355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Меркурий Гиляров » Жизнь в почве » Текст книги (страница 12)
Жизнь в почве
  • Текст добавлен: 10 октября 2016, 06:48

Текст книги "Жизнь в почве"


Автор книги: Меркурий Гиляров


Соавторы: Дмитрий Криволуцкий
сообщить о нарушении

Текущая страница: 12 (всего у книги 12 страниц)

Орошение теплыми водами открытого грунта даст возможность повысить урожайность культур по сравнению с обычным орошением на 20 процентов и более, а главное – продлить вегетационный период.

Сегодня достижения биологической науки, в том числе использование почвенных микроорганизмов, позволяет не только получать и перерабатывать пищевые продукты или корм для скота, они находят применение и в новых, подчас неожиданных областях. Почвенная микробиология породила не только биотехнологию, но и промышленную биоэнергетику.

Напомним, что Энергетическая программа СССР предусматривает на первом этапе создание материально-технической базы для широкого использования нетрадиционных источников энергии, в том числе энергии биомассы.

Понятие "биомасса", как известно, охватывает все вещества растительного и животного происхождения, продукты жизнедеятельности и органические отходы, образующиеся в процессе их обработки. Частично она используется в качестве кормов и продуктов питания, строительного материала, сырья для промышленности, а также в энергетических целях – путем прямого сжигания или с помощью переработки с получением спиртов и биогаза. Общее количество биомассы, ежегодно образующейся на планете, в несколько раз превышает суммарную годовую мировую добычу нефти, газа и угля.

Производство и переработка продукции сельского хозяйства дают массу отходов: навоз, солома и т. д. Нередко они либо вообще не идут в дело, либо употребляются неэффективно. В городах очень велико количество жидких стоков и твердых отходов. Органические отходы в изобилии появляются при лесозаготовках, лесопилении, деревообработке. Правда, на их базе (но это лишь небольшая их часть) развернуто довольно крупное микробиологическое производство этилового спирта и кормовых дрожжей.

Получать топливо из биомассы можно двумя способами – с помощью термотехнических процессов или путем биотехнологической переработки. К последнему относятся анаэробное сбраживание с выходом биогаза, а также гидролиз с получением этилового спирта или кормовых дрожжей, биоводорода и ряда других продуктов. Отечественный и зарубежный опыт показывает, что наибольшую перспективу открывает биологическая переработка органических веществ в биогаз. Он состоит из 50-70 процентов метана и 30-50 процентов окиси углерода. Его теплотворная способность составляет 4300-6000 килокалорий на кубический метр, что эквивалентно 0,6-0,8 килограмма условного топлива.

Брожение тонны органического вещества дает от 350 до 500 кубических метров биогаза. Процесс протекает непрерывно в реакторах (метатенках) объемом от нескольких кубометров до нескольких тысяч кубометров при температурах от 30 до 35 градусов Цельсия.

Безусловное достоинство такого способа – возможность использовать остаток органического вещества, образующегося в реакторах. Это обеззараженное, без запаха удобрение, для растений более ценное, чем обычный навоз.

На различные технологические нужды в сельском хозяйстве ежегодно расходуется около 50 миллионов тонн условного топлива. Если учесть, что в 1986-1990 годах намечается построить несколько сотен свинокомплексов с годовым откормом многих миллионов свиней, то общий выход жидкого навоза составит в год десятки миллионов кубических метров. Из него можно получить до 1,5 миллиарда кубометров биогаза (что эквивалентно 1 -миллиону тонн условного топлива), а кроме того – высококачественные удобрения, содержащие азот в виде аммония (200 тысяч тонн), окись фосфора (61 тысячу тонн), окись калия (84 тысячи тонн).

Предполагается также построить сотни комплексов крупного рогатого скота с откормом более 4,5 миллиона голов. Расчеты показывают, что только благодаря реализации отходов животноводческих комплексов и птицефабрик путем биологической конверсии можно получить дополнительно более 4 миллионов тонн условного топлива (50 процентов биогаза идет на поддержание процесса брожения), а также высококачественные удобрения в количестве, эквивалентном 3 миллионам тонн в пересчете на обычное минеральное удобрение.

