355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Меркурий Гиляров » Жизнь в почве » Текст книги (страница 2)
Жизнь в почве
  • Текст добавлен: 10 октября 2016, 06:48

Текст книги "Жизнь в почве"


Автор книги: Меркурий Гиляров


Соавторы: Дмитрий Криволуцкий
сообщить о нарушении

Текущая страница: 2 (всего у книги 12 страниц)

Вопрос этот окончательно решен был лишь выдающимся голландским микробиологом М. Бейеринком, который взялся проверить данные Воронина. Довольно быстро Бейеринк убедился, что в клубеньках бобовых живут действительно бактерии, но он пошел значительно дальше и получил чистую культуру этих бактерий в специально разработанной им самим среде. В своем капитальном исследовании "Бактерии из клубеньков бобовых растений", опубликованном в 1888 году, Бейеринк подробно описал выделенную бактерию и дал ей латинское название бациллюс радициола (корневая бацилла).

Между тем агрохимики доказывали, что в почвах происходит накопление азота и без участия бобовых растений. Например, А. Н. Энгельгардт, ученый-химик, пропагандист агрохимии в России, автор популярной в свое время книги "Химические основы земледелия", утверждал, что луга обогащаются азотом независимо от наличия бобовых культур. Такие же наблюдения были сделаны в Германии, Франции и Англии. И только после того, как С. Н. Виноградский показал, что выделенная им бактерия клостридиум может усваивать молекулярный азот воздуха, а затем и получил эту бактерию в чистой культуре, наука и земледелие получили ясный ответ: связанным азотом, который доступен растениям, почву обогащают микроорганизмы.

Но благотворное влияние невидимок на почву, а следовательно, и на весь зеленый мир планеты не ограничивается фиксацией молекулярного азота. Микробы разрушают трупы животных, остатки корней, стеблей и листьев растений и превращают мертвое органическое вещество в плодородный гумус, или перегной. Многие органические вещества они преобразуют в более простые минеральные вещества, растворимые в воде и поэтому доступные для растений.

Так обеспечивается на Земле непрерывность процессов образования все новой и новой органической, живой материи. И неудивительно что многие приемы современной агротехники направлены на интенсификацию микробиологических процессов в почве.

Начала почвенной зоологии

Почвенная зоология развилась на стыке зоологии и почвоведения. Зоология – одна из старейших отраслей естествознания, зародившаяся в глубокой древности и нашедшая отражение уже в трудах великого энциклопедиста античного мира Аристотеля. Почвоведение же – сравнительно молодая наука, получившая признание и современное развитие благодаря трудам замечательного русского естествоиспытателя В. В. Докучаева.

Роль животных в круговороте веществ в природе известна натуралистам давно. К. Линней писал, что в тропиках три мухи с их потомством съедают труп лошади быстрее, чем лев. Английский естествоиспытатель В. Кирби в 1800 году описал процесс разрушения мертвых деревьев в лесу и участие в нем насекомых и грибов примерно так же, как ученые, вернувшиеся к этой проблеме через полтора столетия.

Наблюдения петербургского профессора П. А. Костычева, современника В. В. Докучаева, показали, что именно деятельность животных (в его опытах личинок грибных комариков) способствует превращению гниющих листьев в аморфный перегной. Без животных, если разложение происходит только при участии грибов и бактерий, листья много лет сохраняют свою структуру.

И. И. Мечников в 1880 году писал, что в наших степных районах личинки жука кузьки и близких видов играют такую же роль, как и дождевые черви в более влажных районах. И немудрено, что в последних трудах В. В. Докучаева мы уже читаем: "Попробуйте пройтись по такой целинной древней степи и вырезать из нее кубик почвы, увидите вы, что в нем больше корней, трав, ходов жучков, личинок, чем земли. Все это бурлит, сверлит, точит, роет почву, и получается несравнимая ни с чем губка". Так изменились взгляды В. В. Докучаева менее чем за 20 лет!

Немецкий исследователь Р. Франсэ в 1912 году на страницах нашего старейшего журнала "Почвоведение" выступил со статьей, где говорилось о взаимосвязанных, обеспечивающих циркуляцию материи организмах, никогда не оставляющих почву, – сообществе, аналогичном планктону водоемов.

