Текст книги "Чарльз Бэбидж (1791—1871)"
Автор книги: Л. Майстров
Соавторы: Ида Эдлин,Игорь Апокин
Жанр:
Биографии и мемуары
сообщить о нарушении
Текущая страница: 3 (всего у книги 10 страниц)
Глава третья
Разностная машина Бэбиджа
Исходные положения для разработки разностной машины
В начале работы над вычислительными машинами большое впечатление на Бэбиджа произвело, как организовал работу при составлении таблиц французский ученый Г. Прони (1755—1839).
Французское правительство в связи с введением метрической системы в измерение длин, весов и т. п. стремилось внедрить принцип десятичности в самые различные области, в частности, была сделана попытка ввести деление окружности не на 360°, а на 400 частей, т. е. каждый квадрант делить не на 90°, а на 100 частей, а каждую сотую цасть квадранта – не на 60, а также на 100 частей. Для такой перестройки требовалось пересчитать громадное число таблиц, в основном, тригонометрических и связанных с ними логарифмических. Кроме того, для перехода на метрическую систему нужно было составить много вспомогательных таблиц.
Правительство Франции поставило перед математиками задачу подготовить необходимые таблицы на высоком научном уровне и в достаточно короткие сроки. Руководить сложными и трудоемкими расчетами было поручено Г. Прони. Он относился к прогрессивно мыслящим ученым, считал необходимым сближение естественных наук с практикой, выступал с критикой «кабинетных ученых». Прони был в числе первых преподавателей Парижской Политехнической школы и вел там занятия с конца' 1794 г. Труды Прони по прикладной механике содействовали улучшению постановки научных исследований в стенах Политехнической школы и высокому уровню работ ее выпускников. Его собственные работы способствовали развитию так называемого «индустриального» направления в механике.
В дальнейшем Прони активно участвовал в работах по введению метрической системы мер. В 1795 г. он был назначен одним из двенадцати комиссаров, на которых возлагалась вся работа по подготовке и введению метрической системы. В число комиссаров входили такие известные ученые, как Лагранж, Лаплас, Монж и др. Кроме того, Прони был членом Бюро долгов. Его подпись стоит под такими документами как «Протокол о сравнении метров» (26 июня 1806 г.), «Протокол о сравнении килограммов» и «Окончательный метр» (8 января 1805 г.) и др. [100].
Вспоминая начало работы над таблицами, Прони отмечал: «Я отдался этому со всем жаром, на который был способен, и занимался вначале общим планом работ. При любых условиях я хотел обязательно использовать большое число вычислителей, и мне скоро пришло на ум применить при создании этих таблиц разделение труда, которое в промышленности достигло больших высот благодаря сочетанию удачного использования рабочей силы о экономией затрат и времени» (цит. по: [85, с. 316]).
Прони с самого начала понял, что для составления таблиц прежними методами с помощью нескольких сотрудников ему не хватит жизни.
Однажды в одной из книжйых Лавок он увидел прекрасное издание работы Адама Смита (1723—1790) «Исследование о природе и причинах богатства народов». Смит, рассматривая мануфактуру как типичную форму предприятия, приписывал решающую роль в развитии производительных сил мануфактурному разделению труда. Именно это поразило Прони в книге Смита. Тут же в лавке Прони раскрыл книгу и начал ее читать. В первой же главе обсуждался вопрос о разделении труда и в качестве примера приводилось производство булавок. Прони, не отрываясь, прочитал первые параграфы этой работы и задумался над тем, как использовать разделение труда для расчета новых логарифмических таблиц.
В это время Прони читал в Политехнической школе лекции по анализу, в частности разделы, связанные с интерполяцией. Он хотел уяснить для себя, как применить в расчетах разделение труда и как при этом использовать интерполяционные методы. Чтобы побыть наедине и привести в порядок все возникшие соображения, Прони на несколько дней уехал в деревню. В Париж он возвратился с отчетливыми планами и идеями, которые начал немедленно воплощать в жизнь. Все, что он делал, – необычно, и его деятельность произвела глубокое впечатление на научные круги Парижа.
