355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Михаил Розов » Философия науки и техники » Текст книги (страница 19)
Философия науки и техники
  • Текст добавлен: 9 сентября 2016, 21:24

Текст книги "Философия науки и техники"


Автор книги: Михаил Розов


Соавторы: Вячеслав Стёпин,Виталий Горохов

Жанр:

   

Философия


сообщить о нарушении

Текущая страница: 19 (всего у книги 36 страниц)

В этом смысле в экспериментах по изучению законов колебания маятника Земля выступает не просто как природное тело, а как своеобразный «искусственно изготовленный» объект человеческой практики, ибо для природного объекта «Земля» данное свойство не имеет никаких «особых привилегий» по сравнению с другими свойствами. Оно существует реально, но на передний план как особое, выделенное свойство выступает только в системе определённой человеческой практики. Экспериментальная деятельность представляет собой специфическую форму природного взаимодействия, и важнейшей чертой, определяющей эту специфику, является именно то, что взаимодействующие в эксперименте фрагменты природы всегда предстают как объекты с функционально выделенными свойствами.

В развитых формах эксперимента такого рода объекты изготовляются искусственно. К ним относятся в первую очередь приборные установки, с помощью которых проводится экспериментальное исследование. Например, в современной ядерной физике это могут быть установки, приготовляющие пучки частиц, стабилизированные по определённым параметрам (энергия, пульс, поляризация); мишени, бомбардируемые этими пучками; приборы, регистрирующие результаты взаимодействия пучка с мишенью. Для наших целей важно уяснить, что само изготовление, выверка и использование таких установок аналогичны операциям функционального выделения свойств у объектов природы, которыми оперирует исследователь в описанных выше экспериментах с маятником. В обоих случаях из всего набора свойств, которыми обладают материальные объекты, выделяются лишь некоторые свойства, и данные объекты функционируют в эксперименте только как их носители.

С таких позиций вполне правомерно рассматривать объекты природы, включённые в экспериментальную ситуацию, как «квазиприборные» устройства независимо от того, получены они искусственным путём или естественно возникли в природе независимо от деятельности человека. Так, в экспериментальной ситуации по изучению законов колебания Земля «функционирует» как особая приборная подсистема, которая как бы «приготовляет» постоянную силу тяготения (аналогично тому, как созданный человеком ускоритель при жёстко фиксированном режиме работы будет генерировать импульсы заряженных частиц с заданными параметрами). Сам маятник играет здесь роль рабочего устройства, функционирование которого даёт возможность зафиксировать характеристики колебания. В целом же система «Земля плюс маятник» может быть рассмотрена как своеобразная квазиэкспериментальная установка, «работа» которой позволяет исследовать законы простого колебательного движения.

В свете сказанного специфика эксперимента, отличающая его от взаимодействий в природе «самой по себе», может быть охарактеризована так, что в эксперименте взаимодействующие фрагменты природы всегда выступают в функции приборных подсистем. Деятельность по «наделению» объектов природы функциями приборов будем в дальнейшем называть созданием приборной ситуации. Причём саму приборную ситуацию будем понимать как функционирование квазиприборных устройств, в системе которых испытывается некоторый фрагмент природы. И поскольку характер взаимоотношений испытуемого фрагмента с квазиприборными устройствами функционально выделяет у него некоторую совокупность характеристических свойств, наличие которых в свою очередь определяет специфику взаимодействий в рабочей части квазиприборной установки, то испытуемый фрагмент включается как элемент в приборную ситуацию.

