355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Калеб Шарф » Ошибка Коперника. Загадка жизни во Вселенной » Текст книги (страница 6)
Ошибка Коперника. Загадка жизни во Вселенной
  • Текст добавлен: 26 сентября 2016, 18:50

Текст книги "Ошибка Коперника. Загадка жизни во Вселенной"


Автор книги: Калеб Шарф



сообщить о нарушении

Текущая страница: 6 (всего у книги 18 страниц) [доступный отрывок для чтения: 7 страниц]

Наши соседи

В поисках своего места во Вселенной мы уделяли основное внимание именно планетам – космическим оазисам, на существование которых мы так давно уповаем. И у нас есть на то веские причины: ведь очевидно, что если других планет, а особенно других Земель, очень мало, это сильно изменит нашу точку зрения. Либо где-то еще есть несколько инкубаторов для жизни, либо поиски станут сложны до полной невозможности, если миры раскиданы по далеким недоступным уголкам Вселенной.

Мысль о существовании иных, «нездешних» миров глубоко укоренена не только в науке. Как мы уже видели, это был метафорический центр самых разных философских школ, а кроме того, эта мысль с завидной регулярностью всплывает в искусстве и литературе.

Особенно яркий пример – довольно древний: чудесные сказки «Тысячи и одной ночи»[83]83
  Естественно, вы можете прочитать их сами. Прекрасный путеводитель по сказкам – Robert Irwin’s The Arabian Nights: A Companion. New York: Viking Adult, 1994; rev. ed., London: Tauris Parke Paperbacks, 2004.


[Закрыть]
. Эти затейливые истории были собраны в единый корпус более 1100 лет назад, а до этого многие поколения бытовали в устном фольклоре – и при этом до сих пор невероятно занимательны. Среди моих любимых – история о юном султане по имени Булукия, который ищет целебную траву, дарующую бессмертие. По пути он посещает множество самых странных мест, где становится свидетелем различных сверхъестественных явления – от соцветий из голов или птиц, растущих прямо на сучьях, до геенны огненной, то извергающей змей, то всасывающей их обратно. В частности, ему встречается ангел, который читает ему краткое введение в устройство мироздания. Посланец небес сообщает Булукии, что за краем света существует целых сорок земель, каждая в сорок раз больше нашего мира, и все они населены всевозможными невообразимыми созданиями. Очень увлекательная сказка. А еще из нее со всей очевидностью следует, что вдохновенные рассказчики уже давным-давно усвоили представление о множестве миров помимо нашего – причем миры эти настолько чужды нам, что простой смертный, заглянув в них, падает ниц в благоговении.

Все, что лежит ниже, выше и вдали от нашего обыденного существования, по-прежнему подпитывает фантазию человечества – вспомним хотя бы Клайва Льюиса, который изобрел аллегорическую Нарнию[84]84
  Примечательно, что и «Нарния» (в особенности «Лев, колдунья и платяной шкаф»), и «Звездные войны» – яркие примеры сюжета о чудесных спасителях. Цикл Клайва Льюиса, безусловно, христианская аллегория, а сага Джорджа Лукаса – более космополитический вариант, причудливая смесь волшебных сказок с притчами духовных наставников. И там, и там действие происходит «в другом месте», где земные законы практически неприменимы.


[Закрыть]
, или кипучую Вселенную «Звездных войн». Однако иногда мы забываем о собственных удачнейших творениях, пока природа не удивит нас, возродив их к жизни. И вот недавно мы очутились именно в такой ситуации – нет, нам не являлись ангелы, мы не искали траву, дарующую бессмертие, зато мы обнаружили планеты, лежащие вне Солнечной системы.

Сюрприз заключается не в том, что другие планеты существуют, а в том, что они обладают качествами, которые испытывают на прочность наше воображение, поднимают нас над привычной плоскостью мышления. Сейчас я покажу вам, что эта реальность выводит на авансцену одну из важнейших находок на нашем философском пути, важнейшую деталь головоломки, ответ на которую – наше место во Вселенной. Однако следствия из этой находки не так уж просты: с одной стороны, мы обзавелись надежными доводами в пользу точки зрения Коперника (мы занимаем не центральное, а, наоборот, совершенно заурядное место во Вселенной), с другой – у нас появилось самое веское на данный момент доказательство, что наши обстоятельства весьма необычны, а возможно, даже уникальны.

* * *

Найти планеты, вращающиеся вокруг других звезд, крайне трудно[85]85
  О поисках экзопланет написано много прекрасных книг. Перечислю некоторые из них: Alan Boss. The Crowded Universe: The Search for Living Planets. New York: Basic Books, 2009; Ray Jayawardhana. Strange New Worlds: The Search for Alien Planets and Life beyond Our Solar System. Princeton: Princeton University Press, 2011; Lee Billings. Five Billion Years of Solitude. New York: Current/Penguin, 2013.


