355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Лев Бобров » В поисках чуда (с илл.) » Текст книги (страница 5)
В поисках чуда (с илл.)
  • Текст добавлен: 9 октября 2016, 22:46

Текст книги "В поисках чуда (с илл.)"


Автор книги: Лев Бобров



сообщить о нарушении

Текущая страница: 5 (всего у книги 25 страниц)

Остановись, мгновенье!

Воспламенение… Сколько отрадных и сколько тягостных воспоминаний связано у ракетчиков с этим красивым и таким капризным явлением! В одних случаях пламя – незваный и опасный гость (например, при хранении органического горючего. Применяют даже специальные антиокислители). В других – желанная и нужная вещь (при запуске двигателя, например. Готовят даже специальные самовоспламеняющиеся смеси). Но во всех случаях одинаково необходимо предвидеть, когда, при каких условиях следует ожидать появления этого врага или друга. Если старт задержится на каких-нибудь десять секунд, отклонение ракеты от намеченной, например на Луне, мишени составит целых 200 километров.

Разрабатывая теорию теплового взрыва, Семенов вывел формулу, которая связывает давление с температурой воспламенения. По ней можно определить температуру, при которой смесь взорвется. И рассчитать, как изменится эта температура при другом давлении. «Чтобы знать все о явлениях горения, – писал ученый, – мы должны только знать, как выделяется тепло в результате реакции и как это тепло обратно воздействует на реакцию. Если известна кинетика реакции, то мы можем предвычислить условия воспламенения и скорости горения».

«Если известна кинетика реакций…» Это значит необходимо проникнуть в тонкие тонкости межатомного воздействия, познать его электронный механизм, его энергетику, его скорости.

Теоретическая беспомощность всегда порождала бескрылую эмпирику. Не зная закулисных пружин, направляющих химическое действо в ту или иную сторону, пионеры ракетостроения брели ощупью, вслепую, нередко приходя к ложному выводу. Сколько раз взрывались у них двигатели – и на стендах и в полете! Шли насмарку многолетние усилия многочисленных коллективов. Новые идеи словно озарили собою исследовательскую тропу, рассеяли сумрак неуверенных блужданий, позволили наметить дальние маршруты.

Если в помещение просочился водород, то достаточно малейшей искорки – и может произойти взрыв.

Пламя, распространяясь концентрически от места вспышки, вмиг охватит весь объем смеси.

Мгновенье можно остановить, заковав взрыв в безопасный панцирь. Прозрачная трубка заполняется газообразным топливом. Если поджег смесь с одного конца, граница огня (фронт пламени) побежит внутри трубки вдоль ее оси. Скорость этого движения легко измерить с помощью стробоскопической съемки.

Чем же интересны подобные эксперименты?

«Современный ракетный двигатель – сложный агрегат. Однако, отвлекаясь от конструктивных деталей, можно рассматривать камеру сгорания ракетного двигателя как цилиндрическую трубу, – к такому упрощению, типичному для исследовательской процедуры, прибегают советские ученые Ю. Н. Денисов,

Я. К. Трошин, К. И. Щелкин в одной из своих работ. – Для совершенствования камер ракетных двигателей важно знать условия и механизм сгорания топлива в них». Обратите внимание: не только условия, но и механизм!

Упомянутая выше статья называется так: «Об аналогии между горением в детонационной волне и в ракетном двигателе».

При нормальном, медленном горении фронт пламени перемещается по отношению к газовой среде не так уж быстро – на несколько сантиметров или метров за секунду. Зато при детонации скорость сверхзвуковая – от полутора до трех с половиной километров в секунду, как и у газов, вырывающихся из ракетного сопла.

Долгое время бытовало мнение, будто в отличие от медленного горения детонация ни в коей мере не связана причинно с химической кинетикой.

Работами советских ученых внесены существенные коррективы в это представление.

Школа огнепоклонников

Пусть, например, нормальная детонирующая смесь попала в чрезвычайно узкую трубку. Пламя, которое в свободном, незамкнутом пространстве стремглав обегало весь объем, вызывая громоподобное «бах!», теперь лениво, еле-еле распространяется вдоль канала. И даже совсем останавливается, гаснет. Почему?

