Текст книги "Превращения гиперболоида инженера Гарина"
Автор книги: Ирина Радунская
сообщить о нарушении
Текущая страница: 9 (всего у книги 20 страниц)
МЕЧТЫ АГАФЬИ ТИХОНОВНЫ
Все, о чем до сих пор говорилось в этой книге, связано с измерением времени. Человек и в этой области победил природу. Теперь мы можем жить, не сверяя свои часы со звездами и Солнцем. Незримые атомы и молекулы, подобно гномам из сказки, вращают стрелки наших часов. И их волшебная точность посрамила небесные светила.
Казалось, к чему еще стремиться? Ошибка в одну секунду не накопится и за три тысячи лет! Но ученые отличаются от большинства людей именно тем, что их вечно точит неудовлетворенность. Водородный генератор превосходен по точности, да громоздок и сложноват в обращении. А миниатюрный стандарт с оптической накачкой не способен генерировать стабильные колебания, он лишь управляет частотой кварцевого генератора.
Как не вспомнить здесь рассуждения гоголевской Агафьи Тихоновны: «Если бы губы Никанора Ивановича да приставить к носу Ивана Кузьмича, да взять сколько-нибудь развязности, какая у Бальтазара Бальтазарыча, да, пожалуй, прибавить к этому еще дородности Ивана Павловича, я бы тогда тотчас же решилась. А теперь поди подумай!»
И ученые, да простят они мне легкомысленные ассоциации, думали о том, как совместить в одном приборе достоинства многих. Вот если бы стандарт с оптической накачкой да превратить в генератор!
Ведь свет в этом стандарте пополняет запасы энергии атомов, и они перескакивают на более высокие энергетические уровни. Так нельзя ли таким образом заставить прибор генерировать?
Эта мысль непременно должна была возникнуть у каждого, кто прочел вышедшую в 1955 году заметку Басова и Прохорова «О возможных методах получения активных молекул для молекулярного генератора».
Басов и Прохоров, создав свой молекулярный генератор, тоже не избежали искушения прибавить кое-что к его достоинствам. Им хотелость создать молекулярный генератор без молекулярного пучка, без насосов, без сортирующей системы. Хорошо бы, рассуждали они, не возиться с сортировкой молекул-приемников и молекул-передатчиков, а заставить генерировать какой-нибудь газ. Сделать так, чтобы молекулы-приемники сами превратились в передатчики, а там уж мы знаем, как добиться генерации.
И они нашли такую возможность. Уравнения, эти безмолвные советчики, подсказали им, что это не пустая мечта. Нужно лишь подобрать такой газ, молекулы которого имеют подходящие энергетические уровни. И не два, как было в молекулярном генераторе, а по крайней мере три. Два из них должны отстоять друг от друга как раз на величину энергии кванта нужной нам радиоволны, а третий должен располагаться значительно выше.
В обычных условиях большинство молекул будет располагаться на паре нижних уровней, причем на самом нижнем их окажется больше всего. Конечно, при этом ни о какой генерации не может быть и речи. Газ, к сожалению, будет лишь поглощать радиоволны, так как молекул-приемников в нем больше, чем молекул-передатчиков. Присутствие третьего уровня, на котором находится совсем мало молекул, само по себе не меняет дела.
Все это для нас не ново. Так ведут себя все газы, подчиняясь непоколебимому закону природы, выраженному уравнением Больцмана. Но Басов и Прохоров решили активно вмешаться в поведение молекул. Для этого они в качестве ступеньки использовали третий уровень и призвали на помощь уравнение Эйнштейна. С этим уравнением мы тоже встречались. Оно отражает взаимодействие молекул с внешним электромагнитным полем.
Ничего более конкретного уравнение предложить не могло. Но этого не требовалось. Дальше начиналось творчество. Одно слово суфлера, и актер уверенно произносит монолог.
