355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Михаил Розов » Философия науки и техники » Текст книги (страница 22)
Философия науки и техники
  • Текст добавлен: 9 сентября 2016, 21:24

Текст книги "Философия науки и техники"


Автор книги: Михаил Розов


Соавторы: Вячеслав Стёпин,Виталий Горохов

Жанр:

   

Философия


сообщить о нарушении

Текущая страница: 22 (всего у книги 36 страниц)

Вместе с тем, поскольку картина реальности должна выразить главные сущностные характеристики исследуемой предметной области, постольку она складывается и развивается под непосредственным воздействием фактов и специальных теоретических моделей науки, объясняющих факты. Благодаря этому в ней постоянно возникают новые элементы содержания, которые могут потребовать даже коренного пересмотра ранее принятых онтологических принципов. Развитая наука даёт множество свидетельств именно таких, преимущественно внутринаучных, импульсов эволюции картины мира. Представления об античастицах, кварках, нестационарной Вселенной и т. п. выступили результатом совершенно неожиданных интерпретаций математических выводов физических теорий и затем включались в качестве фундаментальных представлений в научную картину мира.

Философские основания науки

Рассмотрим теперь третий блок оснований науки. Включение научного знания в культуру предполагает его философское обоснование. Оно осуществляется посредством философских идей и принципов, которые обосновывают онтологические постулаты науки, а также её идеалы и нормы. Характерным в этом отношении примером может служить обоснование Фарадеем материального статуса электрических и магнитных полей ссылками на принцип единства материи и силы.

Экспериментальные исследования Фарадея подтверждали идею, что электрические и магнитные силы передаются в пространстве не мгновенно по прямой, а по линиям различной конфигурации от точки к точке. Эти линии, заполняя пространство вокруг зарядов и источников магнетизма, воздействовали на заряженные тела, магниты и проводники. Но силы не могут существовать в отрыве от материи. Поэтому, подчёркивал Фарадей, линии сил нужно связать с материей и рассматривать их как особую субстанцию.

Не менее показательно обоснование Н. Бором нормативов квантово-механического описания. Решающую роль здесь сыграла аргументация Н. Бора, в частности его соображения о принципиальной «макроскопичности» познающего субъекта и применяемых им измерительных приборов. Исходя из анализа процесса познания как деятельности, характер которой обусловлен природой и спецификой познавательных средств, Бор обосновывал принцип описания, получивший впоследствии название принципа относительности описания объекта к средствам наблюдения.

Как правило, в фундаментальных областях исследования развитая наука имеет дело с объектами, ещё не освоенными ни в производстве, ни в обыденном опыте (иногда практическое освоение таких объектов осуществляется даже не в ту историческую эпоху, в которую они были открыты). Для обыденного здравого смысла эти объекты могут быть непривычными и непонятными. Знания о них и методы получения таких знаний могут существенно не совпадать с нормативами и представлениями о мире обыденного познания соответствующей исторической эпохи. Поэтому научные картины мира (схема объекта), а также идеалы и нормативные структуры науки (схема метода) не только в период их формирования, но и в последующие периоды перестройки нуждаются в своеобразной стыковке с господствующим мировоззрением той или иной исторической эпохи, с категориями её культуры. Такую «стыковку» обеспечивают философские основания науки. В их состав входят, наряду с обосновывающими постулатами, также идеи и принципы, которые обеспечивают эвристику поиска. Эти принципы обычно целенаправляют перестройку нормативных структур науки и картин реальности, а затем применяются для обоснования полученных результатов – новых онтологий и новых представлений о методе. Но совпадение философской эвристики и философского обоснования не является обязательным. Может случиться, что в процессе формирования новых представлений, исследователь использует одни философские идеи и принципы, а затем развитые им представления получают другую философскую интерпретацию, и только так они обретают признание и включаются в культуру. Таким образом, философские основания науки гетерогенны. Они допускают вариации философских идей и категориальных смыслов, применяемых в исследовательской деятельности.

Философские основания науки не следует отождествлять с общим массивом философского знания. Из большого поля философской проблематики и вариантов её решений, возникающих в культуре каждой исторической эпохи, наука использует в качестве обосновывающих структур лишь некоторые идеи и принципы.