Таковы лишь некоторые из направлений, по которым идет поиск принципиально новых решений, связанных с использованием биологических ресурсов и повышением их качества.

Почвенные животные предупреждают об опасности

Открытие атомной энергии и использование ее безграничных запасов – одно из самых выдающихся достижений науки XX века. Но успехи ядерной энергетики стали и источником серьезной и все растущей озабоченности во всем мире. И дело не только в угрозе атомной войны, способной вообще уничтожить человечество. Огромную опасность представляет и загрязнение биосферы радиоактивными веществами. Вызвано оно рассеиванием в атмосфере, в морях и океанах продуктов радиоактивного pscпада, проникновением их в почву и накоплением в сельскохозяйственной продукции и промысловых рыбах.

Радиоактивное загрязнение довольно просто и оперативно устанавливают приборы. Но практика показала, ч го как бы точны они ни были, только биологические индикаторы (растения, животные, микроорганизмы) позволяют перевести физические и химические показатели в величины, имеющие биологический смысл, то есть получить ответ на основной вопрос: пригодна ли та или иная срзда для жизни человека.

Как влияет радиация на клетки, ткани и целые живые организмы, каковы методы защиты от нее – этим занимается молодая наука – радиобиология. Одно из ее направлений – радиоэкология. Ее задача – анализ концентрации радионуклидов, изучение закономерностей изменения сообществ и популяций организмов, обитающих в условиях повышенной радиации.

Почвенные животные исключительно благодарный объект для радиоэкологических исследований: многие из них весьма чувствительны к действию радиации, в пищевых цепях они часто являются конечными звеньями и могут концентрировать радионуклиды. Животное население почв регулирует численность вредителей леса, что особенно важно в лесных районах, подвергшихся действию радиации. Тесная связь существует и между степенью радиоактивного загрязнения почв и экологией сельскохозяйственных вредителей в этих почвах. Наконец, почвенные животные – удобнейший биоиндикатор радиоактивного загрязнения территорий, так как численность их велика и достигает многих сотен тысяч особей на один квадратный метр, а характер питания фитофагов, сапрофагов и хищников достаточно постоянен, что позволяет установить пути и количественные закономерности миграции радионуклидов в биогеоценозе.

Почвенная фауна – наименее миграционная часть зооценоза, именно она теснее всего контактирует с радиоактивными загрязнениями и естественными радионуклидами, поскольку на суше все загрязнения, как радиоактивные, так и химические, рано или поздно попадают в почву.

Почвенная фауна и миграция нуклидов

Необходимость разработки биологических мер борьбы с возможными радиоактивными загрязнениями суши заставляет с особым вниманием отнестись к проблеме регулирования и направленной перестройки животного населения почв, изысканию путей интенсификации биологического круговорота веществ с помощью животных для связывания подвижных соединений радионуклидов и локализации очагов загрязнения в условиях естественных природных экосистем.

Одной из форм воздействия на очаг загрязнения могло бы быть расселение и создание условий для массового размножения таких почвенных животных, как кивсяки, которые в значительных количествах накапливают соли кальция и стронция, потребляют растительный опад (а он является одним из самых загрязненных искусственными радионуклидами горизонтов почвы) и в то же время не служат сами пищей для птиц, млекопитающих и хищных насекомых. Поэтому кивсяки могут быть эффективным депо таких радионуклидов, как стронций-90.

Как правило, больше радиоактивного стронция накапливают животные, которые откладывают кальций в покровах для увеличения их прочности почвенные моллюски, кивсяки, мокрицы. Эти животные с успехом могут использоваться в качестве биоиндикаторов загрязнения среды стронцием-90. В восточной Украине кивсяки и виноградные улитки накапливали этот радионуклид в 100 раз больше, чем его содержалось в дубовом опаде – пище этих животных.