Перед Басовым и Прохоровым открылась заманчивая перспектива. Казалось, стоит облучить газ электромагнитной волной, настроенной в резонанс с переходом молекул с самого нижнего на самый верхний уровень, и цель будет достигнута. Расчеты подтвердили, что это не заблуждение. Если мощность электромагнитной волны достаточно велика, то она перебросит часть молекул с нижнего уровня на третий. Уравнения сообщили, что если третий уровень лежит достаточно высоко, то на нижнем останется мало молекул, меньше, чем на расположенном над ним втором уровне.
Дальше все было ясно. Мы знаем, что, если на первом энергетическом уровне газа оказывается меньше молекул, чем на втором, то есть молекул-приемников останется меньше, чем передатчиков, газ становится активным.
Стоит поместить его в подходящий резонатор, и начнется генерация!
Но Басов и Прохоров не сделали такого генератора. Не потому, что не сумели. Нет, они могли его создать, но в дело опять вмешалась математика.
Однажды к Прохорову приехал молодой харьковский физик Канторович. Он показал свои расчеты, из которых следовало, что вспомогательное электромагнитное поле, нужное для получения активной среды по методу трех уровней, сделает будущий молекулярный генератор нестабильным. Прохоров улыбнулся и вытащил из портфеля несколько листков. На них его размашистым почерком были написаны формулы, из которых следовало, что частота генератора, о котором говорил Канторович, должна зависеть от частоты и интенсивности вспомогательного поля. Оба весело рассмеялись. Так родилась совместная заметка, надолго загнавшая в архив метод трех уровней.
Ученый не может рассчитывать на бетонное шоссе. Его судьба – бездорожье. Он не может рассчитывать даже на незаметную тропку. Ведь первую тропинку должен проложить именно он, первооткрыватель. Расширять ее, мостить и заливать бетоном будут другие. Может быть, и он тоже. Ведь это не менее трудно и почетно. Но иногда нужно идти и по целине. И, глядя при этом на далекую вершину, можно прозевать не менее прекрасную, скрытую соседним холмом.
Так случилось с методом трех уровней. Отдав все свои помыслы погоне за стабильностью, Басов и Прохоров забыли об опороченном методе. Правда, впоследствии Басов вместе с одним из своих сотрудников, Б. Д. Осиповым, применив этот метод, заставил генерировать пары одного химического соединения. В этой работе они тоже стремились к точности, но отнюдь не к уменьшению погрешности частоты. Их целью было подробное изучение строения молекул этого соединения и ядер входящих в них элементов.
Еще позже, как мы увидим, метод трех уровней найдет чрезвычайно широкое применение, и мы еще не раз убедимся в его возможностях.
Создатели стандартов частоты с оптической накачкой, да и все с ними соприкасавшиеся, не могли не заметить глубокой общности метода оптической накачки и метода трех уровней.
И колесо истории (конечно, не главное колесо, а малое, управляющее лишь одной областью науки) начало новый оборот. Во многих лабораториях нашлись энтузиасты, пожелавшие заставить стандарты частоты с оптической накачкой стать генераторами. Их не пугала обескураживающая работа Канторовича и Прохорова. Они четко сформулировали задачу. Создать стандарт частоты более удобный, простой и дешевый, чем другие, пусть за счет несколько меньшей точности.
Однако создание активной среды еще не достаточно для генерации. Необходимо, как мы знаем, достичь того, чтобы запас энергии в активной среде, способность атомов к усилению были достаточными для компенсации всех потерь энергии в системе, в том числе потерь в системе обратной связи.
Это требование в течение долгого времени стояло на пути всех исследований. Здесь возникало множество трудностей. Долго не удавалось создать достаточно мощного источника света накачки, дающего необходимо узкую спектральную линию. Источник не обеспечивал нужной стабильности излучения. После того, как эти трудности были преодолены, пришлось бороться с тем, что в рабочих колбочках было слишком мало атомов рубидия – наиболее подходящего для этой цели металла. Попытки увеличить их количество приводили к их более частым столкновениям, то есть к уширению спектральной линии, а это, в свою очередь, делало генерацию невозможной. Необходимость улучшить качество резонатора вступала в противоречие с тем, что внутрь него должен был проходить свет накачки.
