Текст книги "1.Внутреннее устройство Windows (гл. 1-4)"
Автор книги: Марк Руссинович
Соавторы: Дэвид Соломон
сообщить о нарушении
Текущая страница: 3 (всего у книги 18 страниц) [доступный отрывок для чтения: 7 страниц]
Первый сеанс входа на физической консоли компьютера считается консольным сеансом, или нулевым сеансом (session zero). Дополнительные сеансы можно создать с помощью программы соединения с удаленным рабочим столом (Mstsc.exe), а в Windows XP – через механизм быстрого переключения пользователей (об этом позже).
Возможность создания удаленного сеанса поддерживается Windows 2000 Server, но не Windows 2000 Professional. Windows XP Professional позволяет одному удаленному пользователю подключаться к машине, однако если кто-то начинает процедуру входа в консоли, рабочая станция блокируется (т. е. систему можно использовать либо локально, либо удаленно, но не и то, и другое одновременно).
Windows 2000 Server и Windows Server 2003 поддерживают два одновременных удаленных сеанса. (Это упрощает удаленное управление, например облегчает применение инструментов, требующих от администратора входа на удаленный компьютер.) Windows 2000 Advanced Server, Datacenter Server и все издания Windows Server 2003 способны поддерживать более двух сеансов одновременно при условии правильного лицензирования и настройки системы в качестве сервера терминала.
Хотя Windows XP Home и Professional не поддерживают несколько удаленных подключений к рабочему столу, они все же поддерживают несколько сеансов, созданных локально через механизм быстрого переключения пользователей. (Этот механизм отключается в Windows XP Professional, если система присоединяется к домену.) Когда пользователь выбирает выключение своего сеанса вместо выхода [например, последовательным выбором Start (Пуск), Log Off (Выход из системы) и Switch User (Смена пользователя) или нажатием клавиши L при одновременном удерживании клавиши Windows], текущий сеанс (т. е. процессы, выполняемые в этом сеансе, и все структуры данных, глобальные для сеанса и описывающие его) остается в системе, а Windows возвращается к основному окну входа. Если в систему входит новый пользователь, создается новый сеанс.
Для приложений, которым нужно знать, выполняются ли они в сеансе сервера терминала, предназначен набор Windows API-функций, позволяющих программно распознавать такую ситуацию и контролировать различные аспекты служб терминала. (Детали см. в Platform SDK.)
B главе 2 кратко описывается, как создаются сеансы, и проводится несколько экспериментов, показывающих, как просматривать информацию о сеансе с помощью различных инструментов, включая отладчик ядра. B разделе «Диспетчер объектов» главы 3 поясняется, как создается сеансовый экземпляр системного пространства имен для объектов и как приложения могут узнавать о других своих экземплярах в той же системе. Наконец, в главе 7 рассказывается, как диспетчер памяти настраивает данные, глобальные для сеанса, и управляет ими.
Объекты и описатели
B операционной системе Windows объект – это единственный экземпляр периода выполнения (run-time instance) статически определенного типа объекта. Тип объекта состоит из общесистемного типа данных, функций, оперирующих экземплярами этого типа данных, и набора атрибутов. Если вы пишете Windows-приложения, вам наверняка знакомы такие объекты, как процесс, поток, файл и событие, – продолжать можно еще долго. Эти объекты базируются на объектах более низкого уровня, создаваемых и управляемых Windows. B Windows процесс является экземпляром объекта типа «процесс», файл – экземпляром объекта типа «файл» и т. д.
Атрибут объекта (object attribute) – это поле данных в объекте, частично определяющее состояние этого объекта. Например, объект типа «процесс», имеет атрибуты, в число которых входят идентификатор процесса, базовый приоритет и указатель на объект маркера доступа. Методы объекта (средства для манипулирования объектами) обычно считывают или изменяют какие-либо атрибуты. Так, метод open процесса мог бы принимать идентификатор процесса и возвращать указатель на этот объект.
ПРИМЕЧАНИЕ He путайте параметр ObjectAttributes, предоставляемый вызывающей программой при создании объекта через Windows API или его родные сервисы, с термином «атрибуты объекта», имеющим более общий смысл.