[Закрыть]
. Других слов и не подберешь. Причины вполне понятны: планеты маленькие и тусклые, а звезды большие и яркие. К тому же звезды и их планеты, если смотреть на них с космических расстояний, очень близки друг к другу, и это серьезная проблема, поскольку фундаментальные свойства света таковы, что даже самый совершенный телескоп размазывает изображения. Ослепительный свет центральных звезд затмевает жалкие отблески планет.

Разумеется, большинству из нас доводилось видеть яркое сияние полной Луны на небосклоне и даже замечать яркие точки планет, например, Венеры или Юпитера. Наши знакомые планеты застенчивостью не страдают. Однако не нужно заблуждаться: у нас может быть так, а у соседей иначе.

Гигантское небесное тело вроде Юпитера отражает свет Солнца и к тому же испускает из своих разогретых недр ровное инфракрасное излучение. Но максимальное количество электромагнитной энергии, исходящее от самой яркой планеты Солнечной системы, составляет всего одну миллиардную от излучения нашего Солнца. И планеты вроде Земли, горячее, но гораздо меньше Юпитера, выглядят так же жалко. Нам кажется, что Луна яркая, а на самом деле это просто оптический обман, вызванный нашим взаимным положением. Поверхность Луны на самом деле отражает всего процентов десять солнечного света, который на нее попадает – примерно столько же, сколько кусок угля. Нам кажется, будто она яркая, просто потому, что она близко, и потому, что солнечный свет на том расстоянии, где мы находимся, еще ярок.

Если бы мы взглянули на Солнечную систему с расстояния, измеряемого световыми годами, то планеты вроде Юпитера и Земли были бы не видны, их затмило бы сияние рассеянного солнечного света, словно пылинки при ослепительной фотовспышке. Чтобы непосредственно увидеть эти миры, нужны очень мощные телескопы и всевозможные оптические ухищрения, а подобные технологии пока что лишь маячат на нашем горизонте. Однако есть и другие способы увидеть иные планеты или ощутить их присутствие, пробившись за слепящую завесу звездных систем.

Об одном из подходов я уже упоминал, о нем подозревал еще Исаак Ньютон. Он отметил, что сами звезды тоже вращаются по орбите вокруг центра масс или точки равновесия системы. В отсутствие планет эта точка совпадает с центром звезды, но если планеты есть, их гравитационное поле смещает всю систему к какой-то другой точке. Более того, сама эта позиция зачастую непостоянна, поскольку планеты скользят по орбитам и оказываются в разных местах, и от этого точка равновесия тоже вынуждена сдвигаться.

Иначе говоря, если у звезды есть планеты, она колеблется, и ее колебания меняются со временем. Возможно, вы даже можете наблюдать это непосредственно – заметить, как звезда еле-еле заметно движется туда-сюда по небу. Однако если вы прибегнете к помощи эффекта Допплера[86]86
  Это явление названо в честь австрийского физика XIX века Кристиана Допплера и сводится к изменению частоты волны при относительном движении. Наглядный пример, который всегда приводят, – то, как повышается звук сирены на полицейской машине или карете «скорой помощи», когда машина едет в вашу сторону и, в сущности, сжимает звуковые волны, и как он понижается, когда машина удаляется и волны растягиваются. «Красное смещение» звезд и галактик, которые удаляются от нас, – это то же самое, только применительно к электромагнитному излучению или свету, однако поскольку свет и сам движется со скоростью, гм, света, это требует некоторых корректировок, при которых искажается еще и время, и существуют соответствующие уравнения релятивистского эффекта Допплера.


[Закрыть]
, результат будет несколько лучше: о наличии планет вам подскажет изменение частоты – то есть цвета – светового излучения при движении звезды к нам и от нас.

Однако зарегистрировать это по-прежнему трудно, хоть плачь. Планета вроде Земли вызывает движение Солнца всего на десяток-другой сантиметров в секунду, и проявляется это маятникообразное движение лишь за период около года. Юпитер послужил бы нашей цели немного лучше. Он способен смещать Солнце примерно на 12 метров в секунду, однако рисунок этих колебаний размазан по десяти годам, за которые Юпитер совершает оборот по орбите. Нужно быть очень упорным и терпеливым наблюдателем, чтобы заметить его.

Мало этих трудностей: поверхность звезды – место очень неспокойное, пылающий и сияющий газ постоянно вздымается и опадает. Местные колебания вполне могут превосходить по силе более плавное и мерное движение, вызванное гравитацией планет, и еще сильнее смазать данные наблюдаемого солнечного света.