Да потому, что оно остывает из-за тепловых потерь на стенках. А это уменьшает скорость химической реакции – опять же кинетическую величину!

Инертные добавки также могут погасить детонацию. А инициирующие, напротив, возбудить ее.

Еще в 1934–1938 годах советский ученый А. С. Соколик подметил любопытную закономерность. Если к смеси окиси углерода с кислородом добавить немного, буквально ничтожную порцию водорода, то термодинамические свойства системы останутся теми же самыми, а кинетические изменятся – и довольно резко. Иными словами, скорость химической реакции горения станет другой. Ну так что же? Повлияло это на скорость детонации? Практически нет. Но зато смесь совершенно неожиданно приобрела новые свойства. Теперь она взрывается в более широком диапазоне концентраций. Сама способность детонировать обусловлена кинетическими факторами! И это еще не все.

Раньше думали, будто качественная и количественная разница между горением нормальным, которое полностью определяется кинетикой процесса, и детонационным, которое от нее не зависит (почти не зависит!), огромная. Взять хотя бы быстроту распространения того и другого – разрыв здесь прямо-таки колоссален.

В 1939 году К. И. Щелкин, ныне член-корреспондент Академии наук СССР, обнаружил, что этой «непроходимой пропасти» вовсе не существует.

Оказывается, пламя способно бежать с промежуточными скоростями. Более того, медленное горение при некоторых условиях может самочинно разгоняться и переходить в детонационное! Например, при наличии турбулентности, которую легко организовать, если, скажем, сделать стенки трубы или камеры негладкими, а шероховатыми. Щелкину удалось на опыте изменять даже такую вроде бы незыблемую константу, как скорость детонации.

Турбулентное, вихревое; бурное горение особенно интересно с точки зрения (ракетчиков: именно в таком режиме работает двигатель. Стремительно несущийся газовый поток тормозится малейшим выступом камеры сгорания или сопла. Пламя цепляется за препятствия, удерживается около них. Между тем в пламени-то как раз и протекает химическая реакция горения! Как обеспечить топливу максимальную полноту сгорания при минимальных размерах камеры и тепловых напряжениях?

Решение задачи основано на теории турбулентного горения, созданной К. И. Щелкиным, Д. А. Франк-Каменецким и Е. М. Минским. Советские ученые не только использовали шероховатости, но и ставили на пути огненного потока специальные экраны, смотрели, как дополнительные завихрения влияют на эффективность горения.

Эти поиски вскоре нашли многочисленных продолжателей и дали богатые всходы. Благодаря им достигла своего расцвета реактивная авиация, а ракетная техника взяла стремительный разбег.

В 1965 году Я. К. Трошин (Институт химической физики АН СССР), Б. В. Войцеховский и Р. И. Солоухин (Институт гидродинамики Сибирского отделения АН СССР) за цикл работ по газовой детонации удостоены Ленинской премии. И это лишь один из многих примеров, иллюстрирующих судьбу научной эстафеты, принятой у ветеранов-огнепоклонников новым поколением исследователей.

Хрупкая колба с фосфорными парами, взорвавшая канонизированные догмы в химической кинетике…

Грубая паяльная лампа, превращенная Цандером в первый опытный реактивный мотор. Как далеки они и как близки! «Отвлеченное теоретизирование» ученых и предметные поиски инженеров слились в единый поток, выплеснувшийся жаркими огнедышащими струями из дюз могучих космических ракет.

Концепции семеновского направления сыграли огромную роль в той революции, которая преобразила химию, поставив ее на твердый электронно-квантовый фундамент.

Впитав живительные соки атомной физики, учение Семенова вернуло ей долг «с процентами». Оно предвосхитило кардинальнейшую идею, которая легла впоследствии в основу ядерной энергетики. В самом деле: советские исследователи еще в начале 30-х годов установили, что самовоспламенение бывает двух, и только двух, типов – тепловое и цепное. Когда через много лет мир узнал о ядерных взрывах, оказалось, что они, по существу, имеют те же две разновидности! В водородной бомбе для слияния легких элементов нужно их сильное разогревание. В атомной оно ни к чему, хотя энергетические характеристики частиц (нейтронов) и здесь имеют свое значение.