В то время в Париже были две вычислительные мастерские, в которых производили одни и те же расчеты для взаимной проверки. Прони реорганизовал все расчетное дело. Все вычислители из двух мастерских, к которым он прибавил еще ряд нанятых им работников, были разделены на три группы. В первую группу входило пять-шесть крупных математиков, которые исследовали различные аналитические выражения, чтобы подобрать функцию, удобную для числовых расчетов. Естественно, подобранная функция должна была наилучшим образом соответствовать той функции, таблицы которой составлялись. Эта группа фактически не была связана с непосредственной вычислительной работой, и получением необходимых формул ее работа заканчивалась. После этого данные, полученные первой группой направляли во вторую группу.
В нее входило девять-десять лиц, достаточно хорошо владевших математикой. Их задача состояла в преобразовании формул, полученных от первой группы, к виду, удобному для работы с числами. Кроме того, вторая группа вычисляла значение функций для аргументов, отстоящих друг от друга на пять или десять интервалов. Подсчитанные ими значения входили в окончательную таблицу в качестве основных. Работа второй группы требовала хороших математических знаний.
После этого формулы передавали третьей, наиболее многочисленной группе, состоящей, примерно, из ста человек. Сотрудники третьей группы получали от второй вместе с формулами и исходные числа. Используя только сложение и вычитание в той последовательности, в которой это было указано в формулах, передаваемых из второй группы, третья группа получала окончательные числовые результаты. Таков был путь расчета таблиц.
Члены второй группы имели возможность проверить расчеты третьей группы, применяя непреобразованные формулы, т. е. не повторяя работы третьей группы.
Следует отметить, что 90% сотрудников третьей группы не знали математики далее двух первых действий арифметики, но ошибались значительно реже, чем те, кто лучше знал математику и больше понимал существо задачи. Вычислители третьей группы не знали общей задачи, да это им и не было нужно. Умея довольно хорошо складывать и вычитать, они работали совершенно механически.
В основном все таблицы были созданы за два года. Простой перечень главных таблиц дает представление о проделанной работе:
1. Таблица синусов через каждую 1/10000 квадранта, рассчитанная с точностью до 25 знаков.
2. Таблица логарифмов синусов через каждую 1/10000 квадранта, т.е. таблица логарифмов всех чисел предыдущей таблицы с точностью до 14 знаков.
3. Таблица логарифмов отношений синусов к их дугам для первых 5000 значений углов из 10000, на которые разбит квадрант. Эта таблица рассчитана до 14 знаков.
4. Таблица логарифмов тангенсов для 10000 углов, на которые разбивается первый квадрант. Таблица аналогична таблице логарифмов синусов и рассчитана с той же степенью точности.
5. Таблица логарифмов отношений тангенсов к их дугам. Таблица аналогична соответствующей таблице логарифмов отношений синусов к их дугам.
6. Таблица логарифмов чисел от 1 до 10000, рассчитанная до 19 знаков.
7. Таблица логарифмов чисел от 10000 до 200000, рассчитанная с точностью до 14 знаков.
Фундаментальная работа, потребовавшая долгого и напряженного труда большого коллектива, – «Кадастр таблиц», как ее назвал Прони, – никогда не была опубликована. Причин было несколько. Одна из них заключалась в том, что деление окружности на 400 частей, а не на 360° имело существенный недостаток, так как 400 имеет меньше делителей чем 360.
Кроме того, с переходом к метрической системе потребовалось бы наряду с перерасчетом громадного числа таблиц (синусов, косинусов и др.) перепечатать тысячи томов математической литературы. В конечном счете дело ограничилось созданием двух экземпляров таблиц, каждый из семнадцати больших рукописных томов. В дальнейшем отдельные таблицы часто использовались в качестве контрольных. Ими пользовался впоследствии и Бэбидж, который для этой цели ездил в Парижскую обсерваторию, где хранились таблицы.