Задача эта не для слабонервных. Звездный свет, который улавливают мощные телескопы, нужно расщепить на тысячи составляющих его частот – примерно так свет преломляется в стеклянной призме и получается радуга. Астрономы должны выявить трудноразличимые маркеры – специфические спектральные свойства электронов, скачущих в атомах, которые составляют звезду, и пользоваться полученными величинами как линейкой. Поэтому сами маркеры нужно измерить необычайно точно, тщательно исследовать и на их основании произвести тщательную оценку скорости объекта весом в тысячи триллионов тонн, который движется, быть может, медленнее пешехода.

* * *

Искать планеты можно и другими способами, не менее сложными, поскольку опираются они как на умение, так и на везение. Иногда планетные системы ориентированы таким образом, что отсюда, с Земли, видно, как планеты вращаются вокруг родительских звезд, заслоняют их[87]87
  Это так называемый транзитный метод: планеты проходят перед своими звездами и чуть-чуть блокируют свет. Транзитный метод – это основной способ обнаружения других планет, он применяется на космических телескопах «Кеплер» и COROT. Тщательный анализ отклонений в ритме проходов может выявить также и присутствие в системе других планет, которые не заслоняют звезду, однако оказывают гравитационное воздействие на те, которые мы наблюдаем.


[Закрыть]
и перегораживают несколько долей процента света звезды, доходящего до нас. Если это заметить – а потом заметить еще раз, при следующем витке по орбите, и при следующем тоже, – можно сделать вывод о наличии этих крошечных пятнышек и даже об их размерах.

Реже признаком наличия планет становятся искажения пространства-времени вокруг звездных систем (к тому же их труднее регистрировать и интерпретировать): гравитационные поля искривляют световые лучи – следствие релятивистской природы Вселенной. Если свет более далекой звезды проходит в нужной точке звездной системы, оказавшейся между нами, он ведет себя так, словно в пространстве подвешена линза. Этот свет ненадолго усиливается и вспыхивает, и вспышку видно несколько дней, а затем оптическая конструкция рассыпается из-за круговорота небесных тел. Гравитационную линзу[88]88
  Присутствие планет может приводить к странным, чудесным и очень сложным отклонениям в том, как виден свет от звезды, находящейся на заднем плане. Однако темп, в котором с нашей точки зрения звезды с планетами выстраиваются в линию с более далекими звездами (у которых, возможно, тоже есть планеты), чтобы получалась линза, очень низок. Поэтому исследования при помощи гравитационных линз требуют терпения и тщательного отслеживания великого множества звезд. Но все равно этот способ позволяет обнаруживать планеты с огромной чувствительностью и на самых разных орбитальных расстояниях от звезд и помогает собрать статистику по численности планет.


[Закрыть]
может создавать и одинокая звезда, но стоит добавить планеты, и характер вспышки меняется, а по его изменениям можно сделать выводы об этих планетах, их орбитах и массах.

Все эти способы изобилуют трудностями, и долгая история попыток обнаружить планеты вокруг звезд полна неудач и обманутых надежд. Однако ко второй половине ХХ века астрономические методы достигли такого уровня, что целый ряд отважных и упорных ученых[89]89
  Среди имен, которые иногда забывают (хотя многие из этих исследователей обрели заслуженную славу, особенно Мишель Майор, Дидье Келос, Джефф Марси и Р. Пол Батлер), – канадцы Гордон Уокер и Брюс Кэмпбелл, которые стали первопроходцами в области современной методики поиска планет на основании эффекта Допплера.


[Закрыть]
сочли, что обладают достаточно реалистичной базой для обнаружения крошечных темных крупиц-планет вокруг далеких звезд. То есть было показано, что планеты все-таки существуют – конечно, это и раньше считалось весьма вероятным, однако оставались досадные сомнения. Но вот что интересно: большинство этих ученых пребывали в убеждении, что если они что-то и найдут, это будет что-то донельзя скучное. В сущности, они представляли себе копии нашей Солнечной системы, знакомые разновидности планет в знакомых сочетаниях. Хотя современные писатели-фантасты постоянно изобретали что-то из ряда вон выходящее, ничуть не хуже авторов «Тысячи и одной ночи», а то и куда более сенсационное, исследователи не искали подобные планеты. Гипотетические планеты и орбиты, которые представляли себе астрономы, ничем особым не отличались – все они были более или менее похожими копиями нашего непосредственного окружения.