Главное же – деление тяжелых элементов происходит по схеме разветвленной цепи, причем нейтроны, как и радикалы, способны утрачивать свою активность, правда, не на стенках сосуда, а на поглощающих стержнях. Впрочем, если ввести в колбу с горючей (например, водородно-кислородной) смесью металлические или иные палочки, то химические цепи также будут обрываться на их поверхности. Что касается атомного котла, то в нем тоже наблюдаются типичные предельные явления – критические концентрации и размеры. Формальная аналогия?

Нет, химическая теория горения и взрывов не была случайным двойником ядерно-физических построений; она подготовила для них почву. И неспроста именно Зельдович и Харитон, представители славной семеновской когорты, еще в 1939–1941 годах одними из первых нарисовали количественную кинетическую картину цепного ядерного распада…

Как видно, химическая физика имеет прямое отношение к ракетному двигателю и к ядерному реактору – во всяком случае, к протекающим в них процессам. И вообще работы Н. Н. Семенова, его сподвижников и учеников охватывают собой, своими приложениями, почти все фундаментальные разделы химии – неорганической, органической, биологической. Пожалуй, ни один другой химический институт в мире не имеет столь широкой, столь разносторонней проблематики, как тот, которым руководит академик Семенов. Но вся деятельность большого коллектива пронизана единой направляющей мыслью.

«Когда о нашем Институте химической физики говорят, что мы занимаемся полимерами, биохимией, ионосферой, это неверно, – разъясняет Николай Николаевич. – Мы занимаемся кинетикой полимеризации, кинетикой биохимических процессов или кинетикой реакций в ионосфере».

Радикалы. Реакции. Рак

Термин «кинетика» заимствован из древнегреческого языка; его корень, как и в слове «кино», означает «движение». И действительно: мы все время говорили о ходе процесса, о его стремительном или, наоборот, сонном развитии.

При длительном, пусть даже бережном, хранении на воздухе портятся пищевые жиры, смазочные масла, пластики, топлива. Как затормозить их окисление и разрушение?

В химическом производстве нередко приходится иметь дело тоже с окислением и разрушением углеводородов. Здесь, напротив, те же процессы требуется максимально ускорить.

Ясно, насколько важно умение управлять химической реакцией вообще и окислительной в частности.

А чтобы управлять, надо познать ее кинетику, тонкости ее развития во времени, по отдельным периодам, ее электронную суть – короче, как выражаются специалисты, ее «химизм».

Еще в 1897 году выдающийся наш ученый и революционер Алексей Николаевич Бах, основатель советской биохимии, которого причисляет к своим учителям и Н. Н. Семенов, сформулировал теорию медленного окисления, где главенствующую роль отводил активным промежуточным продуктам – перекисям.

Знамя Баха подхватила семеновская школа.

В начале 40-х годов в стихию окислительных процессов с головой погрузился молодой ученик Н. Н. Семенова Николай Эмануэль. В качестве объекта своих исследований он взял сравнительно несложные вещества – сероводород, пропан, ацетальдегид. С кислородом они взаимодействовали, находясь в газообразном состоянии, что удобнее для наблюдения, чем если бы они были жидкими. Однако при всей подкупающей простоте выбранных соединений и условий опыта химические метаморфозы, которые разглядел Эмануэль с помощью остроумных экспериментальных приемов, оказались далеко не бесхитростными.

Превращение действительно шло с образованием гидроперекисей. Но сколько тут выявилось тонкостей!

Исследуя медленное (не взрывное) окисление сероводорода, Эмануэль обнаружил свободные радикалы моноокиси серы – те самые, что поддерживают цепной процесс. На сей раз эти активные обломки молекул были «пойманы» не в огне, не при взрыве, а среди промежуточных продуктов спокойно текущей реакции. Долгожданная находка! Она подтвердила семеновскую теорию вырожденных взрывов.

С 1951 года Николай Маркович обратился к аналогичным явлениям в жидкой среде – там они гораздо сложнее. Тем не менее и тут он встретил знакомую картину, по крайней мере в некоторых ее фрагментах. Те же гидроперекиси и иные промежуточные образования, те же радикалы и цепи. И конечно же, всякий раз свои, специфические детали.