После окончания работ в Париже по составлению таблиц английское правительство обратилось к французскому с предложением напечатать эти таблицы обеими странами с равным распределением затрат. Хотя это предложение и не завершилось изданием таблиц, но в связи с переговорами по этому поводу в Париже была выпущена небольшая брошюра с описанием процесса вычисления таблиц.
После ознакомления с этой брошюрой Бэбидж решил применить метод Прони при создании своей машины. Точнее говоря, машина должна была заменить третью группу вычислителей, на которую в основном падала вся счетная работа.
В основу работы машины Бэбидж решил положить известное свойство многочленов, состоящее в том, что их конечные разности соответствующих порядков (зависящие от степени многочлена) равны нулю. Машину, работающую на этом принципе, он назвал разностной [1 Впервые идея разностной машины была высказана в 1786 г. немецким военным инженером из Гессена И. Мюллером. Но это было чисто теоретическое предложение, которое никто не пытался осуществить.].
Бэбидж отмечал, что на вопрос о принципе работы машины, он мог бы ответить четырьмя словами: здесь используется метод разностей. При этом он добавлял, что нa этот вопрос можно было бы ответить и шестью знаками: Δn Ux = 0, но такой ответ был бы непонятен спрашивающему, – саркастически замечал он [2 Δn Ux = 0 означает, что для многочлена n—1 степени Ux = а + bx + cx2 + ... + kxn-1 n-е разности равны 0.] [85, с. 51].
Для иллюстрации метода разностей приведем следующий простой пример: табулирование функции у=х3 + х + 1. В таблице 1 наряду со значениями функции у приведены значения конечных разностей: Δ1 (первые разности, или разности первого порядка), Δ2 (вторые разности) и Δ3 (третьи разности). Как видно из таблицы, первые разности получены вычитанием из каждого следующего значения функции ее предшествующего значения. С помощью аналогичной операции над первыми разностями получены вторые разности и т. д. При этом третьи разности данной функции (представляющей собой многочлен третьей степени) имеют одно и то же значение[3 Если функция представляет собой многочлен степени n, то при табулировании с постоянным шагом n-е разности постоянны.]. Далее, легко заметить, что суммируя по диагонали таблицы 1 конечные разности и соответствующее значение функции можно получить следующее значение данной функции. Например, 6+24+62+131=223. Именно это обстоятельство (возможность получения новых значений функции путем суммирования вычисленных ранее данных) Бэбидж решил использовать для механизации процессов составления таблиц с помощью специального устройства (разностной машины).
Таблица 1. Значения функции у = х3 + х + 1 и конечных разностей
X | Y | Конечные разности | ||
Δ1 | Δ2 | Δ3 | ||
0 | 1 | 2 | 6 | 6 |
1 | 3 | 8 | 12 | 6 |
2 | 11 | 20 | 18 | 6 |
3 | 31 | 38 | 24 | 6 |
4 | 69 | 62 | 30 | |
5 | 131 | 92 | ||
6 | 223 |
Разностная машина и ее возможности
В качестве основного элемента разностной машины Бэбидж выбрал зубчатое счетное колесо, применявшееся в цифровых вычислительных устройствах с XVII в. Каждое колесо предназначено для запоминания одного разряда десятичного числа. Поскольку Бэбидж проектировал машину, оперирующую с 18-разрядными числами, регистр (устройство для хранения одного числа) состоял из 18 счетных колес. Количество регистров на единицу больше степени полинома, представляющего вычисляемую функцию (один регистр предназначен для хранения значения функции, другие – для запоминания конечных разностей). Машина, создаваемая Бэбиджем, предназначалась для расчета полиномов шестой степени и соответственно должна была иметь семь регистров.