А достаточно смелые гипотезы держались на периферии – отчасти именно из-за вполне понятного научного консерватизма. К тому же нас довольно долго сбивало с толку неверное толкование принципа Коперника. Раз мы не занимаем никакого особого положения в центре мироздания, разумно предположить, что в других местах все точно так же, как у нас. Если мы всего-навсего заурядная планетная система при заурядной звезде, резонно ожидать, что остальные планетные системы похожи на нас. В итоге к концу ХХ века мы, в сущности, высматривали планеты вроде Юпитера или Сатурна. Это должны были быть массивные небесные тела, медленно вращающиеся по большим орбитам и обеспечивающие очень вялый, но все же заметный танец при движении их звездных родительниц. А найти планеты размером с Землю нечего было и думать – в то время чувствительность оборудования этого не позволяла, хотя не оставалось сомнений, что конечной целью любого ученого, пусть и невысказанной, были именно такие миры.

Кроме того, наша Солнечная система оставалась единственным лекалом для теорий формирования планет. Научные представления о происхождении планет из газа и пыли в межзвездном пространстве, разумеется, менялись с течением веков. Однако ко второй половине ХХ века был выявлен механизм, с которым научный мир в целом согласился. Как я уже писал, налицо были веские физические причины, почему планеты могут формироваться из огромного газово-пылевого диска, окружающего сжимающееся, слипающееся вещество туманности, из которого рождается звезда. А у Солнечной системы весьма определенная структура: мелкие каменистые планеты формируются ближе к горячему Солнцу, а большие газово-ледяные отстоят от него дальше. Таков был и остается образец, по которому теоретически формируются новые миры.

* * *

Выйти за рамки этих представлений было очень трудно. Есть даже красивое эмпирическое численное правило, так называемое правило Тициуса-Боде[90]90
  Это правило определяет расстояние между орбитами планет и названо в честь немецких астрономов Иоганна Тициуса (1729–1796) и Иоганна Боде (1747–1826); последнему мы обязаны продвижением этой гипотезы. На Нептун это «правило» не распространяется: разница между расчетной и реальной величиной большой полуоси его орбиты составляет 30 %. Тем не менее правило Тициуса-Боде иногда применяется для некоторых экзопланетных систем как удобное «правило буравчика», поскольку планеты имеют склонность располагаться по орбитам регулярно, по логарифму радиуса (расстояния до звезды); это объясняется общей природой формирования планет. Однако я не убежден, что нам следует придерживаться этого правила и дальше, поскольку полным физическим пониманием этих процессов мы пока не обладаем.


[Закрыть]
, выведенное еще в XVIII веке, которое предсказывает расстояния планет от Солнца на основании всего лишь простой алгебраической последовательности. Это последовательность 0, 3, 6, 12, 24, 48, 96, 192, в которой каждый член после 3 вдвое больше предшествующего. «Волшебная» формула состоит в том, чтобы прибавлять к каждому члену 4, а затем делить на 10 – и получается среднее расстояние от планеты до Солнца в астрономических единицах (одна астрономическая единица – это расстояние от Земли до Солнца). Числа, которые получаются по этой формуле, близки к реальности, но все же не точны. Эта закономерность наводит на мысль о наличии какого-то более глубокого принципа, своего рода фундаментального, возможно, даже универсального закона, по которому формируются и выстраиваются планеты. Так и есть – если не вдумываться.

Со временем ученые обнаружили, что «правило» Тициуса-Боде в лучшем случае всего лишь следствие из общей тенденции природных явлений слепо следовать определенным математическим образцам. Эти образцы – особые функции, так называемые экспоненциальные кривые, или степенные зависимости. В худшем случае подобная «закономерность» – простое совпадение. То есть это правило применимо к Солнечной системе, но не обязательно должно соблюдаться повсюду. Однако от подобных идей очень трудно отказаться, и хотя прямо об этом нигде не говорилось, однако я готов ручаться, что этот мнимый «закон» внес солидный вклад в общее научное представление о том, что все планетные системы должны быть похожи на нашу.

Когда я думаю обо всем этом с сегодняшней точки зрения, меня одолевает легкая оторопь. Словно бы наш биологический вид, смирившись с принципом Коперника, нанес себе такую душевную травму, что теперь мы только и можем, что плестись, понуро опустив головы. Большинство астрономов, совершенно справедливо сместив Землю из центра мироздания, восприняли постулат о посредственности как религиозную догму. Им было трудно допустить, что наши жизненные обстоятельства при их очевидной заурядности все же могут представлять собой некое исключение из бесчисленного числа иных конфигураций и биографий.

Поэтому можно сказать, что когда было получено первое неопровержимое доказательство существования планет вне Солнечной системы, это было своего рода актом вселенской справедливости: мы обнаружили нечто столь непохожее на нас, что сразу стало ясно, как мы были слепы и какими возможностями пренебрегали. Оказалось, что планеты склонны к радикальному нонконформизму.