Обнаружив общие закономерности и частные особенности обоих методов, Эмануэль объяснил, почему в конденсированном состоянии многие органические вещества легче подвергаются нужной перестройке, причем более глубокой, нежели в газообразном.

Исходя из этого он предложил интенсифицировать некоторые технологические режимы повышением давления: оно не позволит летучим компонентам полностью испариться при нагревании. Прогрессивные схемы, разработанные в лаборатории Эмануэля, были внедрены в производство. Они увеличили выпуск продукции, улучшили ее качество.

«Топить можно и ассигнациями», – укорял Менделеев тех, кто, сжигая нефть ради получения тепла, не видел и не искал для нее иного, несравненно более важного применения. Но чтобы использовать ее как источник драгоценного сырья, нужно было знать, каким превращениям и при каких условиях способны подвергаться ее углеводороды, в первую очередь предельные, насыщенные – они чрезвычайно неохотно, туго поддаются химическому воздействию, а их-то как раз и больше всего в черном земном золоте.

Заслуга Эмануэля именно в том и заключается, что он, изучив до тонкостей окисление органических соединений, наметил новые пути нефтепереработки.

В 1958 году за исследования свойств и особенностей цепных реакций Н. М. Эмануэлю присуждена Ленинская премия. Излишне добавлять, что ученый не был одинок в своих исканиях. Он сплотил вокруг себя большой отряд единомышленников. Да и не только в Институте химической физики ведутся подобные исследования. Тогда же высшего государственного признания удостоились работы другого крупного ученого – профессора Горьковского университета Григория Алексеевича Разуваева, ныне академика.

Они посвящены близкой теме – химии свободных радикалов в растворах.

Расшифровка конкретных кинетических механизмов дала возможность эффективно использовать испытанные химические регуляторы. Например, катализ. Своими огромными достижениями наша химическая промышленность в значительной степени обязана буквально повсеместной эксплуатации и непрерывной модернизации парка замечательных «машин» – микроминиатюрных атомных и молекулярных комплексов, убыстряющих взаимодействие в тысячи и миллионы раз. Темп превращений продолжает расти.

«Сегодня химические процессы отнимают дни и часы, завтра они будут совершаться со скоростью взрыва», – мечтают ученые.

Ну, а как быть с реакциями, которые надо, наоборот, подавлять? Для них предназначены специальные замедлители – ингибиторы. В теорию и практику такого отрицательного (как, впрочем, и положительного) катализа немалый вклад внесен Эмануэлем и его группой. Подсказаны способы, как лучше всего предотвратить самопроизвольное зарождение радикалов, дезактивировать, если они уже появились; осторожно, будто бомбу, обезвредить гидроперекиси или иные потенциальные детонаторы цепных реакций. Основные наблюдения и мысли, изложенные сотрудниками лаборатории в десятках статей, сконденсированы в монографии Н. М. Эмануэля и Ю. Н. Лясковской «Торможение процессов окисления жиров». Обобщения, сделанные авторами, распространяются также и на другие углеводороды.

В последние годы эти идеи нашли новое и, пожалуй, несколько неожиданное приложение.

Известно, что в Хиросиме и Нагасаки, подвергшихся атомной бомбардировке, процент пораженных лейкемией выше, чем в прочих японских городах.

А заболевания раком кожи чаще встречаются у обитателей солнечных районов. Одна из гипотез утверждает, что страшный недуг вызывают свободные радикалы, которые, несомненно, возникают в живых клетках под влиянием сильной ультрафиолетовой, рентгеновской и гамма-радиации. Или химических возбудителей – канцерогенных веществ.

Активные обломки молекул, появившись в клетке, бросаются в атаку на белки, нуклеиновые кислоты, ферменты. Они повреждают и витамины, которые служат в организме антиокислителями.

В лаборатории, руководимой академиком Н. М. Эмануэлем, проведены захватывающие опыты.

Мышам искусственно прививали злокачественную опухоль. Течение болезни контролировалось по скорости, с какой разрастается в таких случаях селезенка. Измеренные значения легли точками на систему координат. Проведенные по ним линии, плавно изгибаясь, круто взбегали вверх. Но, что самое удивительное, они как две капли воды были похожи на графики, изображающие ход цепной реакции!