Для выполнения операции сложения наряду со счетными колесами регистров в машине должны были использоваться зубчатые колеса трех различных конструкций (по три колеса на каждое колесо регистра) и так называемые установочные пальцы на специальных осях [1 Подробное описание конструкции деталей разностной машины на русском языке дано в статье [96].]. Конструктивно вычислительный блок разностей машины представляет собой три ряда вертикально расположенных осей с зубчатыми колесами и установочными пальцами. Первый ряд составляют оси со счетными колесами регистров, второй ряд – оси с зубчатыми колесами для суммирования и третий ряд – оси с установочными пальцами для подготовки к работе колес второго ряда. Диаметр счетного колеса регистра 12,7 см. Вычислительный блок машины должен был иметь 3 м в длину и 1,5 м в ширину. Наряду с вычислительным блоком в состав машины должно было входить печатающее устройство.
На рис. 1 дан внешний вид экспериментальной модели разностной машины. Она содержит три регистра (т. е. предназначена для расчета полиномов второй степени) и может оперировать с 5-разрядными десятичными числами (в каждом регистре – пять счетных колес).
При проектировании разностной машины Бэбидж предложил и частично реализовал ряд интересных технических идей. Так, он разделил выполнение операций переноса десятков при сложении на два такта: подготовительный (выполняется во время операции сложения) и собственно перенос. Это новшество, впоследствии широко применявшееся в механических вычислительных устройствах, позволило существенно снизить нагрузки на рабочие элементы машины. Проектируя связь между вычислительным блоком и печатающим устройством, Бэбидж предусмотрел возможность совмещения во времени процессов вычислений и печатания результатов.
Рис. 1. Разностная машина (1822)
Основное назначение разностной машины Бэбидж видел в составлении таблиц. Машина позволяла также проверять таблицы, составленные ранее. Для этого операции должны были производиться в обратном порядке, т. е. от полинома к конечным разностям. К примеру, если в табл. 2 при х=4 ошибочно рассчитан y (получилось 70 вместо 69), то вместо постоянных конечных разностей Δ3=6 получится массив не равных друг другу разностей, и ошибка может быть легко замечена.
Операция проверки таблиц могла быть выполнена и другим путем. Бэбидж писал: «Если соответствующие числа размещены на выходе машины, и она завершила расчет одной страницы таблицы любого типа, то следует провести сравнение последнего табличного числа страницы с заранее рассчитанными. Если различие существует, то наиболее эффективное решение заключается в пересчете целой страницы, т. е. потере всего лишь нескольких часов работы» [83, с. 125].
В общем случае область применения разностной машины Бэбиджа сводилась к вычислению значений функций вида
y = a + bx + cx2+ ... + mxn-1.
Если требовалось рассчитать сумму сходящегося бесконечного ряда, то брали только первые п членов. При достаточно большом п функция, выраженная рядом, могла воспроизводиться достаточно точно и степень этой точности была известна.
Таблица 2. Значения функции y = x3 + x + 1 и конечных разностей (при ошибочном подсчете x4 = 70)
X | Y | Конечные разности | ||
Δ1 | Δ2 | Δ3 | ||
0 | 1 | 2 | 6 | 6 |
1 | 3 | 8 | 12 | 7 |
2 | И | 20 | 19 | 3 |
3 | 31 | 39 | 22 | 9 |
4 | 70 | 61 | 31 | |
5 | 131 | 92 | ||
6 | 223 |
Таблица 3. Значения функции (способ задания которой требуется определить) и конечных разностей
X | Y | Δ1 | Δ2 |
0 | 2 | 0 | 2 |
1 | 2 | 2 | 4 |
2 | 4 | 6 | б |
3 | 10 | 6 | 6 |
4 | 16 | 12 | 8 |
5 | 28 | 20 | 8 |
6 | 48 | 28 | |
7 | 76 |
Принцип, положенный в основу разностной машины, мог быть использован для расчета, например кубов чисел, логарифмических и тригонометрических таблиц и т. п. При этом во многих случаях приходилось брать большое число разностей, прежде чем достигалось постоянное значение, а это, в свою очередь, означало, что на машине нужно было произвести довольно много действий, чтобы получить табличное значение функции.