Самое главное различие между объектом и обычной структурой данных заключается в том, что внутренняя структура объекта скрыта. Чтобы получить данные из объекта или записать в него какую-то информацию, вы должны вызвать его сервис. Прямое чтение или изменение данных внутри объекта невозможно. Тем самым реализация объекта отделяется от кода, который просто использует его, а это позволяет менять реализацию объекта, не модифицируя остальной код.
Объекты очень удобны для поддержки четырех важных функций операционной системы:
• присвоения понятных имен системным ресурсам;
• разделения ресурсов и данных между процессами;
• защиты ресурсов от несанкционированного доступа;
• учета ссылок (благодаря этому система узнает, когда объект больше не используется, и автоматически уничтожает его).
He все структуры данных в Windows являются объектами. B объекты помещаются лишь те данные, которые нужно разделять, защищать, именовать или делать доступными программам пользовательского режима (через системные сервисы). Структуры, используемые только одним из компонентов операционной системы для поддержки каких-то внутренних функций, к объектам не относятся. Подробнее объекты и их описатели (ссылки на экземпляр объекта) рассматриваются в главе 3.
Безопасность
Windows с самого начала разрабатывалась как защищенная система, удовлетворяющая требованиям различных правительственных и промышленных стандартов безопасности, например спецификации Common Criteria for Information Technology Security Evaluation (CCITSE). Подтверждение правительством рейтинга безопасности операционной системы позволяет ей конкурировать в сферах, требующих повышенной защиты. Разумеется, многим из этих требований должна удовлетворять любая многопользовательская система.
Базовые возможности защиты в Windows таковы: избирательная защита любых разделяемых системных объектов (файлов, каталогов, процессов, потоков и т. д.), аудит безопасности (для учета пользователей и инициируемых ими операций), аутентификация паролей при входе и предотвращение доступа одного из пользователей к неинициализированным ресурсам (например, к памяти или дисковому пространству), освобожденным другим пользователем.
Windows поддерживает два вида контроля доступа к объектам. Первый из них – управление избирательным доступом (discretionary access control) – является механизмом, который как раз и связывается большинством пользователей с защитой. Это метод, при котором владельцы объектов (например, файлов или принтеров) разрешают или запрещают доступ к ним для других пользователей. При входе пользователь получает набор удостоверений защиты (security credentials), или контекст защиты (security context). Когда он пытается обратиться к объекту, его контекст защиты сверяется со списком управления доступом (access control list, ACL) для данного объекта, чтобы определить, имеет ли он разрешение на выполнение запрошенной операции.
Второй метод – управление привилегированным доступом Q3riv1leged access control) – необходим в тех случаях, когда управления избирательным доступом недостаточно. Данный метод гарантирует, что пользователь сможет обратиться к защищенным объектам, даже если их владелец недоступен. Например, если какой-то сотрудник увольняется из компании, администратору нужно получить доступ к файлам, которые могли быть доступны только бывшему сотруднику. B таких случаях Windows позволяет администратору стать владельцем этих файлов и при необходимости управлять правами доступа к ним.
Защита пронизывает весь интерфейс Windows APL Подсистема Windows реализует защиту на основе объектов точно так же, как и сама операционная система. При первой попытке доступа приложения к общему (разделяемому) объекту подсистема Windows проверяет, имеет ли это приложение соответствующие права. Если проверка завершается успешно, подсистема Windows разрешает приложению доступ.
Подсистема Windows реализует защиту для общих объектов, часть из которых построена на основе родных объектов Windows. K Windows-объектам относятся объекты рабочего стола, меню, окна, файлы, процессы, потоки и ряд синхронизирующих объектов.
Детальное описание защиты в Windows см. в главе 8.
Реестр
Если вы работали хоть с какой-нибудь операционной системой Windows, то, вероятно, слышали о реестре или даже просматривали его. Рассказать о внутреннем устройстве Windows, не упоминая реестр, вряд ли возможно, так как это системная база данных с информацией, необходимой для загрузки и конфигурирования системы; в ней содержатся общесистемные параметры, контролирующие работу Windows, база данных защиты и конфигурационные настройки, индивидуальные для каждого пользователя.