Тогда некоторым хвостатым пациентам перед заражением впрыснули антиокислители. После инъекции кривые продолжали подчиняться тому же закону, но шли более полого, нежели для зверьков, которым не вводили ингибирующие препараты. Опухоль прогрессировала медленнее. Рак подавлялся отрицательными катализаторами!

Великий триумвират физики, химии и биологии приблизит недалекую уже пору, когда люди будут навсегда избавлены от зловещего призрака смерти, витающего над планетой.

Капля – частица океана

Ракетный двигатель и ядерный реактор, взрывчатка вместо землеройных машин и консервирующие вещества, заводской аппарат и живой организм – поистине необъятен диапазон, в каком идеи химической физики проявили себя плодотворными.

Они вошли в плоть и кровь почти всех современных естественных дисциплин. Вслед за первыми бороздами, проложенными на той неподнятой целине

Н. Н. Семеновым, началась глубокая вспашка, уничтожившая былые межи. В ней приняли участие и другие ведущие научные школы – катализа, электрохимии, фотохимии, квантовой химии, химии полимеров, биохимии. Среди их представителей Н. Н. Семенов в одном из своих отчетов называл академиков Н. Д. Зелинского, А. А. Баландина, С. 3. Рогинского, Н. И. Кобозева, А. Н. Фрумкина, А. Н. Теренина, В. Н. Кондратьева, Я. К. Сыркина, С. С. Медведева, В. А. Энгельгардта… Ученый, безусловно, привел далеко не всё имена, да и, пожалуй, не смог бы привести – список этот нескончаем и непрерывно удлиняется.

Любое намерение детально рассмотреть всю грандиозную многоплановую панораму советской химии заведомо обречено на неудачу. Бегло скользящему глазу доступны лишь отдельные ее фрагменты.

Можно было бы рассказать о том, как у нас в Союзе Советов раньше чем где-либо на всей планете родилась промышленность искусственного каучука. Родилась вопреки скептическим прогнозам авторитетных зарубежных оракулов. Так, великий Эдисон заявлял: «Я не верю, что в Советском Союзе удалось изготовить синтетический каучук. Из собственных моих опытов и опытов других ясно, что его получение едва ли осуществимо вообще, а уж тем более в России». Но то, что казалось чудом живому воплощению американского изобретательского гения, свершилось благодаря усилиям советских людей, прежде всего академика Сергея Васильевича Лебедева и его сподвижников.

Можно было бы добавить, как еще в 30-е годы молодой ученый К. А. Андрианов, бывший деревенский паренек, начал разрабатывать методы синтеза кремнийорганических полимеров. Он был уверен в их большом будущем, хотя крупнейший специалист по силиконам, профессор Ноттингемского университета Ф. Киппинг, считал: «Так как количество известных кремнийорганических соединений невелико и они весьма ограниченны в своих реакциях, перспективы каких-либо быстрых и серьезных успехов в этой области не являются обнадеживающими». Киппинг оказался прав только в одном: успехи действительно пришли не скоро и не легко, но в их серьезности, в их значительности ныне уже никто не сомневается.

В 1963 году имя академика Кузьмы Андриановича Андрианова появилось в списке лауреатов Ленинской премии.

Можно было бы перейти к более широкой теме – к проблеме элементоорганических соединений, к работам академика А. Н. Несмеянова, удостоенным в 1966 году Ленинской премии. И безусловно, упомянуть, что недавно в Институте элементоорганических соединений, которым руководит Александр Николаевич, научились делать искусственную черную икру.

Можно было бы… Увы, обо всем не расскажешь.

Остается надеяться, что блицразговор о химической физике окажется той каплей, по которой можно судить о целом океане – о советской химии.

«Прогресс современной физики и химии ведет к тому, что каждое вещество может быть получено из любого другого – была бы энергия и какое-то количество исходного материала», – заявил академик Евгений Константинович Федоров.

Да, не только сырье, но и энергия. Мы еще ничего не говорили об энергии, а ведь без нее нет ни вещества, ни его превращений. Между тем в XX веке энергетика переживает подлинную революцию.

Этот переворот начался покорением атома.


    Ваша оценка произведения:

Популярные книги за неделю