Формирование и трансформация философских оснований науки требует не только философской, но и специальной научной эрудиции исследователя (понимания им особенностей предмета соответствующей науки, её традиций, её образцов деятельности и т. п.). Оно осуществляется путём выборки и последующей адаптации идей, выработанных в философском анализе, к потребностям определённой области научного познания, что приводит к конкретизации исходных философских идей, их уточнению, возникновению новых категориальных смыслов, которые после вторичной рефлексии эксплицируются как новое содержание философских категорий. Весь этот комплекс исследований на стыке между философией и конкретной наукой осуществляется совместно философами и учёными-специалистами в данной науке. В настоящее время этот особый слой исследовательской деятельности обозначен как философия и методология науки. В историческом развитии естествознания особую роль в разработке проблематики, связанной с формированием и развитием философских оснований науки, сыграли выдающиеся естествоиспытатели, соединившие в своей деятельности конкретно-научные и философские исследования (Декарт, Ньютон, Лейбниц, Эйнштейн, Бор и др.).

Гетерогенность философских оснований не исключает их системной организации. В них можно выделить по меньшей мере две взаимосвязанные подсистемы: во-первых, онтологическую, представленную сеткой категорий, которые служат матрицей понимания и познания исследуемых объектов (категории «вещь», «свойство», «отношение», «процесс», «состояние», «причинность», «необходимость», «случайность», «пространство», «время» и т. п.), во-вторых, эпистемологическую, выраженную категориальными схемами, которую характеризуют познавательные процедуры и их результат (понимание истины, метода, знания, объяснения, доказательства, теории, факта и т. п.).

Обе подсистемы исторически развиваются в зависимости от типов объектов, которые осваивает наука, и от эволюции нормативных структур, обеспечивающих освоение таких объектов. Развитие философских оснований выступает необходимой предпосылкой экспансии науки на новые предметные области.

Глава 9.
Динамика научного познания

Подход к научному исследованию как к исторически развивающемуся процессу означает, что сама структура научного знания и процедуры его формирования должны рассматриваться как исторически изменяющиеся. Но тогда необходимо проследить, опираясь на уже введённые представления о структуре науки, как в ходе её эволюции возникают все новые связи и отношения между её компонентами, связи, которые меняют стратегию научного поиска. Представляется целесообразным выделить следующие основные ситуации, характеризующие процесс развития научных знаний: взаимодействие картины мира и опытных фактов, формирование первичных теоретических схем и законов, становление развитой теории (в классическом и современном вариантах).

Взаимодействие научной картины мира и опытаКартина мира и опытные факты на этапе становления научной дисциплины

Первая ситуация может реализовываться в двух вариантах. Во-первых, на этапе становления новой области научного знания (научной дисциплины) и, во-вторых, в теоретически развитых дисциплинах при эмпирическом обнаружении и исследовании принципиально новых явлений, которые не вписываются в уже имеющиеся теории.

Рассмотрим вначале, как взаимодействует картина мира и эмпирические факты на этапе зарождения научной дисциплины, которая вначале проходит стадию накопления эмпирического материала об исследуемых объектах. В этих условиях эмпирическое исследование целенаправлено сложившимися идеалами науки и формирующейся специальной научной картиной мира (картиной исследуемой реальности). Последняя образует тот специфический слой теоретических представлений, который обеспечивает постановку задач эмпирического исследования, видение ситуаций наблюдения и эксперимента и интерпретацию их результатов.

Специальные картины мира как особая форма теоретических знаний являются продуктом длительного исторического развития науки. Они возникли в качестве относительно самостоятельных фрагментов общенаучной картины мира на этапе формирования дисциплинарно организованной науки (конец XVIII – первая половина XIX в.). Но на ранних стадиях развития, в эпоху становления естествознания, такой организации науки ещё не было. Это обстоятельство не всегда адекватно осмысливается в методологических исследованиях. В 80-х годах, когда интенсивно обсуждался вопрос о статусе специальных картин мира, были высказаны три точки зрения: специальных картин мира вообще не существует и их не следует выделять в качестве особых форм теоретического знания; специальные картины мира являются ярко выраженными автономными образованиями; их автономия крайне относительна, поскольку они выступают фрагментами общенаучной картины мира. Однако, в истории науки могут найти подтверждения все три точки зрения, только они относятся к разным её стадиям: додисциплинарной науке XVII века, дисциплинарно организованной науке XIX – первой половины XX в., современной науке с её усиливающимися междисциплинарными связями. Эти стадии следует различать.

Первой из наук, которая сформировала целостную картину мира, опирающуюся на результаты экспериментальных исследований, была физика. В своих зародышевых формах возникающая физическая картина мира содержала (особенно в предгалилеевский период) множество натурфилософских наслоений. Но даже в этой форме она целенаправляла процесс эмпирического исследования и накопление новых фактов.

В качестве характерного примера такого взаимодействия картины мира и опыта в эпоху становления естествознания можно указать на эксперименты В. Гильберта, в которых исследовались особенности электричества и магнетизма.