Кроме того, реестр – это окно, через которое можно заглянуть в переменные системные данные, чтобы, например, выяснить текущее состояние аппаратной части системы (какие драйверы устройств загружены, какие ресурсы они используют и т. д.) или значения счетчиков производительности Windows. Счетчики производительности, которые на самом деле в реестре не хранятся, доступны через функции реестра (см. главу 4).
Хотя у многих пользователей и администраторов Windows никогда не возникает необходимости работать непосредственно с реестром (большую часть параметров можно просматривать или модифицировать с помощью стандартных административных утилит), он все же является источником полезной информации о внутренних структурах данных Windows, так как содержит множество параметров, влияющих на быстродействие и поведение системы. (Будьте крайне осторожны, напрямую изменяя параметры реестра: любые изменения могут отрицательно сказаться на быстродействии или, что гораздо хуже, привести к краху системы.)
Ссылки на различные разделы реестра, относящиеся к описываемым компонентам, будут встречаться на протяжении всей книги. Большинство таких разделов находится в ветви HKEY_LOCAL_MACHINE, которую мы сокращенно называем HKLM. Подробнее о реестре и его внутренней структуре см. главу 4.
Unicode
Windows отличается от большинства других операционных систем тем, что в качестве внутреннего формата для хранения и обработки текстовых строк использует Unicode. Unicode – это стандартная кодировка, которая поддерживает многие известные в мире наборы символов и в которой каждый символ представляется 16-битным (двухбайтовым) кодом. (Подробнее о Unicode см. www.unicode.org и документацию на компакт-дисках MSDN Library.)
Поскольку многие приложения имеют дело с 8-битными (однобайтовыми) ANSI-символами, Windows-функции, принимающие строковые параметры, существуют в двух версиях: для Unicode и для ANSI. B Windows 95, Windows 98 и Windows ME реализована лишь часть Unicode-версий Windows-функций, поэтому приложения, рассчитанные на выполнение как в одной из этих операционных систем, так и в NT-подобных Windows, обычно используют ANSI-версии функций. Если вы вызываете ANSI-версию Windows-функции, входные строковые параметры перед обработкой системой преобразуются в Unicode, а выходные – из Unicode в ANSI (перед возвратом приложению). Таким образом при использовании в Windows устаревшего сервиса или фрагмента кода, написанного в расчете на ANSI-строки, эта операционная система будет вынуждена преобразовывать ANSI-символы в Unicode. Однако Windows никогда не преобразует данные внутри файлов – решения о том, в какой кодировке хранить текстовую информацию в файлах, принимают лишь сами приложения.
B предыдущих версиях Windows ее азиатский и ближневосточный выпуски представляли собой надмножество базовых американского и европейского выпусков, в которые включались дополнительные Windows-функции для обработки более сложных раскладок клавиатур и принципов ввода текста (например, набора текста справа налево). Начиная с Windows 2000, все языковые выпуски содержат одинаковые Windows-функции. Единая для всех стран двоичная кодовая база Windows способна поддерживать множество языков за счет простого добавления нужных компонентов языковой поддержки. Используя эти Windows-функции, разработчики могут создавать универсальные приложения, способные работать со множеством языков.
Изучение внутреннего устройства Windows
Хотя большая часть информации, представленная в этой книге, получена при чтении исходного кода Windows и общении с разработчиками, вы не обязаны принимать все на веру. Многие детали внутреннего устройства Windows можно вытащить на свет с помощью самых разнообразных средств, в том числе поставляемых с Windows, входящих в Windows Support Tools и ресурсы Windows, а также с использованием отладочных средств самой Windows. Чуть позже мы вкратце рассмотрим эти пакеты инструментальных средств.
Чтобы упростить вам исследование внутреннего устройства Windows, мы часто даем в книге врезки «Эксперимент» с пошаговыми инструкциями для изучения какого-либо аспекта поведения Windows. (Вы уже видели такие врезки в этой главе.) Советуем проводить эти эксперименты – это позволит увидеть в действии многие вещи, о которых рассказывается в книге.
B таблице 1–3 перечислены все используемые нами инструменты и утилиты.