Почвенная фауна привлекала все большее внимание, методы исследования совершенствовались. Итальянский зоолог А. Берлезе в 1905 году предложил новый способ быстрого извлечения мелких членистоногих из проб почвы и других субстратов, а когда в 1918 году для нагрева почвы датчанин А. Тульгрен применил в приборе электрическую лампочку, метод получил название "автоматической выборки". Новые приемы, позволяющие учитывать живущих в почве личинок, ввели у нас в практику 3. С. Головянко и другие энтомологи.

В начале XX века в разных странах стремительно накапливались материалы, касающиеся почвенных беспозвоночных.

В 30-е годы уже было собрано довольно много сведений о численности ряда групп животных в почвах разного типа, под различного типа растительностью, об экологических требованиях некоторых представителей почвенной фауны, об их деятельности в почвах и т. д. Все это позволило М. С. Гилярову обобщить разрозненные материалы, опубликованные в советской и зарубежной печати, и дать в 1939 году в журнале "Почвоведение" краткие обзоры: "Почвенная фауна и жизнь почвы" и "Влияние почвенных условий на фауну почвенных вредителей".

Эти статьи привлекли внимание почвоведов Московского университета, и автору предложили организовать при почвенном отделении геолого-почвеняого факультета небольшую лабораторию. Там он составил первую сводку по методам количественного учета групп почвенных беспозвоночных. В этот период проводились исследования взаимосвязи численности почвенных животных, микроорганизмов и корневой массы.

В 1956 году в Институте эволюционной морфологии и экологии животных имени А. Н. Северцова Академии наук СССР в Москве была создана первая в мире специализированная лаборатория почвенной зоологии. Она и по сей день – центр почвенно-зоологических работ в нашей стране.

По мнению М. С. Гилярова, почва представляет собой особую среду обитания, которая для многих групп животных оказалась переходной от водного образа жизни к наземному. Посвященная этой проблеме монография "Особенности почвы как среды обитания и ее значение в эволюции насекомых", изданная в 1949 году, способствовала рождению новой отрасли биологии почвенной зоологии. Несколько позже стали появляться специальные книги по почвенной зоологии в ГДР, Австрии, Ашлии, Франции, ФРГ, ЧССР, Польше и других странах.

Деятельность животных в почвах многообразна. Они не только непосредственно перерабатывают растительный опад, но и стимулируют активность микроорганизмов. При отсутствия животных микробы разлагают опад в два-шесть раз медленнее, он накапливается на поверхности, в лесах резко возрастает опасность пожаров. Рассеивая экскременты по поверхности и в толще почвы, животные разносят и микробов, создают благоприятные очаги для их размножения и деятельности.

Л. С. Козловская в Карелии описала своеобразные отношения между почвенными беспозвоночными и микроорганизмами на примере животных торфяных почв.

При прохождении пищи через кишечник животных одни группы микроорганизмов стимулируются, другие подавляются. При этом либо стимулируется активность разрушителей клетчатки, либо, наоборот, разложение клетчатки подавляется и интенсифицируется трансформация соединений, содержащих азот, с последующим образованием молекул гуминовых соединений. В кишечнике сапрофагов создаются благоприятные условия для массового развития тех или иных представителей микрофлоры.

В процессе трансформации органического вещества большое значение имеет деятельность микроорганизмоваммонификаторов, фиксаторов молекулярного азота и разрушителей клетчатки. Почвенные беспозвоночные успешно сожительствуют с представителями всех этих групп микрофлоры.

Пропуская через кишечник массу растительных тканей, животные размельчают их и тем самым многократно увеличивают суммарную поверхность растительного материала, доступную микроорганизмам, а также воздействию воздуха и воды.

С помощью собственных ферментов и ферментов симбиотических микроорганизмов беспозвоночные расщепляют целлюлозные компоненты клеток и высвобождают лигнин, который находится в сложном соединении с клетчаткой, что имеет большое значение для развития процессов гумификации органических остатков в почве.

В ходе пищеварения в кишечнике почвенных беспозвоночных происходит частичная минерализация растительных остатков, а у некоторых групп – и частичная гумификация. Экскременты животных – одна из составляющих почвенного гумуса.