Наряду с возможностью табулирования важным свойством машины, как писал Бэбидж, явилась «возможность ее использования, при небольших изменениях в конструкции, для расчета таблиц, чьи аналитические законы неизвестны» [85, с. 299].
Рассмотрим пример: в табл. 3 х представляет номер члена последовательности, а у – его значение. С помощью конечных разностей можно определить формулу задания данной функции целочисленного аргумента, затем ее вычисление продолжить на разностной машине. Бэбидж находит первые и вторые разности функции (см. табл. 3). Затем, анализируя таблицу, он выявляет, что величины вторых разностей, соответствующих последовательным значениям функции, всегда равны единицам этих значений (в таблице 3, во втором и четвертом столбцах, подчеркнуты равные между собой однозначные величины 2, 4, а также единицы двузначных чисел: 0 от 10; 6 от 16; 8 от 28 и т. д., соответственно равные вторым разностям 0, 6, 8 и т. д.).
На разностной машине можно рассчитать таблицу значений этой функции, но чтобы получить, скажем, ее значение при x=50, необходимо рассчитать все предыдущие значения. Бэбидж предлагает другой путь – аналитическое задание функции.
В нескольких работах Бэбидж высказывает мысль о возможности использования разностной машины для расчета функций, не имеющих постоянных разностей. Он пишет, что уже протабулировал некоторые из специальных функций. Среди них, например, функция, в которой третьи разности равны числу единиц первых разностей; может быть также рассчитана таблица, в которой третьи разности постоянны и меньше 1/10000 первых разностей.
Возможности разностной машины были достаточно широки. При использовании некоторых дополнительных несложных узлов машина могла извлекать корни из чисел. Точность результата могла быть тем выше, чем больше было счетных колес в машине, т. е. зависела только от ее конструкции.
Работать над созданием разностной машины Бэбидж начал вскоре после 1812 г. Разработка и постройка механической вычислительной машины представляла в то время сложную проблему. Многое из того, что было необходимо Бэбиджу, не существовало. Он должен был изобретать не только узлы и механизмы, но и в отдельных случаях – средства для их изготовления. Инженерную помощь получить было трудно и дорого, квалифицированных рабочих также было нелегко найти. Проблемой являлось и достижение требуемой точности обработки металла.
В 1819 г. Бэбидж встречается с секретарем Королевского общества Волластоном и обсуждает с ним вопросы, связанные с разностной машиной. Волластон одобрительно отозвался о работе Бэбиджа.
При всех сложностях Бэбидж сумел к 1822 г. построить небольшую действующую разностную машину (см. рис. 1). На этой машине Бэбидж рассчитал, например, таблицу квадратов.
Свои мысли о разностной машине Бэбидж изложил в записке, зачитанной на заседании Астрономического общества 14 июня 1822 г. и затем опубликованной под названием «Замечания о применении машины для расчета математических таблиц» [19]. Сообщение Бэбиджа было встречено с энтузиазмом, были даны самые высокие оценки проделанной работе и пожелания успехов проекту более мощной разностной машины. Впоследствии Бэбидж сделал описание разностной машины в письме к Д. Брюстеру, которое затем было опубликовано в,виде статьи под названием «О теоретических принципах машин для расчета таблиц» [21].
После окончания первой разностной машины Бэбидж был полон энтузиазма. Он считал, что основные трудности уже преодолены, и поэтому его дальнейшие планы были достаточно оптимистичны.