Таблица 1–3. Средства просмотра внутренней информации Windows
Оснастка Performance
Мы часто ссылаемся на этот инструмент, доступный через папку Administrative Tools (Администрирование) в меню Start (Пуск) или через Control Panel (Панель управления). Оснастка Performance (Производительность) предназначена для мониторинга системы, просмотра журналов, в которых регистрируются значения счетчиков производительности, и оповещения при достижении заданных пороговых значений тех или иных счетчиков. Говоря об оснастке Performance, мы подразумеваем лишь ее функцию системного мониторинга.
Оснастка Performance способна сообщить о том, как работает система, гораздо больше, чем любая другая, отдельно взятая утилита. Она предусматривает сотни счетчиков для различных объектов. По каждому счетчику можно получить краткое описание. Чтобы увидеть описание, выберите счетчик в окне Add Counters (Добавить счетчики) и щелкните кнопку Explain (Объяснение). Или откройте справочный файл Performance Counter Reference с компакт-диска «Ресурсы Windows». Информацию о том, как интерпретировать показания счетчиков для устранения «узких мест» в системе или для планирования пропускной способности сервера, см. раздел «Performance Monitoring» в книге «Windows 2000 Server Operations Guide» из набора Windows 2000 Server Resource Kit. Для Windows XP и Windows Server 2003 см. документацию Performance Counters Reference в Windows Server 2003 Resource Kit.
Заметьте, что все счетчики производительности Windows доступны программным путем. Краткое описание соответствующих компонентов см. в разделе «HKEY_PERFORMANCE_DATA» главы 4.
Windows Support Tools
Windows Support Tools включают около 40 утилит, полезных в администрировании систем на базе Windows и устранении неполадок в них. Многие из этих утилит раньше были частью ресурсов Windows NT 4.
Вы можете установить Support Tools, запустив Setup.exe из папки Support Tools в дистрибутиве любого издания Windows. Support Tools одинаковы в Windows 2000 Professional, Server, Advanced Server и Datacenter Server, a для Windows XP, равно как и для Windows Server 2003, существует своя версия Support Tools.
Ресурсы Windows
Ресурсы Windows (Windows Resource Kits) расширяют Support Tools, предлагая дополнительные утилиты для администрирования и поддержки систем. Утилиты Windows Server 2003 Resource Kit можно бесплатно скачать с microsoft.com (выполните поиск по ключевым словам «resource kit tools»). Их можно установить в Windows XP или Windows Server 2003.
Ресурсы Windows 2000 существуют в двух изданиях: Windows 2000 Professional Resource Kit и Windows 2000 Server Resource Kit* (самая последняя
Последнее издание переведено на русский язык издательством «Русская Редакция» и выпущено в 2001 г. в виде серии «Ресурсы Microsoft Windows 2000 Server» которая включает 4 книги: «Сети TCP/IP», «Сопровождение сервера», «Распределенные системы» и «Межсетевое взаимодействие». – Прим. перев.
его версия – Supplement 1). Хотя последний набор представляет собой надмножество первого и может быть установлен на системах с Windows 2000 Professional, утилиты, входящие только в Windows 2000 Server Resource Kit, ни в одном из наших экспериментов не используются. B отличие от утилит Windows Server 2003 Resource Kit эти утилиты нельзя скачать бесплатно. Однако Windows 2000 Server Resource Kit поставляется с подписками на MSDN и TechNet.
Отладка ядра
Отладка ядра подразумевает изучение внутренних структур данных ядра и/ или пошаговый проход по функциям в ядре. Это полезный способ исследования внутреннего устройства Windows, потому что он позволяет увидеть внутрисистемную информацию, недоступную при использовании каких-либо других способов, и получить более ясное представление о схеме выполнения кода внутри ядра.
Отладку ядра можно проводить с помощью разнообразных утилит: Windows Debugging Tools от Microsoft, LiveKD от wwwsysinternals.com или SoftIce от Compuware NuMega. Прежде чем описывать эти средства, давайте рассмотрим файл, который понадобится при любом виде отладки ядра.
Символы для отладки ядра
Файлы символов (symbol files) содержат имена функций и переменных. Они генерируются компоновщиком (linker) и используются отладчиками для ссылки и отображения этих имен в сеансе отладки. Эта информация обычно не хранится в двоичном образе, потому что она не нужна при выполнении кода. To есть двоичные образы имеют меньший размер и работают быстрее. Ho это означает, что вам нужно позаботиться о том, чтобы у отладчика был доступ к файлам символов, сопоставляемым с образами, на которые вы ссылаетесь в сеансе отладки.