Успех пришел к американскому ученому Давидовичу и его сотрудникам. Он пришел к тем, кто сумел взглянуть на задачу новыми глазами – от чего-то, ставшего, казалось, обязательным, отказаться, что-то добавить. Как тут не вспомнить великого Родена, который сказал, что камень превращается в скульптуру тогда, когда с него удалено все лишнее. Здесь излишней оказалась колбочка, стенки которой поглощали часть радиоволн. Ведь стенки этой колбочки, справедливо рассуждал Давидович, вносят в резонатор потери, делающие генерацию невозможной. Зачем же она тогда нужна? Но, отказавшись от колбочки, исследователи должны были изготовить резонатор из материала, не реагирующего с рубидием и имеющего малое электрическое сопротивление. Обычно применяемые для покрытия резонаторов серебро и золото поглощают рубидий, образуя с ним род амальгамы, и поэтому не подходят. Давидович не поленился и провел большую работу по изысканию новых веществ, он испытал кучу материалов. Удачным оказался резонатор из нержавеющей стали, покрытый изнутри слоем меди. Так Давидовичу и его коллегам удалось сконструировать очень хороший резонатор, имеющий весьма малые потери. Новшества не ограничились лишь отказом от колбочки. В приборе были применены другие усовершенствования. Одна из стенок резонатора была ажурной. Ведь она должна хорошо пропускать свет! Особенно остроумно была решена задача настройки резонатора и его изоляции от внешнего воздуха.
Настойчивость и изобретательность привели к успеху. При включении газоразрядной лампочки, освещавшей пары рубидия, находящиеся в резонаторе, в нем начали возбуждаться радиоволны. В отличие от молекулярного и водородного генераторов здесь не было пучков молекул или атомов. Здесь в чистом виде работала система возбуждения вспомогательным электромагнитным полем.
Новый генератор уже сейчас излучает примерно в тысячу раз большую энергию, чем водородный, и является самым монохроматическим генератором радиоволн. Это значит, что относительная ширина излучаемой им спектральной линии меньше, чем во всех существующих приборах. Рубидиевый генератор моложе своих квантовых коллег. Его возможности еще недостаточно изучены. Однако уже теперь ясно, что в некоторых областях техники он вытеснит своих старших братьев.
ОТ ЧАСОВ К КОМПАСУ
– Снимите, пожалуйста, часы, – сказал молодой человек и положил мои часики в ящик стола.
Идя за ним по залитой асфальтом дорожке, я вспоминала о таком же ритуале, свято выполняемом на горе Арагац, в Дубне и Новосибирске, – словом, всюду, где сильные магнитные поля применяются для исследования элементарных частиц.
В вестибюле магнитного павильона мой спутник весьма критически посмотрел на мои ноги.
– На шпильках нельзя, – проворчал он, – придется надеть тапочки.
Ни с чем подобным я еще не встречалась, но покорно сунула ноги в огромные шлепанцы.
– Готово, – бодро заявила я.
Но мой спутник не сдвинулся с места. На его лице я заметила недовольство, столь естественное для человека, которого оторвали от важного дела, и смущение, которое я отнесла за счет угрызений совести. Вдруг он отчеканил:
– А еще что-нибудь железное на вас есть? Тут, признаться, смутилась и я. Но, подумав, с облегчением сказала:
– Нет, только пластмасса.
И мы вошли. Однако огромного магнита, способного сорвать с ног туфли, я не увидела. В центре небольшого зала располагались лишь тонкие катушки, похожие на пересекающиеся гимнастические обручи, которые иногда называют хула-хуп. Внутри и вокруг них располагались приборы. Жгуты проводов исчезали в каком-то подобии шкафа.