В рассматриваемых выше экспериментах с колебанием маятника мы имели дело с существенно различными приборными ситуациями в зависимости от того, являлось ли целью исследования изучение законов колебания или законов движения в равномерно вращающейся системе. В первом случае маятник включён в приборную ситуацию в качестве испытуемого фрагмента, во втором он выполняет совершенно иные функции. Здесь он выступает как бы в трёх отношениях: 1) Само движение массивного тела (испытуемый фрагмент) включено в функционирование рабочей подсистемы в качестве её существенного элемента (наряду с вращением Земли); 2) Периодичность же движения маятника, которая в предыдущем опыте играла роль изучаемого свойства, теперь используется только для того, чтобы обеспечить стабильные условия наблюдения. В этом смысле колеблющийся маятник функционирует уже как приготовляющая приборная подсистема; 3) Свойство маятника сохранять плоскость колебания позволяет использовать его и в качестве части регистрирующего устройства. Сама плоскость колебания здесь выступает в роли своеобразной стрелки, поворот которой относительно плоскости вращения Земли фиксирует наличие кориолисовой силы. Такого рода функционирование взаимодействующих в опыте природных фрагментов в роли приборных подсистем или их элементов и выделяет актуально, как бы «выталкивает» на передний план, отдельные свойства этих фрагментов. Все это приводит к функциональному вычленению из множества потенциально возможных объектных структур практики именно той, которая репрезентирует изучаемую связь природы.

Такого рода связь выступает как объект исследования, который изучается и на эмпирическом, и на теоретическом уровнях познавательной деятельности. Выделение объекта исследования из совокупности всех возможных связей природы определяется целями познания и на разных уровнях последнего находит своё выражение в формулировке различных познавательных задач. На уровне экспериментального исследования такие задачи выступают как требование зафиксировать (измерить) наличие какого-либо характеристического свойства у испытуемого фрагмента природы. Однако важно сразу же уяснить, что объект исследования всегда представлен не отдельным элементом (вещью) внутри приборной ситуации, а всей её структурой.

На примерах, разобранных выше, по существу было показано, что соответствующий объект исследования – будь то процесс гармонического колебания или движение в неинерциальной системе отсчёта – может быть выявлен только через структуру отношений, участвующих в эксперименте природных фрагментов.

Аналогичным образом обстоит дело и в более сложных случаях, относящихся, например, к экспериментам в атомной физике. Так, в известных опытах по обнаружению комптон-эффекта предмет исследования – «корпускулярные свойства рентгеновского излучения, рассеянного на свободных электронах» – определялся через взаимодействие потока рентгеновского излучения и рассеивающей его графитной мишени при условии регистрации излучения особым прибором. И только структура отношений всех этих объектов (включая прибор для регистрации) репрезентирует исследуемый срез действительности. Такого рода фрагменты реальных экспериментальных ситуаций, использование которых задаёт объект исследования, будем называть в дальнейшем объектами оперирования. Данное различение позволит избежать двусмысленности при использовании термина «объект» в процессе описания познавательных операций науки. В этом различии фиксируется тот существенный факт, что объект исследования не совпадает ни с одним из отдельно взятых объектов оперирования любой экспериментальной ситуации. Подчеркнём также, что объекты оперирования по определению не тождественны «естественным» фрагментам природы, поскольку выступают в системе эксперимента как своеобразные «носители» некоторых функционально выделенных свойств. Как было показано выше, объекты оперирования обычно наделяются приборными функциями и в этом смысле, будучи реальными фрагментами природы, вместе с тем выступают и как продукты «искусственной» (практической) деятельности человека.

Наблюдения выступают в этом случае не просто фиксацией некоторых признаков испытуемого фрагмента. Они несут неявно информацию и о тех связях, которые породили наблюдаемые феномены.

Но тогда возникает вопрос: справедливо ли сказанное для любых наблюдений? Ведь они могут быть получены и вне экспериментального исследования объекта. Более того, наблюдения могут быть случайными, но, как показывает история науки, они весьма часто являются началом новых открытий. Где во всех этих случаях практическая деятельность, которая организует определённым способом взаимодействие изучаемых объектов? Где контроль со стороны познающего субъекта за условиями взаимодействия, контроль, который позволяет сепарировать многообразие связей действительности, функционально выделяя именно те, проявления которых подлежат исследованию?

Ответы на эти вопросы и могут показаться неожиданными. Они состоят в следующем.