Для изучения внутренних структур данных ядра Windows (например, списка процессов, блоков потока, списка загруженных драйверов, информации об использовании памяти и т. д.) вам понадобятся подходящие файлы символов как минимум для образа ядра, Ntoskrnl.exe. (Подробнее этот файл рассматривается в разделе «Обзор архитектуры» главы 2.) Файлы таблиц символов должны соответствовать версии образа. Так, если вы установили Windows Service Pack или какое-то оперативное исправление, то должны получить обновленные файлы символов хотя бы для образа ядра; иначе возникнет ошибка из-за неправильной контрольной суммы при попытке отладчика ядра загрузить их.
Хотя можно скачать и установить символы для разных версий Windows, обновленные символы для оперативных исправлений доступны не всегда. Самый простой способ получить подходящую версию символов для отладки – обратиться к Microsoft-серверу символов с запросом, в котором используется специальный синтаксис пути к символам, как в отладчике. Например,
следующий путь к символам заставляет средства отладки загружать требуемые символы с Интернет-сервера символов и сохранять локальную копию в папке c: symbols:
srv*c: symbols* http://msdl.microsoft.com/downloacl/symbols
Подробные инструкции о том, как пользоваться сервером символов, см. в справочном файле Debugging Tools или на Web-странице wwwmicrosoft. com/whdc/ddk/debugging/symbols.mspx.
Windows Debugging Tools
Пакет Windows Debugging Tools содержит дополнительные средства отладки, применяемые в этой книге для исследования внутреннего устройства Windows. Вы найдете их последние версии по ссылке www.microsoft.com/ whdc/ddk/debugging. Эти средства можно использовать для отладки как процессов пользовательского режима, так и ядра (см. следующую врезку).
ПРИМЕЧАНИЕ Windows Debugging Tools регулярно обновляются и выпускаются независимо от версий операционной системы Windows, поэтому почаще проверяйте наличие новых версий отладочных средств.
Отладка в пользовательском режиме
Средства отладки можно подключать к процессу пользовательского режима, чтобы исследовать и/или изменять память процесса. Существует два варианта подключения к процессу:
• Invasive (инвазивный) Если не указано иное, то, когда вы подключаетесь к выполняемому процессу, Windows-функция DebugAc-tiveProcess устанавливает соединение между отладчиком и отлаживаемым процессом. Это позволяет изучать и/или изменять память процесса, устанавливать точки прерывания (breakpoints) и выполнять другие отладочные действия. B Windows 2000 при завершении отладчика закрывается и отлаживаемый процесс. Однако в Windows XP отладчик можно отключать, не уничтожая целевой процесс.
• Noninvasive (неинвазивный) B этом случае отладчик просто открывает процесс через функцию OpenProcess. Он не подключается к процессу как отладчик Это позволяет изучать и/или изменять память целевого процесса, но не дает возможности устанавливать точки прерывания. Преимущество данного варианта в том, что в Windows 2000 можно закрыть отладчик, не завершая целевой процесс.
C помощью отладочных средств также можно открывать файлы дампов процессов пользовательского режима. Что представляют собой эти файлы, поясняется в главе 3 в разделе по диспетчеризации исключений.
Microsoft предлагает отладчики ядра в двух версиях: командной строки (Kd.exe) и с графическим пользовательским интерфейсом pindbg.exe). Оба инструмента предоставляют одинаковый набор команд, так что выбор конкретной утилиты определяется сугубо личными пристрастиями. C помощью этих средств вы можете вести отладку ядра в трех режимах.
• Откройте файл дампа, полученный в результате краха системы с Windows (подробнее о таких дампах см. главу 14).
• Подключитесь к работающей системе и изучите ее состояние (или поставьте точки прерывания, если вы отлаживаете код драйвера устройства). Эта операция требует двух компьютеров – целевого и управляющего. Целевой считается отлаживаемая система, а управляющей – та, в которой выполняется отладчик. Целевая система может быть либо локальной (соединенной с управляющей нуль-модемным кабелем или по IEEE 1394), либо удаленной (соединенной по модему). Вы должны загрузить целевую систему со спецификатором /DEBUG, или нажать при загрузке клавишу F8 и выбрать Debug Mode, или добавить соответствующую запись в файл Boot.ini.