Многие почвенные животные заглатывают вместе с органическими пищевыми веществами минеральные частицы почвы, способствующие перетиранию в кишечнике пищи. Проходя через кишечник, минеральные частицы (глинистые, песчаные) перемешиваются, спрессовываются и склеиваются выделениями кишечника, образуя разной величины зернистые комочки. И чем их больше, тем плодороднее почва.

Совершая вертикальные миграции в почве, животные заносят растительные остатки в глубокие горизонты и перемешивают органические и минеральные частицы. Передвижения животных способствуют и улучшению аэрации почвы, что в первую очередь стимулирует аэробные процессы разложения органических остатков.

Корни растений

В обычной почве очень много корней. Мы в этом воочию убеждаемся, когда видим бурты выкопанного картофеля, сахарной свеклы или же маниоки и батата в тропиках. Но не меньше их в естественных, "диких" условиях.

Несколько цифр.

В кустарниковых тундрах масса корней достигает 200-300 центнеров на гектар, что составляет около 80 процентов массы всего растительного покрова.

В лесах на долю корней приходится не столь большая часть всей массы растений (15-30 процентов), поскольку слишком велика здесь масса стволов и ветвей деревьев. И все же абсолютные величины стоят того, чтобы о них упомянуть. В тайге это 300-800, в дубравах несколько больше, а в субтропических и тропических лесах масса корней достигает 900-1000 центнеров на гектар.

Корни проникают в глубь почвы на многие метры, поставляя растениям воду и растворенные минеральные вещества. Корневые системы растений оказывают очень сильное влияние на химический состав и физические свойства почвы, ее проницаемость для воды и воздуха, на образование гумусовых веществ и их распределение.

Корни участвуют в разложении минералов почвы, снабжают органическим веществом большинство почвенных микробов и животных.

Очень важна и способность корней выделять органические растворы экскреты. Они вызывают глубокие изменения в химическом составе почвенной среды, влияют на жизнь микробов, животных, на жизнь других растений.

Изучение физиологии корней, их роли в питании надземной части растения насчитывает почти два с половиной столетия: первая книга на эту тему появилась во Франции в 1758 году. Большой вклад в изучение корневых систем растений внесли наши известные почвоведы Д. Н. Прянишников, В. Р. Вильяме, Н. А. Качинский, С. П. Костычев.

Самые ближайшие к корню слои почвы, так называемая ризосфера, служат ареной бурной микробиологической активности бактерий, актиномицетов, грибов, водорослей и микроскопических животных: простейших, нематод, коловраток. Микробов привлекают не только органические вещества, выделяемые корнями, но и сами корни, живые и отмирающие. А животные неравнодушны еще и к самим микробам, которыми они питаются.

Корни любого растения выполняют множество функций: с ни создают опору для всего растительного организма, закрепляя его в почве, они поглощают воду, минеральные вещества, в корнях происходит синтез многих органических соединений, через корни выделяются продукты обмена. Для моркови или свеклы корень – место хранения запасов, для осины или сирени – орган вегетативного размножения: от корней идут новые побеги.

"Рабочий орган" корней – корневые волоски – выросты клеток поверхностного слоя молодого корня. Они увеличивают всасывающую поверхность корней, выделяют ненужные вещества, служат опорой для растущей верхушки корня.

Удивительным образованием является микориза (порусски – грибокорень) взаимовыгодное сожительство гриба с корнем высшего растения, например гриба подосиновика с осиной или подберезовика – с березой.

Корневые волоски живут недолго, обычно один сезон.

По мере роста корня на его верхушке все время образуется зона новых корневых волосков, а старые отмирают.

Строение корней разных растений почти так же разнообразно, как и строение надземных частей. У деревьев многие корни живут десятилетия, даже столетия, а у степных трав после плодоношения вся корневая система может полностью отмирать.

Полагают, что количество растительной массы, создаваемой зерновыми культурами, составляет 60-110 центнеров на гектар, а отношение надземной массы к корневой в среднем равно 4:1. Так, в частности, обстоит дело с пшеницей, ячменем, кукурузой, овсом. Но нет ничего более утомительного, чем изучение продуктивности корневых систем в полевых условиях. Методика здесь сложна, кропотлива, а ошибки все же возможны, так как отмыть (а без этого невозможно изучать корневые системы) самые мелкие корешочки не всегда удается.