Систематические и случайные наблюдения

Научные наблюдения всегда целенаправленны и осуществляются как систематические наблюдения, а в систематических наблюдениях субъект обязательно конструирует приборную ситуацию. Эти наблюдения предполагают особое деятельностное отношение субъекта к объекту, которое можно рассматривать как своеобразную квазиэкспериментальную практику. Что же касается случайных наблюдений, то для исследования их явно недостаточно. Случайные наблюдения могут стать импульсом к открытию тогда и только тогда, когда они переходят в систематические наблюдения. А поскольку предполагается, что в любом систематическом наблюдении можно обнаружить деятельность по конструированию приборной ситуации, постольку проблема может быть решена в общем виде. Несмотря на различия между экспериментом и наблюдением, вне эксперимента оба предстают как формы практически деятельностного отношения субъекта к объекту. Теперь остаётся доказать, что систематические наблюдения предполагают конструирование приборной ситуации. Для этого мы специально рассмотрим такие наблюдения, где заведомо невозможно реальное экспериментирование с изучаемыми объектами. К ним относятся, например, наблюдения в астрономии.

Рассмотрим один из типичных случаев эмпирического исследования в современной астрономии – наблюдение за поляризацией света звёзд в облаках межзвёздной пыли, проводившееся с целью изучения магнитного поля Галактики.

Задача состояла в том, чтобы выяснить, каковы величина и направление напряжённости магнитного поля Галактики. При определении этих величин в процессе наблюдения использовалось то свойство частиц межзвёздной пыли, что они ориентированы магнитными силовыми линиями Галактики. В свою очередь об этой ориентации можно было судить изучая эффекты поляризации света, проходящего через облако пыли. Тем самым параметры поляризованного света, регистрируемые приборами на Земле, позволяли получить сведения об особенностях магнитного поля Галактики.

Нетрудно видеть, что сам процесс наблюдения предполагал здесь предварительное конструирование приборной ситуации из естественных объектов природы. Звезда, излучающая свет, функционировала как приготовляющая подсистема, частицы пыли, ориентированные в магнитном поле Галактики, играли роль рабочей подсистемы, и лишь регистрирующая часть была представлена приборами, искусственно созданными в практике. В результате объекты: «звезда как источник излучения», «облако межзвёздной пыли», «регистрирующие устройства на Земле» – образовывали своего рода гигантскую экспериментальную установку, «работа» которой позволяла изучить характеристики магнитного поля Галактики.

В зависимости от типа исследовательских задач в астрономии конструируются различные типы приборных ситуаций. Они соответствуют различным методам наблюдения и во многом определяют специфику каждого такого метода. Для некоторых методов приборная ситуация выражена настолько отчётливо, что аналогия между соответствующим классом астрономических наблюдений и экспериментальной деятельностью прослеживается с очевидностью. Так, например, при определении угловых размеров удалённых космических объектов – источников излучения – широко используется метод покрытия наблюдаемого объекта Луной. Дифракция излучения на краях Луны позволяет с большой точностью определить координаты соответствующего источника. Таким путём были установлены радиокоординаты квазаров, исследован характер рентгеновского излучения Крабовидной туманности (был получен ответ на вопрос, является ли источником радиоизлучения вся туманность, либо внутри неё находится точечный рентгеновский источник); этот метод широко применяется при определении размеров некоторых астрономических объектов. Во всех наблюдениях такого типа Луна используется в качестве передвижного экрана и служит своеобразной «рабочей подсистемой» в приборной ситуации соответствующих астрофизических опытов.

Довольно отчётливо обнаруживается приборная ситуация и в наблюдениях, связанных с определением расстояния до небесных объектов. Например, в задачах по определению расстояния до ближайших звёзд методом параллакса в функции прибора используется Земля; при установлении расстояний до удалённых галактик методом цефеид этот класс переменных звёзд также функционирует в качестве средств наблюдения и т. д.