Заметив дверь в противоположной стене, я уверенным шагом направилась к ней.
– Вы куда? – спросил мой спутник.
– К магниту, – ответила я.
– У нас здесь нет магнитов.
– Так куда вы меня привели?
– В магнитный павильон.
– ?
Впоследствии, знакомясь с работами молодых сотрудников Института земного магнетизма, я частенько вспоминала о первом визите в магнитный павильон, который, по-моему, следовало бы называть немагнитным. Ведь при его строительстве не применялись не только стальные балки, но не использован ни один железный гвоздь.
Дверные ручки, оконные шпингалеты, система отопления – словом, все в них изготовлено из немагнитных материалов.
Входя в эти павильоны, нужно вынимать из карманов ключи, снимать часы и даже ботинки, если подошва на них прибита железными гвоздями. Словом, на любой кусочек железа здесь наложен запрет более строгий, чем «табу» аборигенов Новой Зеландии.
При работе в магнитном павильоне возникают головоломные задачи, никогда не встречающиеся в других местах.
Например, как проверить и отградуировать прибор, предназначенный для измерения магнитных полей в космосе? Ведь эти поля в тысячи раз слабее магнитного поля Земли, поворачивающего стрелку компаса!
Представьте себе, что вы должны взвесить никель, которым покрыта штанга тяжеловеса. Можно, конечно, попытаться снять слой никеля, но, если он наложен добросовестно, это очень и очень трудно. Можно измерить толщину слоя и определить вес расчетным путем, но ведь слой может иметь неодинаковую толщину. Словом, измерить малую величину, объединенную с большей, всегда очень трудно.
Трудно измерять и малые магнитные поля, если земное поле превосходит их в десятки тысяч раз. В магнитном павильоне для этой цели применяются громадные катушки, по которым циркулирует электрический ток. Этот ток создает магнитное поле, которое выполняет задачу посложнее подвигов Геракла. Оно противопоставляет свою силу магнитной силе Земли. Подбирая его величину, можно с большой точностью скомпенсировать магнитное поле Земли в небольшом объеме внутри катушек. Чем больше компенсирующие катушки, тем больше и тот участок пространства, в котором магнитное поле практически равно нулю. Здесь магнитологи и проводят свои исследования.
Измерение слабых магнитных полей и небольших изменений магнитного поля Земли – дело не новое.
Миноискатель – прибор, спасший не одну человеческую жизнь, – один из таких приборов. Он обнаруживает мину, если в ней содержится стальная деталь весом всего в несколько граммов.
Но квантовая электроника открыла путь к созданию магнитометров нового типа, отличающихся еще большей точностью и чувствительностью. Особенно привлекательным была возможность надежной и удобной автоматизации измерения.
Магнитометр нового типа – близкий родственник квантового стандарта частоты с оптической накачкой. В нем работают пары того же рубидия, заключенные в небольшой колбочке. Их облучает маленькая лампочка, в которой тоже светятся пары рубидия. Но для измерения магнитных полей используются другие спектральные линии, а не те, что работают в стандартах частоты. Ведь для стандарта частоты главное – независимость от всех внешних воздействий. Не должно влиять на него и магнитное поле. (Спектральные линии, слабо реагирующие на магнитное поле, расположены, как мы знаем, в сантиметровом диапазоне радиоволн.)
Для магнитометра, напротив, нужны спектральные линии, частота которых сильно изменяется под влиянием магнитного поля. Такие линии соответствуют очень длинным радиоволнам. Поэтому колбочка магнитометра помещается не внутри объемного резонатора, а в катушке, напоминающей катушку радиоприемника.