Судьба разностной машины. Исследования Бэбиджа в различных областях знания
В 1822 г. Бэбидж обратился к президенту Королевского общества Дэви с письмом, в котором предлагал построить разностную машину значительно больших размеров, чем предыдущая, для расчета, в первую очередь, астрономических и навигационных таблиц. В своем письме, в частности, он упомянул о причинах, которые побудили его к работё над созданием вычислительных машин. «Невыносимая монотонная работа и усталость при непрерывном повторении простых арифметических действий сначала вызвали желание, а затем подсказали идею машины, которая с помощью силы тяжести или любой другой движущей силы должна была заменить человека в выполнении одной из самых медленных операций его ума» [85, с. 298]. Далее он пишет: «Буду ли я заниматься в дальнейшем конструированием разностной машины больших размеров, в значительной степени зависит от характера той поддержки, которую мне удастся получить. . . Я не сомневаюсь в успехе этой работы, однако этот успех не может быть достигнут без очень больших финансовых затрат» [85, с. 305]. Конин этого письма Бэбидж послал многим влиятельным знакомым.
Бэбидж обратился за помощью и в Королевское общество и в Астрономическое. Оба общества с энтузиазмом отозвались о новом проекте Бэбиджа. При содействии Королевского общества, которое официально подтвердило практическую осуществимость схемы машины, в 1823 г. между Бэбиджем и канцлером казначейства было заключено довольно расплывчатое соглашение, по которому правительство предоставляло деньги для работы над машиной и помощь в необходимых материалах, а Бэбидж обязан был через три года окончить разработку машины. В том же 1823 году Бэбидж приступил к работе над новой машиной.
Бэбидж считал, что на ее постройку должно уйти два– три года при затратах 3—5 тысяч фунтов стерлингов, причем в окончательном виде вес машины должен составить примерно две тонны. Для работы над этой машиной была выстроена мастерская, привлечены инженеры и чертежники.
13 июня 1823 г. Бэбидж был награжден первой золотой медалью Астрономического общества. В речи, произнесенной по случаю этого награждения, президент общества Г. Коулбрук высоко оценил значение машины Бэбиджа для астрономических расчетов: «Ни в одной области науки или техники это изобретение не может быть использовано так эффективно, как в астрономии и связанных с ней областях, а также в различных разделах техники, зависящих от них. Нет расчетов более трудоемких, чем те, которые зачастую нужны в астрономии; нет аппаратуры, более необходимой для первоначальной обработки данных; и нет ошибок, более приносящих ущерб. Практически астронома прерывают в его занятиях и отвлекают от наблюдений утомительной расчетной работой, в противном случае его старания в наблюдениях становятся неэффективными из-за необходимости дальнейших расчетов. Пусть помощь, которую приносят предварительно рассчитанные таблицы, будет неограниченно возрастать благодаря изобретению Бэбиджа, тогда более легкой станет наиболее утомительная часть труда астронома и исследованиям в астрономии будет дан дополнительный толчок» (цит. по: [85, с. 183]). Работа Бэбиджа «по размаху и результатам не похожа на что-либо выполненное ранее для помощи при проведении оперативных расчетов» [там же].
Несмотря на столь хорошее начало и оптимистические надежды, разностная машина не была изготовлена даже через десять лет, хотя на ее постройку было истрачено 17 тыс. фунтов стерлингов правительственных средств и 13 тыс. собственных средств Бэбиджа. В основном это произошло потому, что развитие техники того времени и, в частности, производство точных механизмов, нужных при изготовлении разностной машины, было на недостаточно высоком уровне. Бэбидж вынужден был часто сам конструировать и изготовлять такие механизмы. Кроме того, он все время вносил нескончаемые поправки в конструкцию машины. Следует иметь в виду, что Бэбидж был пионером, прокладывающим неведомые науке пути, и многие, вносимые в ходе работы изменения, были результатом творческих исканий, которые, в конечном итоге, способствовали развитию вычислительной техники.