Учитывая, что стронций-90 прочно связывается почвами и не весь включается в круговорот, можно предполагать, что зоогенная, то есть определяемая животными, миграция этого изотопа, во всяком случае, сравнима с вымыванием дождевыми водами или разносом ветром из биогеоценоза. Наибольшее значение здесь имеют почвенные миграции.

Обратимся теперь к другому загрязнителю – цезию-137. Интерес к этому элементу обусловлен не только чем, что это долгоживущий радионуклид (период полураспада – 29 лет) и один из основных агентов радиоактивного загрязнения биосферы. Существенно то, что миграция цезия-137 по трофическим цепям к человеку происходит через животных, через пищевые продукты животного происхождения: молоко, мясо, молочные продукты. Известно, что химически цезий близок калию, с которым и мигрирует по пищевой цепи. Подвижность цезия-137 в круговороте уменьшают микроорганизмы, которые связывают до 60 процентов изотопа, давая ему выщелачиваться из лесной подстилки. Видимо, важную роль в биогенной миграции цезия-137 должны играть почвенные грибы, в золе которых может содержаться до 45 процентов калия.

Освобождению этих элементов, их вовлечению в биогенный круговорот способствует деятельность почвенных животных, которые разрушают мертвую органику, частично ее перерабатывают и переваривают значительную часть микробной биомассы, переводя зольные элементы в подвижное, доступное высшим растениям состояние, как это было выяснено А. Д. Покаржевским в СССР, Д. Кроссли и М. Виткэмпом в США.

Радиоэкологическая обстановка для животных резко осложняется, если они постоянно обитают на участках с повышенным содержанием естественных радионуклидов.

В таких условиях отмечено резкое повышение концентрации радия позвоночными животными (в 6-132 раза), в меньшей степени – урана (0,3-12 раз), содержание тория не повышается. Особенно много радионуклидов накапливали грызуны, которые постоянно заселяли эти участки.

В пределах одного наземного биоценоза могут оказаться виды животных, сильно различающиеся по степени контакта с загрязненными участками, а следовательно, и с ионизирующим излучением. По этому признаку различают животных, случайно контактирующих с загрязнением, временно или постоянно. Но и при постоянном тесном контакте у животных, обитателей одной и той же территории, степень контакта неодинакова.

В СССР обстоятельно исследовали действие естественного радия-226 на комплексы почвенных животных. Изучаемые участки были невелики (1-2 гектара) и расположены на надпойменной террасе с луговой растительностью в подзоне средней тайги. Повышенный фон образовался из-за разлива подземных пластовых вод с повышенным содержанием радия. Четкие различия были обнаружены для всех массовых групп почвенных животных, которые развиваются долго и относительно малоподвижны, то есть постоянно обитают на участках с повышенным фоном радиации. Численность всех этих групп была на таких участках явно ниже, чем в контроле (объектами исследования являлись дождевые черви, личинки двукрылых и жуков-щелкунов). Меньшей оказалась-и общая заселенность почвы беспозвоночными.

Интересно, что особенно заметное угнетение испытывали дождевые черви. На участках с повышенным фоном радиации не только ниже была их численность, но и мельче размеры и наблюдалась задержка в развитии.

Таким образом, наибольшему воздействию радиации подвержены оседлые, длительно обитающие на участках с повышенным радиоактивным фоном группы животных, у которых наблюдается задержка развития и нарушения в функции эпителия поверхности тела и кишечника.

Действие радиации на почвенных животных хорошо прослеживается не только на участках, где уровень ее высок, но и там, где он низок, по-видимому, из-за больших дозовых нагрузок на почвенных животных по сравнению с наземными. Особенно удобным объектом для изучения можно считать дождевых червей, вероятнее всего, по той причине, что они облучаются не только извне, но и от почвы, которую заглатывают. У всех остальных наземных животных пища растительного или животного характера, в которой содержание естественных радионуклидов в 10-100 раз ниже, чем в почве.