В песчаных пустынях масса корней во много раз, иногда в 10-20, превышает массу надземной растительности.

В прериях Северной Америки ежегодно обновляется около 0,5 килограмма корней на каждом квадратном метре почвы, или 25 процентов их биомассы. Отмирающие органические вещества пополняют запас перегноя в почве, но чтобы "набрать" современное содержание гумуса, требуется столетие для верхней и около шестисот лет для нижней части почвенного слоя. Разница объясняется тем, что большинство корней сосредоточено в самом верхнем слое, в глубину проникают немногие, а значит, и мала их масса; в глубине к тому же медленнее гдут процессы обновления.

Каждый вегетационный сезон происходит нормальное природное отмирание корней и у плодовых растений (корнепад) или циклическое обновление, смена корней системы.

Мы не всегда отдаем себе отчет, в каких гигантских количествах корни "пьют" воду, а цифра – весьма внушительна: для леса она равна почти 10 тысячам тонн на гектар.

Многие корни используются в пищу человеком, а еще чаще – дикими животными, поскольку содержат крахмал, сахара, масла, витамины. Существуют даже специализированные животные, например слепыши, которые питаются только корнями растений, для чего проделывают в почве длинные ходы.

Сложные и многообразные отношения складываются между корнями и почвенными беспозвоночными. Беспозвоночные – сапрофаги проделывают исключительно важную работу, вместе с микробами утилизируя мертвые корневые остатки, освобождая место и питательные вещества для нового поколения растений. Прокладывая подземные лабиринты, они облегчают корням проникновение в глубину, обеспечивают их воздухом и водой.

Но эти отношения далеко не всегда складываются к обоюдной пользе. Многие беспозвоночные, особенно личинки насекомых, питаются живыми корнями растений.

Перегрызая корни всходов и сеянцев, особенно у молодых посадок сосны, у свеклы, хлопчатника, насекомые способствуют их заболеванию или даже гибели. Так, за "чахотку" табака в Крыму принимали повреждения корней личинками жука песчаного медляка, настолько были похожи симптомы у заболевших растений и тех, которые пострадали от этих личинок. Личинки долгоносиков сит он развиваются в клубеньках на корнях бобовых там же, где и клубеньковые бактерии, и это тоже вредит растениям.

Однако даже такие обитатели почвы наносят не только ущерб: и они прокладывают растениям ходы, выедают подгнившие участки корня, способствуют расселению полезных микроорганизмов, экскременты животных служат питательной средой микробам. Правда, не все такие микробы полезны. Порой животные заражают растения вредными микробами, которых заносят в поврежденные участки корня, например нематоды, личинки луковой мухи и луковой мухи-журчалки. Но и корни своими выделениями создают иногда непригодные условия для жизни животных.

На этом основан один из методов борьбы с вредителями растений, которые разыскивают в почве нужные им растения по их "запаху" – корневым выделениям.

Выращивание нескольких сельскохозяйственных культур на одной и той же площади приводит к изменению популяции вредителей, – так утверждает группа биологов из Кембриджского университета. Дело в том, что взрослые насекомые не прочь поживиться и за счет других растений, которые, однако, оказываются совсем неподходящими для них. Обнаружив ошибку, вредители поспешно разбегаются, не успевая подчас отложить-яйца.

В этом смысле защитником капусты может выступить фасоль, а моркови лук, который не только отвлекает внимание вредителей, но и блокирует их обоняние острым запахом.

И наконец, надо сказать о дыхании корней. Ведь выдыхаемая углекислота может в почве, где затруднен газообмен, достигать концентрации 10-12 процентов против 0,03 процента в атмосферном воздухе. Все ли животные способны это выдержать?

Так непросто складываются в почве отношения между корнями, микробами и растениями.

Живое прошлое и эволюция почв

Почвы изменяются со временем. Об этом известно любому земледельцу, который, заботясь о плодородии почвы, заправляет ее удобрениями, поддерживает комковатую структуру. Если этого не делать, плодородие иссякает, разрушается водопрочная структура, убывает гумус.

Постоянные изменения почв происходят и без воздействия человека. И такие изменения наглядны, их легко наблюдать: на чистых песчаных наносах поселяются растения, за ними другие, и вот уже песок закреплен, он медленно превращается в почву. Или обнажилась скальная поверхность. Прошло время, и ее заселили лишайники, потом мхи, за ними травянистые растения, и в скором времени образовался слой почвы, в котором успешно поселяются первые деревья.