Правда, можно указать и на такие виды систематических наблюдений в астрономии, которые на первый взгляд весьма далеки от аналогии с экспериментом. В частности, при анализе простейших форм астрономического наблюдения, свойственных ранним этапам развития астрономии, нелегко установить, как конструировалась в них приборная ситуация. Тем не менее здесь все происходит аналогично уже рассмотренным случаям. Так, уже простое визуальное наблюдение за перемещением планеты на небесном своде предполагало, что наблюдатель должен предварительно выделить линию горизонта и метки на небесном своде (например, неподвижные звезды), на фоне которых наблюдается движение планеты. В основе этих операций по существу лежит представление о небесном своде как своеобразной проградуированной шкале, на которой фиксируется движение планеты как светящейся точки (неподвижные же звезды на небесном своде играют здесь роль средств наблюдения). Причём по мере проникновения в астрономическую науку математических методов градуировка небесного свода становится все более точной и удобной для проведения измерений. Уже в IV столетии до н. э. в египетской и вавилонской астрономии возникает зодиак, состоящий из 12 участков по 30 градусов, как стандартная шкала для описания движения Солнца и планет. Использование созвездий зодиака в функции шкалы делает их средствами наблюдения, своеобразным приборным устройством, позволяющим точно фиксировать изменение положения Солнца и планет.

Таким образом, не только в эксперименте, но и в процессе научного наблюдения природа дана наблюдателю не в форме созерцания, а в форме практики. Исследователь всегда выделяет в природе (или создаёт искусственно из её материалов) некоторый набор объектов, фиксируя каждый из них по строго определённым признакам, и использует их в качестве средств эксперимента и наблюдения (приборных подсистем).

Отношение последних к изучаемому в наблюдении объекту образует предметную структуру систематического наблюдения и экспериментальной деятельности. Эта структура характеризуется переходом от исходного состояния наблюдаемого объекта к конечному состоянию после взаимодействия объекта со средствами наблюдения (приборными подсистемами).

Жёсткая фиксация структуры наблюдений позволяет выделить из бесконечного многообразия природных взаимодействий именно те, которые интересуют исследователя.

Конечная цель естественно-научного исследования состоит в том, чтобы найти законы (существенные связи объектов), которые управляют природными процессами, и на этой основе предсказать будущие возможные состояния этих процессов. Поэтому если исходить из глобальных целей познания, то предметом исследования нужно считать существенные связи и отношения природных объектов.

Но на разных уровнях познания такие связи изучаются по-разному. На теоретическом уровне они отображаются «в чистом виде» через систему соответствующих абстракций. На эмпирическом они изучаются по их проявлению в непосредственно наблюдаемых эффектах. Поэтому глобальная цель познания конкретизируется применительно к каждому из его уровней. В экспериментальном исследовании она выступает в форме специфических задач, которые сводятся к тому, чтобы установить, как некоторое начальное состояние испытуемого фрагмента природы при фиксированных условиях порождает его конечное состояние. По отношению к такой локальной познавательной задаче вводится особый предмет изучения. Им является объект, изменение состояний которого прослеживается в опыте. В отличие от предмета познания в глобальном смысле его можно было бы называть предметом эмпирического знания. Между ним и предметом познания, единым как для эмпирического, так и для теоретического уровней, имеется глубокая внутренняя связь.

Когда в эксперименте и наблюдении исследователь регистрирует конечное состояние O2 испытуемого объекта, то при наличии фиксированной приборной ситуации и начального O1 состояния объекта это эквивалентно нахождению последнего недостающего звена, которое позволяет охарактеризовать структуру экспериментальной деятельности. Определив эту структуру, исследователь тем самым неявно выделяет среди многочисленных связей и отношений природных объектов связи (закономерности), которые управляют изменением состояний объекта эмпирического знания. Переход объекта из состояния O1 в состояние O2 не произволен, а определён законами природы. Поэтому, многократно зарегистрировав в эксперименте и наблюдении изменение состояний объекта, исследователь неявно фиксирует самой структурой деятельности и соответствующий закон природы.

Объекты эмпирического знания выступают здесь в качестве своеобразного индикатора предмета исследования, общего как для эмпирического, так и для теоретического уровней.