Радиоактивное загрязнение среды и жизнь в почве

Опыты с облучением естественных, не нарушенных образцов почвы дозами 2,5-5 мегарад от кобальтового источника и в атомном реакторе подтвердили полную стерилизацию почвы, а также глубокие нарушения ее химического состава: содержание аммония в гумусовом слое облученной почвы возросло более чем в десять раз, и он в больших количествах появился в минеральном слое, где ранее полностью отсутствовал. Количество нитратов увеличилось преимущественно в минеральном слое почвы.

Микроорганизмы довольно быстро заселяли возвращенные в поле стерилизованные образцы, так что через девять дней те практически сравнялись с контролем и затем в течение двух месяцев заметно не отличались от контроля. Микроартроподы заселяли образцы значительно медленнее, через две недели встречались единичные особи, а через два месяца заселенность все еще сильно отставала от контрольной, особенно в образцах, где было мало грибов. При хроническом облучении леса в Брукхевене (США) отклонений в разложении лесной подстилки не наблюдали.

Показателем биологической активности почвы может считаться "почвенное дыханием – количество выделяемого с единицы поверхности углекислого газа. Когда почву подвергали острому облучению от мощного кобальтового источника дозой 800 и 2500 килорад, почвенное дыхание в обоих случаях резко сократилось. Наблюдения за микроорганизмами через шесть недель после облучения показали, что численность их резко упала. После хронического облучения дозой 800 килорад численность бактерий сократилась в почве почти в 40 раз по сравнению с контролем, грибов – в 6 раз. Острое облучение при 800 килорад вызвало падение численности бактерий в 2,5 раза, грибов – в 10 раз; при 2500 килорад бактерии исчезли вовсе через шесть недель.

Для изучения экологических последствий лучевых воздействий на естественные ценозы в условиях средней полосы СССР проводился многолетний эксперимент с острым гамма-облучением сосново-березового леса дозами 7-25 килорад.

Для эксперимента выбрали участок леса, однородный по видовому составу и почвенным условиям, с равномерным распределением одновозрастных деревьев по площади.

Этот эксперимент – пока единственный, позволивший изучить воздействие гамма-облучения леса на почвенную фауну. На облученном участке произошли изменения в структуре мезофауны: более чем в пять раз сократилась численность дождевых червей. В результате на опытном участке преобладающей группой стали насекомые, в то время как до облучения и в контроле преобладали дождевые черви.

В слое почвы от 0 до 20 сантиметров на контроле заселенность животными была в 1,5-3 раза выше, чем на облученном участке.

Обеднение почвенной фауны в глубоких горизонтах отмечено при всех формах действия ионизирующих излучений на биогеоценоз. Объяснить этот факт можно следующими причинами: в глубине почвы сравнительно больше, чем на поверхности, преимагинальных, а следовательно – гораздо более радиочувствительных стадий животных; поверхностные слои после облучения легче заселяются извне; глубокопочвенные виды менее плодовиты, чем поверхностные, и медленнее восстанавливают численность популяций. Даже через два года не восстановили численности дождевые черви – основная группа беспозвоночных, пострадавших от облучения. Комплекс микрофауны, хотя и пострадал от одноразового сильного облучения, общего угнетения не испытал и довольно быстро стал восстанавливать свою первоначальную структуру.

И происходило это за счет "внутренних ресурсов" комплекса, а не за счет миграции животных извне, с необлученных территорий.

В СССР проведены многочисленные эксперименты с загрязнением почв искусственными радионуклидами и последующим изучением экологии почвенных животных, они позволяют решить прикладные вопросы и лучше уяснить, каковы плодовитость, продолжительность жизни, интенсивность обмена, химический состав, трофические связи животных. Обширный материал собран и по экологии микроорганизмов, развитию корневых систем растений в условиях повышенного фона ионизирующей радиации.

Фактически сформировалось новое направление – радиобиология почвы, и здесь очень велик вклад советских исследователей: дозиметристов, почвоведов, биологов.

Приступая к изучению воздействия ионизирующих излучений на животное население почвы, ученые не могли предвидеть всего того, с чем придется встретиться в процессе полевой работы. Сложность усугублялась тем, чю наземные беспозвоночные – организмы весьма радиоустойчивые во взрослом состоянии. Радиочувствительность насекомых, дождевых червей, мокриц, паукообразных составляет 50-200 килорад, что значительно выше, чем у растений.