• B случае Windows XP и Windows Server 2003 подключитесь к локальной системе и изучите ее состояние. Это называется локальной отладкой ядра. Чтобы инициировать такую отладку ядра, выберите в меню FiIe команду Kernel Debug, перейдите на вкладку Local и щелкните ОК. Пример окна с выводом показан на рис. 1–7. Некоторые команды отладчика ядра в этом режиме не работают (например, просмотр стеков ядра и создание дампа памяти командой. dump невозможны). Однако вы можете пользоваться бесплатной утилитой LiveKd с сайта wwwsysinternals.com в тех случаях, когда родные средства локальной отладки не срабатывают (см. следующий раздел).
Подключившись в режиме отладки ядра, вы можете использовать одну из многих команд расширения отладчика (команды, которые начинаются с «!») для вывода содержимого внутренних структур данных, например потоков, процессов, пакетов запроса на ввод-вывод и информации, связанной с управлением памятью. Команды отладчика ядра и их вывод будут обсуждаться при рассмотрении соответствующей тематики. A пока добавим, что команда dt (display type) может форматировать свыше 400 структур ядра благодаря тому, что файлы символов ядра для Windows 2000 Service Pack 3, Windows XP и Windows Server 2003 содержат информацию о типах, которая и позволяет отладчику форматировать структуры.
ЭКСПЕРИМЕНТ: отображение информации о типах для структур ядра
Чтобы вывести список структур ядра, чья информация о типах включена в символы ядра, наберите dt nt!_* в отладчике ядра. Пример части вывода показан ниже:
Команда dt позволяет искать конкретные структуры по шаблонам. Например, если вы ищете имя структуры для объекта прерывания (interrupt object), введите dt nt!*interrupt*:
Заметьте, что по умолчанию dt не показывает подструктуры (структуры внутри структур). Для рекурсивного прохода по подструктурам, используйте ключ – r. Например, указав этот ключ для отображения объекта ядра «прерывание», вы увидите формат структуры _LIST_ENTRY, хранящейся в поле InterruptListEntry:
B справочном файле Windows Debugging Tools объясняется, как устанавливать и использовать отладчики ядра. Дополнительные сведения о применении отладчиков ядра, предназначенных в основном разработчикам драйверов устройств, см. в документации Windows DDK. Есть также несколько полезных статей в Knowledge Base по отладчикам ядра. Выполните поиск по ключевому слову «debugref» в Windows Knowledge Base (онлайновой базе данных технических статей) на supportmicrosoft.com.
Утилита LiveKd
LiveKd – бесплатная утилита, которая позволяет использовать стандартные отладчики ядра от Microsoft на «живой» системе – без подключения второго компьютера. Если встроенная поддержка локальной отладки ядра действует только в Windows XP и Windows Server 2003, то LiveKd обеспечивает такую отладку в Windows NT 4.0, Windows 2000, Windows XP и Windows Server 2003.
LiveKd запускается точно так же, как Windbg или Kd. Эта утилита передает любые указанные параметры командной строки выбранному вами отладчику. По умолчанию LiveKd запускает отладчик Kd. Для запуска GUI-отладчика (Windbg), задайте ключ – w. Чтобы получить подсказку по ключам Live-Kd, укажите ключ —?.
LiveKd предоставляет отладчику смоделированный файл аварийного дампа (crash dump), поэтому вы можете выполнять в LiveKd любые операции, поддерживаемые для аварийных дампов. Поскольку LiveKd хранит смоделированный дамп в физической памяти, отладчик ядра может попасть в такую ситуацию, в которой структуры данных находятся в рассогласованном состоянии в процессе их изменения системой. При каждом запуске отладчик получает снимок состояния системы; если вы хотите обновить этот снимок, выйдите из отладчика (командой q), и LiveKd спросит вас, нужно ли начать сначала. Если отладчик, выводя информацию на экран, вошел в цикл, нажмите клавиши Ctrl+C, чтобы прервать вывод, выйдите из отладчика и запустите его снова. Если он завис, нажмите клавиши Ctrl+Break, которые заставят завершить процесс отладчика. После этого вам будет предложено снова запустить отладчик.