* * *

В десяти милях от северного побережья одного из островов Пуэрто-Рико, расположенного в Карибском море, раскинулись, расползаясь во все стороны, густые древние джунгли. В основном их буйный растительный и животный мир гнездится на пористом известняке, растворимом в воде, и в некоторых местах тысячелетняя влажность разъела камень, отчего образовались обширные провалы и вымоины. Обычно жизнь здесь кипит особенно бурно: получаются словно бы чаши влажной плодородной земли, окруженные пологими холмами. Обычно – но не в том месте, о котором у нас идет речь.

Здесь в углублении диаметром метров в триста землю покрывают не деревья и подлесок, а более 38 000 плотно подогнанных, похожих на решето алюминиевых пластин, словно бы металлическая печать тщательно отгораживает влажную землю. В 150 метрах над этой серебристой поверхностью расположена не менее внушительная конструкция. К трем вышкам по периметру впадины крепятся толстые стальные тросы, которые пересекаются над центром. А там сложное переплетение кабелей и брусьев поддерживает массивную мозаику из треугольных пластин – важнейшую часть хитроумного пункта наблюдения за внеземными радиоволнами.

Это вопиющий конструктивизм – детище ультрасовременной технологии: подобное никак не ожидаешь увидеть в мирном и довольно далеком от цивилизации райском уголке. Перед нами обсерватория Аресибо[91]91
  Здесь проводятся исследования под эгидой Национального центра Астрономии и Ионосферы США (NAIC). Обсерватория построена в начале 1960-х годов и полностью введена в строй в 1963 году. Она сыграла важную роль во многих крупных научных открытиях, в том числе в открытии миллисекундных и двойных пульсаров, а также в построении радарного изображения поверхности Венеры.


[Закрыть]
, и как бы скромно ни пряталась она среди деревьев, устремления у ее сотрудников весьма честолюбивы.

В феврале 1990 года этот исполинский телескоп прислушивался к тончайшим изменениям электромагнитного излучения из далекого уголка нашей Галактики, от которого до нас почти 20 тысяч триллионов километров, две тысячи световых лет.

Электромагнитные волны отталкиваются от алюминиевых пластин, которыми выстлана огромная чаша Аресибо, и сходятся на чутких датчиках, подвешенных в воздухе. Хотя долгое межзвездное путешествие приглушило колебания, источник излучения лежал в бешено вращающемся ядре звезды, погибшей около 800 миллионов лет назад.

Этот объект – нейтронная звезда, звездный остаток, состоящий из элементарных частиц под названием нейтроны с добавлением небольшого числа протонов, а также электронов. Вот и все, что осталось от звезды, которая была немного крупнее нашего Солнца и некогда сияла на этом месте, пока ядерные реакции в ее ядре не затухли. Когда источник питания внутри нее отключился, ядро схлопнулось под собственным весом. В результате этой катастрофы произошел мощный взрыв сверхновой, разбросавший внешнюю оболочку звезды в пространстве и оставивший внутри лишь кошмарно плотный шар.

Вещество нейтронной звезды совсем не похоже на материю, с которой мы сталкиваемся здесь, на Земле: оно очень-очень плотно упаковано. Здесь нет ни атомов, ни молекул – просто, в сущности, гигантский ком из элементарных частиц, накрепко склеенных гравитацией. Нейтронная звезда с массой вдвое больше массы Солнца имеет в диаметре всего около 20 километров. Ускорение свободного падения у ее поверхности так велико, что при падении вы врезались бы в поверхность со скоростью 1500 километров в час.

Кроме того, нейтронные звезды очень быстро вращаются. Поскольку они рождены в результате неконтролируемого коллапса ядра звезды, есть много причин, которые могут привести к быстрому вращению, и некоторые нейтронные звезды совершают оборот в считанные миллисекунды. Как правило, они еще и очень горячие – около миллиона градусов. И пышут энергией: магнитные поля и электрически заряженные протоны и электроны отрываются от поверхности и уносятся в пространство. В сочетании эти качества создают едва ли не самый сюрреалистический объект во Вселенной – пульсар.

Пульсар испускает электромагнитное излучение в пространство, словно вечно мерцающий маяк. Интенсивный поток энергии разлетается по Галактике в виде огромной спирали стремящихся наружу фотонов. Огромная плотность такого объекта приводит к сильной инерции. Так что могут пройти эпохи, прежде чем нейтронная звезда растеряет достаточно энергии, чтобы ее вращение заметно замедлилось. Скорость вращения нейтронной звезды невероятно стабильна. Радиомаяк стремительно вращающегося пульсара способен испускать сигналы с точностью, сопоставимой с лучшими атомными часами.