Так же как в стандарте частоты, момент резонанса радиоволны и атомов рубидия определяется по увеличению поглощения света в парах рубидия. Но измерение частоты резонанса тут не самоцель. Ведь для наблюдаемых здесь спектральных линий частота резонанса однозначно связана с внешним магнитным полем. Примерно так же, как положение стрелки весов с весом груза. Можно сказать, что частота играет в магнитометре роль стрелки. Но показание весов зависит от того, как они установлены на столе, и может меняться в пределах нескольких процентов. Отсчет квантового магнитометра в десятки тысяч раз точнее. Это обеспечивается выдающимися свойствами примененной в нем «стрелки». Физики и радиоинженеры сделали измерение частоты наиболее точным из всех возможных измерительных процессов. И теперь стремятся любое измерение свести к измерению частоты. Для этого, конечно, необходимо найти точную и однозначную зависимость между измеряемой величиной и частотой, подобно связи, существующей между частотой и магнитным полем. Таким способом инженеры уже научились точно измерять толщину тонких слоев лака или хрома, влажность зерна или пряжи, напряжения, возникающие в стальных балках или в основаниях бетонных плотин. Все эти и многие другие величины связываются с частотой простыми закономерностями, преобразующими их изменения в изменения частоты.
Но вернемся к квантовому магнитометру. Исследования показали, что он действительно способен с огромной точностью измерить магнитное поле Земли и его изменения. Это открывает ему путь и в лаборатории геофизиков, изучающих свойства Земли, и в экспедиции разведчиков нефти, руд и других полезных ископаемых. Ему открыт путь в космос для исследования магнитных свойств Луны и планет, для изучения магнитных полей, связанных с потоками заряженных частиц, выбрасываемых Солнцем.
На этом могла бы окончиться главка, посвященная вторжению квантовой электроники в мирное царство геофизики. Могла бы… Но мы не узнали бы самого интересного. В целях удобства, надежности и простоты измерений ученые хотели превратить пассивный прибор, получающий высокочастотную энергию от внешнего источника, в активный квантовый генератор, частота которого строго определяется окружающим магнитным полем. Однако расчеты показали, что, даже создав инверсию энергетических уровней атомов рубидия, служащих для измерения магнитного поля, не удастся преодолеть всех потерь энергии, неизбежных при работе на низких частотах.
Это все же не остановило ученых. Они решили задачу совсем не так, как это сделано в квантовых генераторах стандартов частоты. В этих генераторах атомы и молекулы служат не только в качестве резонансных элементов, определяющих частоту колебаний, но и в роли поставщиков энергии, необходимой для генерации. Лишь третье звено генератора – система обратной связи осуществляется при помощи внешнего объемного резонатора. Это возможно потому, что потери энергии в объемном резонаторе могут быть сделаны очень малыми. При этом относительно большая энергия квантов электромагнитного поля сверхвысокой частоты, на которой работают эти стандарты, достаточна для преодоления неизбежных потерь и для обеспечения генерации.
Энергия квантов низкочастотного поля, которое используется в магнитометрах, в сотни тысяч раз меньше, чем в случае поля сверхвысокой частоты (применяемого в стандартах частоты), а потери энергии в катушках и конденсаторах в сотни раз больше, чем в объемных резонаторах. Поэтому добиться генерации за счет энергии, излучаемой атомами на низкой частоте, невозможно. Кажется, что столь привлекательная идея создания генерирующего квантового магнитометра попала в тупик. Атомы явно не справлялись с поставленной перед ними задачей. Учитывая это, надо было помочь им и вводить недостающую энергию в прибор извне при помощи специального усилителя, работающего на полупроводниковых триодах. Атомы рубидия, находящиеся в колбочке магнитометра, теперь должны были играть не только роль резонансного контура, определяющего частоту колебаний, но одновременно через них должна осуществляться обратная связь между выходными клеммами усилителя и его входом. Таким образом, в новом приборе обратная связь происходит только на частоте, определяемой величиной измеряемого магнитного поля, действующего на атомы рубидия. Поэтому частота генерации в нем однозначно связана с величиной магнитного поля и для измерения магнитного поля достаточно измерить частоту.