В. Гильберт был одним из первых учёных, который противопоставил мировоззренческим установкам средневековой науки новый идеал – экспериментальное изучение природы. Однако картина мира, которая целенаправляла эксперименты В. Гильберта, включала ряд представлений, заимствованных из господствовавшей в средневековье аристотелевской натурфилософии. Хотя В. Гильберт и критиковал концепцию перипатетиков о четырёх элементах (земли, воды, воздуха и огня) как основе всех других тел, он использовал представления о металлах как сгущениях земли и об электризуемых телах как о сгущениях воды. На основе этих представлений Гильберт выдвинул ряд гипотез относительно электрических и магнитных явлений. Эти гипотезы не выходили за рамки натурфилософских построений, но они послужили импульсом к постановке экспериментов, обнаруживших реальные факты. Например, представления об «электрических телах» как воплощении «стихии воды» породили гипотезу о том, что все электрические явления – результат истечения «флюидов» из наэлектризованных тел. Отсюда Гильберт предположил, что электрические истечения должны задерживаться преградами из бумаги и ткани и что огонь должен уничтожать электрические действия, поскольку он испаряет истечение. Так возникла идея серии экспериментов, обнаруживших факты экранирования электрического поля некоторыми видами материальных тел и факты воздействия пламени на наэлектризованные тела (если использовать современную терминологию, то здесь было по существу обнаружено, что пламя обладает свойствами проводника).

Аналогичным образом представления о магните как о сгущении Земли генерировали знаменитые эксперименты В. Гильберта с шаровым магнитом, посредством которых было доказано, что Земля является шаровым магнитом, и выяснены свойства земного магнетизма. Эксперимент с шаровым магнитом выглядит весьма изящным даже по меркам современных физических опытов. В его основе лежала аналогия между шаровым магнитом (террелой) и Землёй. Гильберт исследовал поведение миниатюрной магнитной стрелки, помещаемой в разных точках террелы, и затем полученные данные сравнил с известными из практики мореплавания фактами ориентации магнитной стрелки относительно Земли. Из сравнения этих данных Гильберт заключил, что Земля есть шаровой магнит.

Исходная аналогия между террелой и Землёй была подсказана принятой Гильбертом картиной мира, в которой магнит как разновидность металлов рассматривался в качестве воплощения «природы земли». Гильберт даже в названии шарового магнита (террела – земля) подчёркивает общность материи земли и магнита и естественность аналогии между земным шаром и шаровым магнитом.

Целенаправляя наблюдения и эксперименты, картина мира всегда испытывает их обратное воздействие. Можно констатировать, что новые факты, полученные В. Гильбертом в процессе эмпирического исследования процессов электричества и магнетизма, генерировали ряд достаточно существенных изменений в первоначально принятой В. Гильбертом картине мира. По аналогии с представлениями о земле как «большом магните», В. Гильберт включает в картину мира представления о планетах как о магнитных телах. Он высказывает смелую гипотезу о том, что планеты удерживают на их орбитах силы магнитного притяжения. Такая трактовка, навеянная экспериментами с магнитами, радикально меняла представление о природе сил. В это время силу рассматривали как результат соприкосновения тел (сила давления одного груза на другой, сила удара). Новая трактовка силы была преддверьем будущих представлений механической картины мира, в которой передача сил на расстоянии рассматривалась как источник изменений в состоянии движения тел.

Полученные из наблюдения факты могут не только видоизменять сложившуюся картину мира, но и привести к противоречиям в ней и потребовать её перестройки. Лишь пройдя длительный этап развития, картина мира очищается от натурфилософских наслоений и превращается в специальную картину мира, конструкты которой (в отличие от натурфилософских схем) вводятся по признакам, имеющим опытное обоснование.

В истории науки первой осуществила такую эволюцию физика. В конце XVI – первой половине XVII в. она перестроила натурфилософскую схему мира, господствовавшую в физике Средневековья, и создала научную картину физической реальности – механическую картину мира. В её становлении решающую роль сыграли новые мировоззренческие идеи и новые идеалы познавательной деятельности, сложившиеся в культуре эпохи Возрождения и начала Нового времени. Осмысленные в философии, они предстали в форме принципов, которые обеспечили новое видение накопленных предшествующим познанием и практикой фактов об исследуемых в физике процессах и позволили создать новую систему представлений об этих процессах. Важнейшую роль в построении механической картины мира сыграли: принцип материального единства мира, исключающий схоластическое разделение на земной и небесный мир, принцип причинности и закономерности природных процессов, принципы экспериментального обоснования знания и установка на соединение экспериментального исследования природы с описанием её законов на языке математики.