Во всех этих явлениях действующей силой выступают живые организмы: сначала микробы, затем лишайники, мхи ж высшие растения. Им всюду сопутствуют и почвенные животные: простейшие, нематоды, клещи, ногохвостки, личинки насекомых и дождевые черви.

При этом горная порода превращается в почву, все более мощную, все более богатую гумусом.

Было бы неправильным не видеть в этом процессе, называемом эволюцией почвы, также действия атмосферного воздуха, воды и растворенных в ней химических веществ. Наконец, в современную эпоху, названную в начале века известным нашим геологом академиком А. П. Павловым антропогенной, то есть определяемой деятельностью человека, на почвенный покров все большее влияние оказывает человек.

Русскому почвоведению, начиная с работ В. В. Докучаева, было всегда присуще понимание динамикж почвенного покрова, изменения почв в пространстве и во времени. В советское время вопросы эволюции почв не раз широко обсуждались, причем иногда эти обсуждения были очень бурными.

Не чужды эти идеи и работам зарубежных почвоведов. Особенно подробно динамика почвообразования, эволюция почв рассмотрены в книге французского почвоведа профессора Филиппа Дюшофура, переведенной в 1970 году на русский язык. На большом материале Ф. Дюшофур показывает, как под влиянием эволюции минеральной части почвы, ее глин, органического вещества, органо-минеральных комплексов, ионных равновесий в почвенном растворе, влиянием растительности на биологический цикл элементов меняются во времени почвы холодного, умеренного и жаркого климата. Ученый предлагает убедительные схемы стадийного развития почв в условиях избытка воды, кальция, натрия, железа и других компонентов. (Менее подробные, но удобные и вполне обоснованные схемы строили и наши почвоведы, одну из них в 1911 году предложил П. С. Коссович, другую в 1927-м – С. А. Захаров.)

Нашли последователей среди почвоведов и идеи яркого американского геоботаника Ф. Клеменса, который в развитии растительности различал промежуточные стадни (сукцессии) и заключительную устойчивую фазу (климакс).

В нашей стране горячо обсуждались взгляды В. Р. Вильямса о "едином почвообразовательном процессе". Все зональные типы почв ученый рассматривал в качестве стадий, этапов единого процесса.

В работах советских почвоведов в 30-е годы, в том числе Н. П. Ремезова, В. А. Ковды, С. В. Зонна, были описаны конкретные случаи эволюции почв в лесах, степях. В трудах нынешних почвоведов идеи эволюции почв нашли отражение в классификации почвенных типов, где учтены особенности современных почвенных процессов ("почва-момент") и реликтовых свойств, оставшихся от прошлого ("почва-память").

Особое место в исследованиях по эволюции почв занимает небольшая книжка профессора А. А. Роде "Почвообразовательный процесс и эволюция почв", увидевшая свет в Москве в 1947 году. Алексей Андреевич здесь не только четко систематизировал все имевшиеся в науке на тот период данные об эволюции почв, но и определил ее движущие силы. Он выделил четыре фактора эволюции:

– действие сил внешних по отношению к биогеоценозу;

– воздействие соседних биогеоценозов;

– саморазвитие почв из-за действия внутренних сил в биогеоценозе;

– филогенез растений и других живых организмов, обладающих новыми геохимическими особенностями.

Последнее обстоятельство первым среди почвоведов отметил А. А. Роде. А ведь именно оно является главной движущей силой эволюции почв в масштабах геологической шкалы времени.

Авторы имели удовольствие не раз обсуждать с Алексеем Андреевичем вопросы эволюции почв во время экспедиций в черноземной зоне России, в Западном Казахстане. Этот удивительно обаятельный человек и энциклопедически образованный ученый прекрасно разбирался не только в вопросах почвоведения, но и в зарождавшейся в 50-е годы биогеоценологии.

Он неоднократно подчеркивал, что почвы по тем масштабам времени, которыми пользуются геологи, – эфемеры, образования с недолгой жизнью. До него такого четкого представления у почвоведов не было. В общих словах подобные идеи высказывались, но Роде конкретно показал, в чем заключается движущая сила эволюции жизни для почвообразовательного процесса.

