 1). Как известно, изотопами называются атомы, имеющие одинаковые количества протонов, но разное количество нейтронов (N) и, как следствие этого, обладающие разным массовым числом (А) или атомной массой.

< border="0"> Таблица 1. Некоторые сведения об изотопах водорода, углерода и серы Z Элемент N A Относительная распространенность ат. % 1 Водород Н 0 1 99,9844 1 Дейтерий Д 1 2 0,0156 1 Тритий Т 2 3 – 6 Углерод С 6 12 98,892 6 Углерод С 7 13 1,108 6 Углерод С 8 14 – 16 Сера S 16 32 95,1 16 Сера S 17 33 0,74 16 Сера S 18 34 4,2 16 Сера S 20 36 0,016

Изотопы делятся на стабильные и радиоактивные. Последние самопроизвольно распадаются. Так, изотоп углерода 14С является радиоактивным и период его полураспада составляет 5568 лет. Благодаря этим свойствам оказалось возможным определять по содержанию 14С возраст многих археологических объектов и геологических образований не древнее 30 000 лет. Содержание стабильных изотопов углерода, серы и водорода в нефти разных регионов мира и в разных породах изучено не одинаково.

Теперь о газах. Горючие углеводородные газы, бесцветные, почти в 2 раза легче воздуха. Они, как правило, не имеют запаха, однако при наличии примеси сероводорода, приобретают неприятный запах и становятся очень токсичными. Теплотворная способность газов составляет 27 300-37 800 кДж/м3, а попутных газов из нефтяных месторождений достигает 42 000-71 400 кДж/м3.

Основным компонентом природных горючих газов является метан, количество которого может достигать 99,5%, но обычно колеблется в пределах 85-95%. В газах довольно часто содержатся и гомологи метана – этан, пропан и бутан, а также их изомеры – изопропан и изобутан. Как правило, газы в нефтяных залежах обогащены гомологами метана, содержание которых обычно составляет 10-15%, но иногда достигаем и 50-60% (месторождения Ромашкино, Мухановс и др.).

Эти примеси в газе представляют самостоятельный интерес как сырье для производства многих материалов (полиэтилена и др.), тем самым позволяя экономить нефть.

Среди неуглеводородных компонентов в составе природных газов наиболее часто встречается азот, содержание которого может достигать 90-95%, вплоть для перехода газа в чисто азотный. В весьма широких пределах колеблется в природных газах содержание двуокиси углерода – от долей процента до 95% (как, например, в месторождениях Калифорнии, Мексики и др.)

Довольно часто в состав природных горючих газов 1зных количествах входит сероводород: например, в газax Оренбургского месторождения его содержание достигает 15%, а в газах Астраханского – 23%. Встречаются газы, содержащие более 50% сероводорода. Сероводород в природном газе одновременно и "добро" и зло". При очистке такого газа получают большие количества серы, столь необходимой промышленности и сельскому хозяйству (например, на Оренбургском газоконденсатном месторождении). В ближайшем будущем предусмотрено и освоение Астраханского газоконденсатного месторождения. В то же время сероводород токсичен и агрессивен по отношению к металлам, вследствие чего все оборудование, начиная от труб в скважинах, должно быть изготовлено из специальных сталей.

В природных горючих газах обычно содержатся гелий и в значительно меньших количествах аргон, неон, ксенон и другие инертные газы.

В последние десятилетия обнаружены газоконденсаты, которые находятся в газовых залежах в газообразном состоянии (от 1 до 1000 г в 1 м3), а на поверхности при снижении температуры и давления переходят в жидкость. Газоконденсаты представляют собой бесцветные или светло-коричневые жидкости, плотностью от 0,66 до 0,84 г/см3 (чаще 0,72-0,80 г/см3), характеризующиеся низкими температурами кипения (30– 70 °С) и почти полностью выкипающие при температуре до 300-350 °С.

Газоконденсаты состоят преимущественно из углеводородов, среди которых чаще преобладают метановые, но иногда и нафтеновые и ароматические разности. В конденсатах нередко содержится сера, реже – смола. Углеводороды содержатся в составе органического вещества горных пород, подземных водах, а также в современных осадках и водах земной поверхности, и многих веществ растительного и животного происхождения. Углеводородные газы находятся не только в сообщающихся пустотных пространствах горных пород (в случае образования залежей), но и в закрытых порах, также в сорбированном минеральной частью виде, часто вблизи мест своего "рождения" и растворены в подземных водах.


    Ваша оценка произведения:

Популярные книги за неделю