Хотя Бэбидж никогда надолго не отвлекался от работы над вычислительными машинами, он успевал делать очень много в самых различных областях, одни из которых были близко связаны с его основной работой, другие – далеки от нее. Размышляя над созданием вычислительных машин, Бэбидж много работал и над различными математическими таблицами. Наряду со стремлением сделать их точными, он старался, чтобы они были легкими и удобными в обращении. В 1826 г. Бэбидж опубликовал вычисленные им таблицы логарифмов от 1 до 108000 [34], в которых большое внимание уделил удобству пользования. Эти таблицы были высоко оценены математиками и неоднократно переиздавались как в Англии, так и за рубежом с подробным предисловием Бэбиджа.
В 1831 г., пытаясь определить, какими таблицами легче и удобнее пользоваться, он напечатал один экземпляр своих таблиц логарифмов на 151 листе, на бумаге различного цвета [42]. Было использовано 10 цветов: светло– и темно-синий, светло– и темно-зеленый, оливковый, желтый, светло– и темно-красный, фиолетовый и черный. Помимо обычной краски при печатании пользовались золотой, серебряной и медной. Кроме того, использовалась бумага различной толщины, также калька, восковая бумага, пергамент. Полностью таблицы заняли 21 том. Ё настоящее время они находятся в Кроуфордской библиотеке Королевской обсерватории в Эдинбурге. Эта работа сохраняет интерес и до нашего времени.
Изучив записи одной из компаний по страхованию жизни, Бэбидж в 1826 г. опубликовал брошюру «Сравнительный обзор различных систем страхования жизни» [31], которая явилась популярным и в то же время высоконаучным изданием. В этой же брошюре Бэбидж приводит рассчитанные им таблицы смертности. Английские компании страхования жизни пользовались этими таблицами в течение полувека, почти до 1870 г. К этому времени были составлены новые таблицы, которые рассчитывались на разностной машине, построенной специально для этой цели. После издания работы Бэбиджа на немецком языке некоторые германские страховые компании также пользовались его таблицами.
Бэбидж начал интересную работу, связанную с анализом соотношения букв, встречающихся в различных языках [41]. Работа не была закончена. Но в наше время и эти идеи Бэбиджа нашли определенное отражение в области структурной лингвистики.
1827 год.был исключительно тяжелым в жизни Бэбиджа. В возрасте 35 лет умирает его жена, Джорджия Бэбидж, в том же году скончался отец, а за ним двое детей. Мучительно переживая эти тяжелые утраты, Бэбидж пытался уйти в работу. Буквально день и ночь он занят проектированием разностной машины и изготовлением ее деталей. Здоровье Бэбиджа ухудшается, и в декабре 1827 г. по настоятельному совету врачей он едет в путешествие по Европе. Ровно год Бэбидж провел в Италии, Франции и Германии.
Путешествуя, Бэбидж посещал заводы, изучал различные технологические процессы обработки металлов. Во время путешествия он поддерживал связь с инженерами, работающими над разностной машиной, а вернувшись домой (в декабре 1828 г.), активно включился в работу.
На разностную машину требуется все больше средств. И о Бэбидже злословят как в научных кругах, так и в-литературных. Его критикуют за то, что до завершения разностной машины он просил финансовой поддержки у правительства для создания новой машины. Впоследствии считали даже, что Бэбидж присвоил себе 17 тысяч фунтов правительственных средств, хотя денежная документация у него была в идеальном порядке, учитывался каждый потраченный пенс.
К концу 1827 г. на машину было уже израсходовано 3475 фунтов стерлингов.
Перед поездкой на континент Бэбидж выделил еще 1000 фунтов из своих личных денег.
В процессе работы над разностной машиной Бэбидж выдвинул ряд проблем перед машиностроением, для их разрешения Бэбиджу иногда удавалось привлечь к работе очень способных инженеров.
Так, один из крупнейших английских инженеров Дж. Витворт (1803—1887) получил большой опыт, работая над разностной машиной Бэбиджа.