Поэтому стало большой неожиданностью, когда в начале 1990 года обнаружилось, что радиосигналы, достигавшие обсерватории Асерибо, содержат не только свет нейтронной звезды, вращающейся со скоростью 167 оборотов в секунду, но и кое-что еще: загадочные отклонения в регулярности вспышек излучения, истолковать которые с ходу не удалось. Словно бы часы самой Природы вдруг забарахлили!

В следующие два года обсерватория то и дело возвращалась к сигналам с этого объекта. Корпевшие над данными астрономы заметили, что непонятные отклонения сигнала имеют циклический характер с периодом в несколько месяцев. Единственное разумное объяснение состояло в том, что есть какая-то сила, которая тянет пульсар и вынуждает его вращаться по маленькой орбите вокруг точки равновесия системы, не совпадающей с центром самого пульсара. Такое смещение точки равновесия могло быть вызвано воздействием не одного, а нескольких расположенных поблизости объектов, причем не очень больших – планетного размера.

В январе 1992 года астрономы Александр Вольщан и Дейл Фрейл[92]92
  Об этом открытии рассказано в статье A. Wolszczan, D. Frail. A Planetary System around the Millisecond Pulsar PSR1257+12 // Nature 355 (1992): 145–47.


[Закрыть]
опубликовали статью о своем открытии в журнале «Nature». Им удалось совершить открытие, к которому столь многие так стремились. В данных с далекого пульсара они обнаружили убедительные доказательства существования первой экзопланетной системы – первого известного нам другого набора планет в нашей Галактике.


Рис. 8. Планеты, вращающиеся вокруг пульсара PSR B1257+12. Художественная реконструкция Р. Хёрта (НАСА)

На сегодня данных наблюдений этой поразительной системы накопилось уже гораздо больше, и мы знаем, что вокруг пульсара вращается по меньшей мере три тела размером с планету[93]93
  Хотя были заявления и об обнаружении четвертого тела, эти результаты, похоже, под сомнением; см., например, A. Wolszczan. Discovery of Pulsar Planets // New Astronomy Reviews 56 (2012): 2–8.


[Закрыть]
. Два из них обладают массой примерно в четыре раза больше массы Земли и вращаются по орбитам на расстоянии около 55 миллионов и 69 миллионов километров от пульсара – даже ближе, чем среднее расстояние от Солнца до Меркурия. Третья планета совсем маленькая, всего в 2 % от массы Земли, что сравнимо с массой Луны. Эта крошечная планетка-крупинка вращается еще ближе к пульсару, чем две ее крупные соседки.

На основании этих фактов и цифр еще нельзя создать наглядную картину, поэтому давайте взглянем на нее с другой точки зрения. Эта система настолько непривычна для нас, настолько разительно отличается от нашей, что тут же опровергает любые сколько-нибудь разумные экстраполяции всего того, что мы, по нашему мнению, знали.

Нормальной звезды у этих планет нет. Вместо нее у них всего лишь ядовитые останки, чудовищная мать, которую они обнимают тесным орбитальным хороводом. Вертящийся пульсар испускает в пространство жесткое разрушительное излучение и нагревает поверхности планет своим стальным светом. Когда звезда-предшественница пульсара погибла миллиард лет назад, произошел титанический взрыв сверхновой, и если вокруг этой звезды и вращались какие-то планеты, взрыв их уничтожил. Странные планеты, которые мы наблюдаем, – это жуткая тень былого, реликты эпохи разрушения, возродившиеся из пыли, которая слиплась и сконденсировалась под воздействием гравитации, и так получились новые миры, жестокая пародия на планеты, которым уже никогда не придется нежиться в лучах нормального солнца.

* * *

К такому никто не был готов. Первые планеты вне нашей собственной системы оказались картинкой из астрофизической преисподней. Однако вот оно, бесспорное доказательство, что за пределами Солнечной системы тоже есть объекты вроде планет. И каким бы диковинным ни было это место, оно все же подготовило почву для следующего сюрприза.

Три года спустя, в 1995 году, астрономы объявили[94]94
  Звезда называется 51 Pegasi, и о ней вышло две главные публикации – первое объявление: M. Mayor, D. Queloz. A Jupiter-Mass Companion to a Solar-Type Star // Nature 378 (1995): 355–59, а затем – подтверждение – M. Mayor, D. Queloz, G. Marcy, P. Butler et al. 51 Pegasi // International Astronomical Union Circular 6251 (1995): 1.