Поскольку содержание стронция-90 в надземной части насаждений значительно меньше, чем в почве, дозы облучения животных, обитающих в верхних ярусах леса, оказываются значительно ниже, чем почвенных обитателей.

Но и в почве эти дозы не настолько велики, чтобы оказывать непосредственное воздействие на беспозвоночных, особенно в личиночной и взрослой стадиях. Тем не менее они все же снижают численность популяций многих видов.

Это можно объяснить тем, что ряд видов лесных насекомых, а также представителей микро– и мезофауны, зимует в почве в стадии яйца, то есть в наиболее радиочувствительной эмбриональной стадии. Если принять во внимание, что облучение в этом случае продолжается в течение нескольких месяцев, доза облучения, накопленная за это время, могла составить в наших экспериментах 200-300 рад, то есть довольно значительную величину.

При облучении в лабораторных условиях, как известно, дозы облучения от нескольких сотен до нескольких тысяч рад приводят к стерильности самцов и самок насекомых и гибели яиц.

На лесных участках, загрязненных стронцием-90, численность мезофауны сократилась более чем в два раза.

Но более всего (в 10-100 раз) сократилась численность дождевых червей и многоножек (губоногих и двупарноногих) – потребителей мертвого растительного опада, обитающих преимущественно в лесной подстилке и верхнем слое почвы, где сконцентрирована основная часть радионуклидов. Изменения видового состава – сокращение видового разнообразия – обнаружены и в микрофауне, в частности, в популяциях панцирных клещей.

Сообщества почвенных животных чутко реагируют на повышенный хронический уровень ионизирующей радиации при дозах порядка 0,5-3 рада в сутки. При этом уменьшается видовое разнообразие оседло живущих беспозвоночных, глубина заселения почвы, падает численность. Особенно сильно действие радиации проявляется в период размножения животных. У почвенных беспозвоночных уязвимыми для действия радиации являются ранние стадии жизненного цикла. Ранние стадии развития дождевых червей столь же чувствительны к действию радиации, как и человек.

Взрослые стадии почвенных животных достаточно устойчивы к действию ионизирующей радиации, не уступают по этому показателю лесным и луговым растениям, а нередко в три-пять раз превосходят растения. Но животных "подводит" здесь уязвимость для радиации ранних стадий, их длительный период развития, за который они успевают облучиться значительными дозами радиации даже в условиях малой мощности, но хронического облучения.

Уязвимость почвенной фауны усиливается также изза того, что почва аккумулирует многие радионуклиды, попавшие в биосферу, в том числе стронций-90 и цезий-137, а такие массовые обитатели почвы, как дождевые черви, заглатывая почву при питании, получают немалые дозы облучения и от пищевого комка, что становится особенно важным при загрязнении почв радионуклидами – альфа-излучателями. Велико участие почвенных животных в зоогенной миграции искусственных радионуклидов, главным образом из-за высокой биомассы этих животных и их роющей деятельности.

Заключение

Увеличить производство сельскохозяйственной продукции, улучшить снабжение населения продовольствием – такова важнейшая задача, стоящая перед нашим народным хозяйством.

Реализация Продовольственной программы СССР во многом зависит от того, как будут складываться отношения земледельца с землей, насколько удастся преумножить ее плодородие в условиях интенсивного производства. И потому так возрастает роль науки в решении сложного комплекса проблем, связанных с сельским хозяйством.

Недалеко то время, когда поле будут не распахивать, а "строить", создавать по особой программе для каждого отдельного региона, для каждой системы земледелия. Но это – в будущем. Пока же речь идет об улучшении качества земель путем глубокой мелиорации, правильного применения удобрений, подбора районированных сортов урожайных сельскохозяйственных растений.