Ч. Бэбидж в возрасте 36 лет
Бэбидж уделял большое внимание сокращению времени выполнения операций и для этого неоднократно перерабатывал узлы машины. Обычно при сложении вручную складывают единицы исходных чисел, перенос, если он есть, запоминают и добавляют при сложении десятков чисел; затем запоминают перенос десятков и добавляют при сложении сотен и т. д. При работе на машине можно выполнить поразрядное сложение, запомнить переносы и затем осуществить их сложение с полученным числом; это и будет окончательная сумма.
Такое сложение выполняется в разностной машине с помощью механического способа переноса. Конструктивно это выглядит следующим образом: зубчатое колесо в машине имеет 10 зубцов, на которых нанесены цифры от 0 до 9; между 9 и 0 находится выступающий зуб. Зацепление зубчатых колес обеспечивает передачу цифр с одного колеса на другое. Когда колесо проходит от 9 до 0, выступающий зуб нажимает на определенный рычаг. Поэтому, как только окончится время, требуемое для сложения, любой перенос отмечается измененным положением рычага. На этом этапе заканчивается сложение цифр определенного разряда без учета переноса. Затем рычаг поворачивается и происходит перенос. В конструкции рычага предусмотрена возможность делать перенос таким образом, чтобы перейти к следующему разряду, т. е. от единиц к десяткам и т. д.
В процессе работы по усовершенствованию механизма и сокращению времени переноса Бэбидж сделал ряд изобретений, в результате чего в демонстрировавшейся на выставке 1862 г. части разностной машины время переноса было уменьшено в четыре раза по сравнению с первой моделью.
Из-за нехватки механизмов, квалифицированных сотрудников, денег, бесконечных поправок и изменений в конструкции машины – возникали многочисленные конфликты, работа продвигалась крайне медленно. Это привело к тому, что энтузиазм окружающих, в том числе и ученых, сменился недоверием. Постепенно от работы отвернулись почти все.
К началу 1833 г. небольшая часть машины все же была построена. Испытания показали, что она выполняет действия с запланированной точностью и скоростью.
Проявляя устойчивый интерес к проблемам теории чисел, Бэбидж рассчитал на своей машине таблицу значений функции x2 + x + 41, позволяющей получать простые числа. Вопросами теории чисел он занимался давно. Еще в 1819 г. в Эдинбургском Философском журнале Бэбидж опубликовал небольшую статью «Доказательство теоремы относительно простых чисел» [10]. В этой работе он доказывает, что —
(1 x 3 x 5 x ...(2n + 1))/n! x 2n-1 – 1
делится на n2 в том и только том случае, когда n простое число.
Еще Эйлер пытался найти формулу, которая давала бы исключительно простые числа. В результате этих поисков он указал несколько полиномов с целыми коэффициентами, принимающих для сравнительно большого числа начальных значений x = 0, 1, 2, ... величины, равные только простым числам. Среди этих полиномов наибольшее внимание привлек в дальнейшем квадратный трехчлен [1 Этим трехчленом математики занимаются вплоть до настоящего времени. Так, например, в 1899 г. Эскот, заменив в x2+x+41 x на x – 40, получил выражение х2 - 79x +1601, которое дает подряд 80 простых чисел при x = 0, 1, 2, ..., 79. В 1959 г. Трост при помощи электронной вычислительной машины составил таблицу значений для x2 + x + 41 при x от 0 до 11 000 и установил, что в этой таблице содержится 4506 простых чисел.] x2 + x + 41, который позволяет получить подряд 40 простых чисел при подстановке x = 0, 1, 2, ..., 39. Эйлер проверил получение простых чисел с помощью данного полинома при x = 0, 1, 2, ..., 15. Бэбидж на своей машине за 2,5 мин. получил 30 простых чисел, подставляя в x2 + x + 41 последовательно х – 1, 2, 3, ..., 30.