[Закрыть]
об открытии первой планеты, которая, по надежным свидетельствам, вращается вокруг нормальной звезды вроде Солнца в системе, удаленной от нас всего на 50 световых лет. Это был очередной переломный момент в науке: мы наконец-то заручились подтверждением, что и у других звезд вроде нашей могут быть планеты, в чем мы, пожалуй, и не сомневались, просто у нас не было доказательств.

Новая планета, как и планеты вокруг пульсара, была замечена благодаря ее гравитационному воздействию на звезду-родительницу: она заставляла эту звезду двигаться по маленькой орбите вокруг точки равновесия между этими телами. Именно такое поведение звезд и планет описал Исаак Ньютон почти за четыреста лет до этого – оно прямо следовало из его теории гравитации. Колебания звезд видны по изменениям частоты света, доходящего из системы. Однако здесь есть одна тонкость, и весьма серьезная.

Эта планета совершает годовой оборот – полный круг – чуть больше чем за четверо земных суток. Более того, от нее до звезды-родительницы всего восемь миллионов километров, гораздо ближе, чем даже от Меркурия до Солнца в самой ближней точке его эллиптической орбиты – это расстояние составляет благополучные 45 миллионов километров. Но и этого мало: эта планета – отнюдь не каменная малютка, а гигант с массой больше чем в 150 масс Земли.

Можно безо всякого преувеличения сказать, что ни один физик или естествоиспытатель на протяжении двух тысячелетий письменной истории нашего вопроса не уделял сколько-нибудь существенного времени на обдумывание вероятности существования именно такой системы. И в самом деле, теория образования планет дошла до точки, где у нас появились все основания полагать, что такая большая планета попросту не может существовать так близко к звезде-родительнице. Такая великанша, думали мы, способна сформироваться только гораздо дальше, у внешнего края системы, где сочетание орбитальной динамики и более низких температур позволит ей нарастить массу и объем.

Лишь несколько ученых задумывались о том, что планетные объекты могут оказаться и в неожиданных местах, и в том числе астрофизики Питер Голдрайх и Скотт Тремейн[95]95
  Их статья о миграции орбит – P. Goldreich, S. Tremaine. Disk– Satellite Interactions // The Astrophysical Journal 241 (1980): 425–41.


[Закрыть]
, которые еще за 15 лет до этого изучали, как планеты могут «мигрировать» вовнутрь протопланетного диска. Так что хотя это открытие и было триумфом астрономов, которые прилежно проделали необычайно сложные вычисления, оно их крайне озадачило.

Со времени этих первых открытий сюрпризы так и сыпались. Мы обнаруживаем, что разнообразие экзопланет и их явное нежелание соответствовать нашим представлениям о том, какими должны быть планетные системы, просто поражает. Мы бы, пожалуй, смирились с мыслью, что иные миры несколько отличаются от нашего, не совсем такие, но нам и в голову не приходило, что они настолько разные. Они покрывают весь диапазон вариантов. И проливают совершенно иной свет на главный вопрос нашего исследования – наше место в мироздании. Это головокружительное разнообразие служит для нас, в сущности, введением в сравнительную планетологию – в классификацию и категоризацию видов планет и в изучение того, почему все они могут существовать.

* * *

Итак, добро пожаловать в лигу выдающихся планет. Нет, это вовсе не закрытый клуб, ведь его члены повсюду, куда ни бросишь взгляд, однако все они для нас выдающиеся и ни на кого не похожие, поскольку наше представление о Вселенной до обидного провинциально.

То, о чем я собираюсь вам сейчас рассказать, основано по большей части на информированной экстраполяции, однако мы уже начали проверять и подтверждать многие подобные спекулятивные заявления благодаря новым данным с телескопов и хитроумным приемам, позволяющим выманить сигналы и выявить размеры, температуру и даже химический состав планет. Так давайте же зайдем в клуб и осмотрим его гостиную с ее великолепной, изысканной обстановкой и блистательными, царственными обитателями. Вот там, в углу у камина, собрались планеты-гиганты, которые, пренебрегая опасностью, вращаются вблизи от своих звезд-родительниц. Это представительницы самых первых экзопланет, обнаруженных вокруг нормальных звезд. К настоящему времени они уже получили неофициальное прозвание – «горячие юпитеры» (хотя знакомую нам гигантскую планету они напоминают лишь отдаленно).

Эти планеты занимают неположенное место, однако это не мешает им быть пухлыми и иногда даже розовощекими. Вероятно, некоторые из них мигрировали туда, где мы их находим, протолкавшись через огромный диск вещества, некогда окружавший их планетную систему, и пробились в первый ряд. А может быть, их притянуло на это место, поскольку они очутились близковато к гравитационным полям других планет и совершили ошибочное па, которое и навлекло на них жгучий гнев их светил.