Фиксация предмета исследования в рамках экспериментальной или квазиэкспериментальной деятельности является тем признаком, по которому можно отличить эксперимент и систематические наблюдения от случайных наблюдений. Последние суть наблюдения в условиях, когда приборная ситуация и изучаемый в опыте объект ещё не выявлены. Регистрируется лишь конечный результат взаимодействия, который выступает в форме эффекта, доступного наблюдению. Однако неизвестно, какие именно объекты участвуют во взаимодействии и что вызывает наблюдаемый эффект. Структура ситуации наблюдения здесь не определена, а поэтому неизвестен и предмет исследования. Вот почему от случайных наблюдений сразу невозможен переход к более высоким уровням познания, минуя стадию систематических наблюдений. Случайное наблюдение способно обнаружить необычные явления, которые соответствуют новым характеристикам уже открытых объектов либо свойствам новых, ещё не известных объектов. В этом смысле оно может служить началом научного открытия. Но для этого оно должно перерасти в систематические наблюдения, осуществляемые в рамках эксперимента или квазиэкспериментального исследования природы. Такой переход предполагает построение приборной ситуации и чёткую фиксацию объекта, изменение состояний которого изучается в опыте. Так, например, когда К. Янский в опытах по изучению грозовых помех на межконтинентальные радиотелефонные передачи случайно натолкнулся на устойчивый радиошум, не связываемый ни с какими земными источниками, то это случайное наблюдение дало импульс серии систематических наблюдений, конечным итогом которых было открытие радиоизлучения области Млечного Пути. Характерным моментом в осуществлении этих наблюдений было конструирование приборной ситуации.

Главная задача здесь состояла в том, чтобы определить источник устойчивого радиошума. После установления его внеземного происхождения решающим моментом явилось доказательство, что таким источником не являются Солнце, Луна и планеты. Наблюдения, позволившие сделать этот вывод, были основаны на применении двух типов приборной ситуации. Во-первых, использовалось вращение Земли, толща которой применялась в наблюдении в функции экрана, перекрывающего в определённое время суток Солнце, Луну и планеты (наблюдения показали, что в моменты такого перекрытия радиошум не исчезает). Во-вторых, в наблюдении исследовалось поведение источника радиошума при перемещении Солнца, Луны и планет на небесном своде относительно линии горизонта и неподвижных звёзд. Последние в этой ситуации были использованы в качестве реперных точек (средств наблюдения), по отношению к которым фиксировалось возможное перемещение источника радиошума. Вся эта серия опытов позволила в конечном итоге идентифицировать положение источника с наблюдаемыми в каждый момент времени суток и года положениями на небосводе Млечного Пути.

Характерно, что в последнем шаге исследований К. Янского уже была чётко обозначена предметная структура наблюдения, в рамках которой изучаемый эффект (радиошум) был представлен как радиоизлучение Млечного Пути. Было выделено начальное состояние объекта эмпирического знания – положение источника радиошума на небесном своде в момент T1, конечное состояние – положение источника в момент T2 и приборная ситуация (в качестве средств исследования фиксировались: небесный свод с выделенным на нем расположением звёзд, линия горизонта, Земля, вращение которой обеспечивало изменение положений радиоисточника по отношению к наблюдателю, и наконец, приборы – регистраторы радиоизлучения). Наблюдения с жёстко фиксированной структурой названного типа позволили раскрыть природу случайно обнаруженного эффекта радиоизлучения Млечного Пути.

Таким образом, путь от случайной регистрации нового явления к выяснению основных условий его возникновения и его природы проходит через серию наблюдений, которые отчётливо предстают в качестве квазиэкспериментальной деятельности.

Важно обратить внимание на следующее обстоятельство. Само осуществление систематических наблюдений предполагает использование теоретических знаний. Они применяются и при определении целей наблюдения, и при конструировании приборной ситуации. В примере с открытием Янского систематические наблюдения были целенаправлены теоретическими представлениями о существовании разнообразных космических источников радиоизлучения. В примере с исследованием магнитного поля Галактики при конструировании приборной ситуации в явном виде использовались представления классической теории электромагнитного поля (рассмотрение поля как конфигурации силовых линий, применение законов поляризации света и т. п.).

Все это означает, что наблюдения не являются чистой эмпирией, а несут на себе отпечаток предшествующего развития теорий.

В ещё большей мере это относится к следующему слою эмпирического познания, на котором формируются эмпирические зависимости и факты.


    Ваша оценка произведения:

Популярные книги за неделю