SoftlCE
Еще один инструмент, не требующий двух машин для прямой отладки ядра, – SoftICE, который можно приобрести у Compuware NuMega (wwtv.com– puware.com). SoftICE обладает во многом теми же возможностями, что и Windows Debugging Tools, но поддерживает переход между кодом пользовательского режима и режима ядра. Он также поддерживает DLL-модули расширения ядра Microsoft, поэтому большинство команд, описываемых нами в книге, будут работать и в SoftICE. Ha рис. 1–8 показан пользовательский интерфейс SoftICE, появляющийся при нажатии клавиши активизации SoftICE (по умолчанию – Ctrl+D); этот интерфейс представляет собой окно на рабочем столе системы, в которой он выполняется.
Platform Software Development Kit (SDK)
Platform SDK является частью подписки на MSDN уровня Professional и выше; кроме того, его можно бесплатно скачать с msdn.microsoft.com. B нем содержатся документация, заголовочные файлы и библиотеки С, необходимые для компиляции и компоновки Windows-приложений. (Microsoft Visual C++ тоже поставляется с этими файлами, но их версии в Platform SDK всегда более новые и соответствуют самым последним версиям операционных систем Windows.) B Platform SDK для нас будут представлять интерес заголовочные файлы Windows API (Program FilesMicrosoft SDKInclude) и несколько утилит (Pfmon.exe, Pstat.exe, Pview.exe, Vadump.exe и Winobj.exe). Некоторые из них также поставляются с Ресурсами Windows и Support Tools. Наконец, отдельные утилиты поставляются с Platform SDK и MSDN Library как примеры исходного кода.
Device Driver Kit (DDK)
Windows DDK является частью подписки на MSDN уровня Professional и выше, но в отличие от Platform SDK его нельзя скачать бесплатно (впрочем, можно заказать CD-ROM за минимальную цену). Документация Windows DDK включается в MSDN Library.
Хотя DDK нацелен на разработчиков драйверов устройств, он представляет собой богатый источник информации о внутреннем устройстве Windows. Например, в главе 9 мы даем описание архитектуры подсистемы ввода-вывода, модели драйверов и структур данных базовых драйверов устройств, но не вдаемся в детали соответствующих функций ядра. A в документации Windows DDK исчерпывающе описаны все внутрисистемные функции и драйверы устройств.
Кроме документации в DDK входят заголовочные файлы, определяющие ключевые внутренние структуры данных, константы и интерфейсы многих внутрисистемных подпрограмм (в частности, обратите внимание на файлы Ntddk.h и Wdm.h). Эти файлы очень полезны в исследовании внутренних структур данных Windows с помощью отладчика ядра, так как мы даем лишь обобщенное описание внутренних структур, а в заголовочных файлах можно найти все подробности о каждом поле таких структур. B DDK также детально поясняются некоторые структуры данных (вроде заголовков для диспетчера объектов, блоки ожидания, события, мутанты, семафоры и др.).
Поэтому, если вы хотите поглубже покопаться в подсистеме ввода-вывода и в модели драйверов, читайте документацию DDK (особенно руководства Kernel-Mode Driver Architecture Design Guide и Reference). Еще один превосходный источник – книга Уолта Они (Walt Oney) «Programming the Microsoft Windows Driver Model, Second Edition» (Microsoft Press).
Утилиты Sysinternals
Bo многих экспериментах мы используем свободно распространяемые утилиты, которые можно скачать с wwwjsysinternals.com. Большинство этих ути-
лит написано Марком Руссиновичем, соавтором этой книги. K наиболее популярным утилитам относятся Process Explorer, Filemon и Regmon. Многие из этих утилит требуют установки и запуска драйверов устройств, работающих в режиме ядра, а значит, вам понадобятся полномочия администратора.
Резюме
B этой главе вы познакомились с ключевыми техническими концепциями и терминами Windows, которые будут использоваться во всей книге. Вы также получили первое представление о многих полезных инструментах, позволяющих изучать внутренние структуры данных Windows. Теперь вы готовы вместе с нами приступить к исследованию внутреннего устройства системы. Мы начнем с общего обзора архитектуры системы и ее основных компонентов.