Обеспечив построение механической картины мира, эти принципы превратились в её философское обоснование.

Научная картина мира как регулятор эмпирического поиска в развитой науке

После возникновения механической картины мира процесс формирования специальных картин мира протекает уже в новых условиях. Специальные картины мира, возникавшие в других областях естествознания, испытывали воздействие физической картины мира как лидера естествознания и, в свою очередь, оказывали на физику активное обратное воздействие. В самой же физике построение каждой новой картины мира происходило не путём выдвижения натурфилософских схем с их последующей адаптацией к опыту, а путём преобразования уже сложившихся физических картин мира, конструкты которых активно использовались в последующем теоретическом синтезе (примером может служить перенос представлений об абсолютном пространстве и времени из механической в электродинамическую картину мира конца XIX столетия).

Ситуация взаимодействия картины мира и эмпирического материала, характерная для ранних стадий формирования научной дисциплины, воспроизводится и на более поздних этапах научного познания. Даже тогда, когда наука сформировала слой конкретных теорий, эксперимент и наблюдение способны обнаружить объекты, не объясняемые в рамках существующих теоретических представлений. Тогда новые объекты изучаются эмпирическими средствами, и картина мира начинает регулировать процесс такого исследования, испытывая обратное воздействие его результатов. Описанные выше примеры с исследованием катодных лучей могут служить достаточно хорошей иллюстрацией взаимодействия картины мира и опыта применительно к процессу физического исследования.

Аналогичные ситуации можно обнаружить и в других науках. Так, в современной астрономии, несмотря на довольно развитый слой теоретических моделей и законов, значительное место принадлежит исследованиям, в которых картина мира непосредственно регулирует процесс наблюдения и формирования эмпирических фактов. Астрономическое наблюдение весьма часто обнаруживает новый тип объектов или новые стороны взаимодействий, которые не могут быть сразу объяснены в рамках имеющихся теорий. Тогда картина реальности активно целенаправляет все последующие систематические наблюдения, в которых постепенно раскрываются особенности нового объекта.

Характерным примером в этом отношении может служить открытие и изучение квазаров. После обнаружения первого квазара – радиоисточника 3С 48 – сразу же возник вопрос, к какому типу космических объектов он относится. В картине исследуемой реальности, сложившейся ко времени открытия квазаров, наиболее «подходящими» типами объектов для этой цели могли быть звезды либо очень удалённые галактики. Обе гипотезы целенаправленно проверялись в наблюдениях. Именно в процессе такой проверки были обнаружены первые свойства квазаров. Дальнейшее исследование этих объектов эмпирическими средствами также проходило при активной корректировке со стороны картины реальности. В частности, можно установить её целенаправляющую роль в одном из ключевых моментов этого исследования, а именно – открытии большого красного смещения в спектрах квазаров. В истоках этого открытия лежала догадка М. Шмидта, который отождествил эмиссионные линии в спектре квазаров с обычной бальмеровской серией водорода, допустив большое красное смещение (равное 0,158). Внешне эта догадка выглядит сугубо случайной, поскольку к этому времени считалось повсеместно, что квазары являются звёздами нашей Галактики, а звезды Галактики не должны иметь такое смещение. Поэтому, чтобы возникла сама идея указанного отождествления линий, нужно было уже заранее выдвинуть экстравагантную гипотезу. Однако эта гипотеза перестаёт быть столь экстравагантной, если принять во внимание, что общие представления о структуре и эволюции Вселенной, сложившиеся к этому периоду в астрономии, включали представления о происходящих в галактиках грандиозных взрывах, которые сопровождаются выбросами вещества с большими скоростями, и о расширении нашей Вселенной. Любое из этих представлений могло генерировать исходную гипотезу о возможности большого красного смещения в спектре квазаров.

С этих позиций за случайными элементами в рассматриваемом открытии уже прослеживается его внутренняя логика. Здесь выявляется важная сторона регулятивной функции, которую выполняла картина мира по отношению к процессу наблюдения. Эта картина помогала не только сформулировать первичные гипотезы, которые целенаправляли наблюдения, но и помогала найти правильную интерпретацию соответствующих данных, обеспечивая переход от данных наблюдения к фактам науки.

Таким образом, первичная ситуация, характеризующая взаимодействие картины мира с наблюдениями и экспериментами, не отмирает с возникновением в науке конкретных теорий, а сохраняет свои основные характеристики как особый случай развития знания в условиях, когда исследование эмпирически обнаруживает новые объекты, для которых ещё не создано адекватной теории.


    Ваша оценка произведения:

Популярные книги за неделю