Некоторые из этих планет-гигантов вращаются так близко к звезде, что совершают полный круг всего за 24 земных часа[96]96
  Прекрасный Интернет-ресурс, позволяющий изучить экзопланеты во всем их поразительном разнообразии, – постоянно обновляемый онлайн-каталог по адресу http://exoplanet.eu/catalog/, который создал Джин Шнейдер из Парижской обсерватории.


[Закрыть]
, и дневная их сторона раскаляется до страшных температур – более 500 градусов. Приливные силы тянут некоторых из них так настойчиво, что там больше нет нормальной смены дня и ночи. Планеты застряли в одном положении, и дневная сторона у них навсегда осталась дневной, а на ночной царит вечная тьма, и планета остывает, глядя в холодный космос. Такое необычное положение дел привело к возникновению на таких гигантах весьма сурового климата[97]97
  См., например, I. A. G. Snellen et al. The Orbital Motion, Absolute Mass and High-Altitude Winds of Exoplanet HD209458b // Nature 465 (2010): 1049–51.


[Закрыть]
. Жара на дневной стороне загоняет атмосферные течения на ночную и заставляет их огибать планету на сверхзвуковых скоростях, и поднимается реактивный ветер, сметающий все на своем пути, словно взрывная волна. Поскольку под газом нет ни гор, ни континентов, он гоняется сам за собой, не зная отдыха.

Высокие температуры на этих планетах приводят к всевозможным химическим и атмосферным явлениям[98]98
  Разобраться в устройстве планетных атмосфер очень сложно. О том, что происходит на «горячем юпитере», можно прочитать в статье A. Burrows, J. Budaj, I. Hubeny. Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data // The Astrophysical Journal 678 (2008): 1436–57.


[Закрыть]
, которые мы из Солнечной системы не можем даже распознать. На таких планетах есть угарный газ, оксид ванадия и оксид титана в газообразном состоянии, и они оказывают решающее воздействие на расположение слоев и структуру планет. Облака состоят не из воды или аммиака, а из железа и соединений кремния – раскаленные скопления тяжелых атомов. Тут уж не до пушистых зверюшек ясным летним деньком – скорее, страшные сны об Аиде.

А еще «горячие юпитеры» не гнушаются тем, чтобы подольститься к своим звездным родительницам. Гравитационная тяга вызывает приливы и волны в атмосфере самой звезды, а мощные магнитные поля непосредственно взаимодействуют с магнитным полем светила. Звезда не ограждена от своего окружения, напротив, это она подвергается влиянию планет, а не наоборот. Когда массивный горячий юпитер жужжит вокруг, словно толстое назойливое насекомое, солнечная атмосфера то и дело раздраженно вспыхивает.

Только не думайте, будто эти планеты – самодовольные великаны, сидящие в креслах у самого ревущего пламени: поймите, что некоторым из них суждено погибнуть. Они рискуют злоупотребить гостеприимством звезды. Гравитационные приливы постепенно искажают их орбиты и заставляют двигаться по спирали к центру системы – но занимает это десятки миллионов лет. А потом они либо нырнут под поверхность светила, либо разлетятся в кольцо пыли и обломков вокруг звезды, обреченное на недолгую жизнь.

Некоторые гигантские планеты навлекают на себя гнев судьбы по еще более противоестественным, с нашей точки зрения, причинам. Все планеты нашей Солнечной системы вращаются по орбите так же, как вращается вокруг своей оси Солнце – по часовой стрелке, если угодно, – однако примерно каждый пятый «горячий юпитер» поступает в точности наоборот. Эти отступники вращаются в направлении против вращения звезды-родительницы[99]99
  Странное возвратное движение впервые зарегистрировано в системе WASP-17b, что описано в статье D. Anderson et al. WASP-17b: An Ultra-Low Density Planet in a Probable Retrograde Orbit // The Astrophysical Journal 709 (2010): 159–67.


[Закрыть]
– в обратную сторону. А в результате они оказываются в рискованном положении: их орбиты неизбежно искажаются, и в конце концов они летят по спирали навстречу страшной участи.

Очень трудно разобраться, почему планеты выбирают такое неблагоприятное направление вращения. Насколько нам известно, силы, воздействующие на звезды и их планеты, на ранних стадиях формирования небесных тел заставляют их вращаться и вокруг своей оси, и по орбите в одном направлении. Все остальное обрекает их на скорую динамическую катастрофу: если планеты пытаются двигаться против вращения протопланетного диска, им попросту трудно сформироваться. Откуда же берутся экзопланетные объекты, вращающиеся в противоположном направлении?


    Ваша оценка произведения:

Популярные книги за неделю