Растения, которые обеспечивают значительную часть биогенного круговорота на суше, избирательно накапливают отдельные элементы п соединения. Большинство современных растений создает круговорот веществ, в котором на первом месте стоят азот, фосфор, калий, кальций, магний и натрий, на втором – кремнезем, а на третьем-разные окислы, изредка хлор и сера. А вот древнейшие растения – хвощи и плауны резко отличаются по своему зольному питанию. Хвощи накапливают в первую очередь кремнезем, а плауны – глинозем. Нетрудно сделать вывод, что характер почвообразования под палеозойскими хвощовыми и плауновыми лесами был иным, нежели сейчас.

На это обстоятельство обращал внимание академик Л. С. Берг в работе о происхождении уральских бокситов. Он полагал, что глинозем избирательно накапливался растениями карбонового периода, но в почвоведении эта идея ранее не рассматривалась.

Заключая главу о факторах эволюции почвы, А. А. Роде писал: "...в трех из четырех намеченных нами возможных случаев эволюции движущей силой эволюции является растительность или – шире – живое вещество".

Именно эволюция живого покрова – "биоты", как сейчас говорят, является постоянно действующим фактором активного изменения биогеоценоза, а с ним и почвы.

Есть даже смелые гипотезы, что жизнь возникла именно в грунте первичных материалов Земли, что древнейшие существа планеты – почвенные микробы, что именно сын появились первыми в земном реголите – грунте, похожем на грунт Луны. Кстати, низшие растения действительно могут расти на грунте такого состава, это доказано экспериментально.

В едином многоплановом процессе почвообразования ученые часто выделяют отдельные элементы, из которых этот процесс складывается. Советские почвоведы предложили схемы классификации таких элементов, которые профессор А. А. Роде обозначал как микропроцессы почвообразования, а известный географ академик И. П. Герасимов называл элементарными процессами почвообразования.

А. А. Роде под микропроцессами подразумевал простейшие реакции и явления, на которые может быть разложен каждый из процессов образования почвы. Он подразделял их на три группы. Первая – обмен веществом и поступление энергии в почву и из нее, взаимодействия между почвой и другими природными телами. Вторая – химические и энергетические превращения в самой почве. Третья – процессы перемещения веществ и энергии в почве.

Самое интересное, что в основе множества мельчайших, элементарных процессов почвообразования лежит биохимическая деятельность микроорганизмов. А некоторые микропроцессы – чисто микробиологические, как превращения азота, например: аммонификация, нитрификация, денитрификация.

Поэтому ленинградский микробиолог профессор Т. В. Аристовская предложила выделять в почве элементарные почвенно-биологические процессы, те простейшие "кирпичики", которые строят сложный мир химических превращений почвы, особенно превращений органического вещества. Здесь нас интересует только один процесс – разложение минералов той горной породы, на которой образовалась почва.

Разложение микробами горных пород имеет огромное значение для биосферы. Не будь его, живые организмы очень быстро исчерпали бы ресурсы большинства биогенных элементов. Особенно важно это в условиях влажного климата, где дожди постоянно промывают почву и выносят все растворимые элементы минерального питания, которые не успели перехватить другие микроорганизмы или же корни растений.

Есть множество микробов (в их числе бактерии, водоросли, грибы, актиномицеты, дрожжи), способных разрушать минералы и извлекать нужные им элементы или химические соединения – кислород, азот, железо, cepj/, калий и др. Как же мельчайшим живым существам удается сокрушить горные породы?

Для этого у них есть целый арсенал могучего химического оружия: ферменты, слизи, кислоты. Ферменты – средство строго избирательного воздействия. Например, с помощью ферментов серобактерии окисляют содержащие серу минералы. Многие микробы, попав в анаэробные условия, то есть в условия, где нет кислорода, способны с помощью особых ферментов "отнимать" кислород у окислов железа. А содержащие железо минералы при этом разрушаются.

Не столь избирательное, но еще большее по масштабам действие оказывают на минералы различные слизи, выделяемые микробами. Многие бактерии в почвах буквально погружены в слизь. Именно она составляет основную массу органических полимеров, особенно полисахаридов. Содержащиеся в слизи уроновые кислоты могут разрушать кристаллические решетки минералов, тем самым переводя в раствор, в усвояемое состояние нужные микробам вещества.