Население растет, увеличивается и потребность в продуктах питания. В двенадцатой пятилетке планируется производить ежегодно 250-255 миллионов тонн зерна, доведя среднюю урожайность до 21-22 центнеров с гектара. Сделать это будет непросто, если учесть, что щедрых от природы земель у нас в стране не так уж много.

Президент Академии наук СССР А. П. Александров, выступая 26 декабря 1984 года на общем собрании академии, посвященном вкладу науки в реализацию Продовольственной программы, призвал поднять на более высокий уровень научное обеспечение важнейших се разделов. Он отметил, что многие институты уже активно г.анимаются фундаментальными разработками, направленными на интенсификацию сельскохозяйственного производства и всестороннее развитие агропромышленього комплекса. Но многое еще предстоит сделать, чтобы повысить эффективность мелиорированных зел!ель, обеспечить надежную защиту растений, разработать тщательно проверенные методы обработки семян, ухода за посевами, переработки и хранения сельскохозяйственной продукции.

Все эти вопросы так или иначе связаны с регулированием биологических явлений в почве, интенсификацией или подавлением деятельности почвенных животных и микроорганизмов, управлением ферментативными процессами в почве.

За последние десятилетия в биологической науке произошли коренные изменения. И каждый шаг вперед в развитии науки открывает подчас совершенно неожиданные возможности, новые пути. Один из них – создание микробиологической промышленности, мощной индустрии живых клеток.

Современная научно-техническая революция создает предпосылки для того, чтобы пополнить продовольственные ресурсы продукцией несельскохозяйственного производства.

Стремительное развитие микробиологической промышленности, высокая стоимость основного "производителя"

на микробиологических заводах – культур микробов – позволяют предполагать, что в обозримом будущем для нужд народного хозяйства может быть использован почти весь природный генофонд микробов. Хранилищем этого генофонда была и остается почва. В еще большей степени почва служит хранилищем генофонда животных, особенно беспозвоночных, на сегодня пока еще почти не используемых. Но настанет и их время, и их несомненно придется культивировать в промышленных масштабах.

А мы пока далеко не все еще знаем о том мире живых существ, которые заселяют почву. Ежегодно описывают сотни новых, ранее неизвестных почвенных животных.

Микробиологи постоянно находят неизвестные микроорганизмы, а в 1977 году было открыто новое царство микробов – архебактерии, которые построены из уникальных белков, жиров, ферментов, полисахаридов, не синтезируемых больше никакими другими живыми организмами. Среди этих простейших существ есть формы, лишенные оболочки, они могут синтезировать тела своих клеток из простейших минеральных соединений углерода, азота, серы, многие из них живут в бескислородной среде. Такие формы, нередко похожие на кусочки битого стекла, несомненно могли жить в условиях, которые существовали на Земле в раннем докембрии. Из этого примера видно, как много мы еще не знаем о почвенных существах. А как можно без знаний управлять этими процессами, как можно поставить их на службу человеку?

Выступления Генерального секретаря ЦК КПСС М. С. Горбачева на апрельском (1985 г.) Пленуме ЦК КПСС, на совещании в ЦК КПСС по вопросам ускорения научно-технического прогресса обращают наше внимание на настоятельную необходимость интенсификации всех производственных процессов в стране, в том числе и земледелия – основы сельскохозяйственного производства. Плодородные почвы – дело рук человеческих, а для их создания и поддержания нужны знания о биологических явлениях в почве, умение их регулировать.

От специалистов по биологии почв ждут создания оптимальной по биологическим параметрам почвы для выращивания сельскохозяйственных растений. Это предполагает и борьбу с почвенными вредителями и болезнями растений, и регулирование микробиологических процессов в почве, и биологическую мелиорацию почвенной среды, и поддержание ее санитарного состояния.

Почва остается неисчерпаемым источником живых культур, основным хранилищем генетического разнообразия жизни на нашей планете, она же "экологический щит" биосферы. Именно почвенные организмы обеззараживают вредные органические соединения и патогенную, болезнетворную для человека микрофлору.