Микробы выделяют кислоты и в чистом виде, даже такие сильные, как азотная и серная. Иногда эти кислоты для микробов являются не оружием нападения на минералы, а просто экскретами, отбросами. Автотрофные микроорганизмы, в частности нитрификаторы и серобактерии, могут порой "захлебнуться" в выделяемых ими же самими кислотах.

Минералы легко растворяются многими кислотами, даже когда самим разрушителям это совершенно не нужно.

Однако в биогеоценозе живут и другие существа, которые охотно поглощают минеральные соединения растворенных горных пород.

Но многие микробы, особенно гетеротрофные, разлагают минералы, например алюмосиликаты, целенаправленно. При этом используются чаще всего не минеральные, а органические кислоты: муравьиная, уксусная, масляная, лимонная, молочная, щавелевая, янтарная, винная, различные аминокислоты. Так поступают многие бактерии, но наиболее ярко выражена способность к кислотообразованию у микроскопических грибов. С помощью кислот микробы извлекают из минералов фосфор, многие металлы. В разложении горных пород достаточно велика и роль гумусовых кислот, фенольных соединений.

В процессе жизнедеятельности микробы выделяют и щелочи, особенно при разложении органики, аммонификации. Накоплению в почве щелочей способствует внесение навоза и других органических удобрений, если они содержат много азота. И вот уже щелочи растворяют кварц, труднорастворимые фосфаты, алюмосиликаты, нефелины.

Микробы выделяют и такие сильные химические реагенты, как водород, сероводород, метан, которые также разрушают минералы.

Все эти явления очень важны для почвообразования, для снабжения растений элементами минерального питания, для всей жизни биогеоценоза. Но совершенно очевидно, что эти же процессы еще важнее для эволюции почвы, для формирования почвенного слоя, накопления запаса оиогенных элементов в живом веществе экосистемы при развитии почв на чистой скальной поверхности, песко или глине. Здесь свободно поселяются автотрофные микроорганизмы, лишайники (они тоже выделяют кислоты и могут растворять минералы), а все остальное – дело времени.

Обратите внимание: все процессы микробиальыого разложения горных пород могли идти на суше сотни миллионов лет назад, задолго до появления наземных растений и животных. Причем идти так же, как они идут и сейчас, обеспечиваемые теми же видами микробов. Есть и прямые доказательства исключительной древности микробов, которые способны разрушать камни. "Живые ископаемые", "колодец в прошлое" – каких только ярких эпитетов не использовали, чтобы подчеркнуть неизменность литотрофных ("питающихся" камнем) микроорганизмов на протяжении последнего миллиарда лет истории Земли.

Однако микробы не только разрушают минералы, но и способствуют созданию многих новых, особенно содержащих кальций, фосфор, кремний, железо и алюминий.

Микробы, только они используют запасенную ранее энергию минеральных соединений. Еще в начале нашего века в экспериментах с микробами из кишечника дождевых червей было доказано разложение измельченных горных пород. Правда, микробы поглощают не все элементы, а преимущественно нужные им самим. Например, плесневые грибы в опытах за неделю извлекали из размельченного базальта 54 процента железа, 59 – магния, 11 – алюминия, немало кремния.

О том, что микробы могли жить на суше в протерозое, свидетельствуют и многие данные о физиологии этих организмов, их умении противостоять неблагоприятным физическим факторам среды, способности питаться самыми простыми веществами. Академик А. А. Имшенецкий доказал, что даже занесенные ветром на высоту 84 километра, в стратосферу и мезосферу, микробы сохраняют жизнеспособность. Есть микробы, которые обладают защитными пигментами: черными, зелеными, серыми, коричневыми. Такие формы не боятся высушивания, охлаждения до минус 196 градусов, больших доз ультрафиолетовой радиации.

А недавно микробиологи открыли новый мир среди бактерий – архебактерии. Они – продуценты метана, того самого газа, который мы сжигаем в газовых горелках в кухонных плитах. Эти строго анаэробные бактерии встречаются на Земле повсюду, в том числе и в почвах.


    Ваша оценка произведения:

Популярные книги за неделю