Земледелие всегда отражало общий уровень культуры и знаний общества. О плодородии земель заботились во все времена. Но лишь сравнительно недавно осознали, что почва является одной из напряженнейших "арен жизни", что она создана и изменяется в первую очередь благодаря деятельности живых организмов, что о почве можно говорить как о своеобразной биохимической системе.

За всю историю человеческой цивилизации нельзя отыскать ни одного примера создания искусственного плодородного слоя на значительной площади. Может быть, именно поэтому висячие сады Семирамиды в Вавилоне причислили к семи чудесам света: современников, вероятно, поразило то, что благодаря титаническому труду широкие каменные уступы превратились в плодоносящий сад.

Почва формируется на протяжении огромного исторического периода. Века требуются, чтобы образовалось всего несколько сантиметров плодородного слоя. Потерять же их можно за один-два года, если думать только о ближайших конкретных целях и безрассудно эксплуатировать землю, не заботясь о ее сохранении и о последствиях столь энергичной деятельности. Восстановить же разрушенное неимоверно трудно.

После успешных первых лет освоения целинных земель возникли непредвиденные осложнения – пыльные бури: ветер поднимал с полей тысячи тонн земли, превращая день в ночь, перенося почву на огромные расстояния.

Дело в том, что в Казахстане и степных районах Сибири применили технологию обработки -:емли, привычную для европейской части страны. Систематическая вспашка отвальными плугами, применение дисковых лущильников и зубовых борон и привели к сильному распылению почвы, нарушению ее стествепной структуры.

Усилиями советских ученых, удостоенных Ленинской премии, была разработана почвозащитная система земледелия для районов Сибири и Казахстана. Она предусматривает полосное размещение культур, севообороты с короткой ротацией и обязательным полем чистого пара, внесение фосфорных удобрений. Но главная ее отличительная черта – плоскорезная обработка с оставлением стерни на поверхности почвы. При этом пожнивные остатки предохраняют землю от ветровой эрозии, обеспечивают накопление и сохранение влаги. Эта система внедрена более чем на 40 миллионах гектаров сельскохозяйственных территорий.

Специалисты по биологии почвы при этом отмечают, что безотвальная обработка в гораздо меньшей степени отражается на естественных сообществах организмовпочвообразователей. А именно эти организмы сохраняют, регулируют и преумножают биологический потенциал почвы.

В своем, посвященном интенсификации развития агропромышленного производства выступлении на совещании партийно-хозяйственного– актива 7 сентября 1985 года в городе Целинограде Генеральный секретарь ЦК КПСС М. С. Горбачев сказал: "Создание надежной продовольственной базы – задача общепартийная, общенародная.

Апрельский Пленум ЦК на этот счет дал четкую, принципиальную установку: реализация Продовольственной программы – дело неотложное, оно требует особого внимания". Особое внимание он уделил необходимости строгого соблюдения технологии выращивания сельскохозяйственных культур, повышения качества обработки почвы, расширения мелиорированных и прежде всего орошаемых земель, обеспечения их эффективного использования. Специально остановился М. С. Горбачев на необходимости ускорения научно-технического прогресса в сельском хозяйстве, где успехи в использовании орошаемых земель, в животноводстве не соответствуют затратам сил и средств нашего общества.

Во всех этих областях почвенные зоологи могут и должны найти место приложения своих сил и знаний.

Из года в год земля дает урожаи, вознахраждая земледельца за труд, за умение, за внимание и уважение к ней. Плодородие почвы всегда будет обеспечиваться и удобрениями, и мелиорацией, и правильным управлением биологическими процессами почвы. Иначе неизбежно наступает почвоутомление, накапливаются вредители и возбудители болезней растений, ослабляются естественные механизмы повышения плодородия почвы.

Земледелие – не только древнейший род человеческой деятельности, оно и извечно мирное занятие. Только в условиях мира возможна реализация планов, рассчитанных на дальнюю перспективу. Только мир на планете способен обеспечить дальнейшее освоение природных богатств, обладание тайнами природы, В наш тревожный век об этом нельзя не думать.


    Ваша оценка произведения:

Популярные книги за неделю