Генерирующие магнитометры такого типа разработаны во многих странах. В Советском Союзе эту работу выполнили два недавно окончивших институт физика Е. И. Дашевская и А. Н. Козлов. Козлов занимался главным образом радиотехнической частью прибора, Дашевская проводила физические исследования. (Теперь они уже кандидаты наук.) Моряки любят рассказывать о трагедиях, вызванных ошибкой компаса, вблизи которого случайно оказался кусок железа. Магнитометр – это своего рода сверхчувствительный компас. Можно представить себе, как он реагировал бы в подобных случаях! Исследовать и налаживать такой прибор в обычных условиях невозможно. Поэтому решающую часть своей работы Дашевская и Козлов проводили в «немагнитном» магнитном павильоне, в условиях, при которых век нейлона переплетается с бронзовым веком.
Для создания генерирующего магнитометра Козлову пришлось создать специальные усилители. Они должны были усиливать сигнал, поступавший к их входу, но ни в коей мере не влиять ни на какие другие его свойства. Только при этом частота колебаний, возникающих в магнитометре, будет определяться величиной магнитного поля, действующего на атомы рубидия.
Бесконечными часами в тиши магнитного павильона молодые ученые испытывали прибор при всех значениях магнитного поля, для измерения которого он предназначался. И их труды увенчались успехом. Но это было лишь началом.
Теперь Козлов должен был создать схему, которая, измеряя частоту, генерируемую прибором, выдавала результат измерения прямо в единицах магнитного поля. Он добился и того, что этот результат получался в форме наиболее удобной для передачи по радио, и снова начались тщательные исследования, усовершенствования и проверки.
А наряду с этим приходилось решать и сложные физические проблемы. И в нашей стране и за рубежом велись исследования тонких особенностей спектральных линий, применяемых для измерения магнитного поля. Ученые обнаружили, что форма этих линий изменяется в зависимости от направления света накачки относительно магнитного поля. При повороте прибора спектральная линия теряет симметричный вид, перекашиваясь в ту или другую сторону. Внимательное теоретическое исследование и кропотливые опыты показали, что это не дефект прибора. Формулы говорили, что в атомах рубидия существует несколько очень близких энергетических уровней. Каждый из них порождает самостоятельную спектральную линию, но они так близки, что прибор не способен разделить их и изображает в виде одной немного расширенной линии. Но в действительности их несколько, хотя они и замаскированы. Как выяснилось, эффективность взаимодействия света с каждой из них зависит от направления лучей света относительно магнитного поля. В результате простой поворот прибора приводил к тому, что относительная величина отдельных неразличимых спектральных линий изменялась. При этом деформировался и контур, охватывающий эти линии-невидимки, смещалась его вершина. Так при движении пальцев меняется форма рукавицы. Но так как отсчет частоты производится по общему контуру линии, то при поворотах прибора его показания оказывались немного различными. Конечно, ошибка не очень велика, но при измерениях самых слабых магнитных полей она недопустима. В лабораторных условиях можно было бы избежать этой ошибки, произведя два отсчета при противоположных направлениях прибора и усредняя оба отсчета. Но во многих случаях это неудобно, а иногда и невыполнимо – как с этим справиться при автоматических измерениях в космосе?
Об этих тонкостях можно было бы не упоминать, если бы они были лишь придиркой взыскательных исследований. Но именно такая трудность и возникнет в самых реальных условиях и в самом близком будущем при исследовании магнитных полей Луны, Марса и Венеры. Ведь уже известно, что они очень малы. А Луна, возможно, совсем не имеет магнитного поля. И это надо проверить!
Американские ученые избрали простейший путь. Они, по существу, объединили два прибора в одном. Для этого им пришлось поставить с обеих сторон газосветной лампы две одинаковые колбочки с парами рубидия, два фотоприемника, два усилителя и заставить радиосхему автоматически выдавать усредненное значение величины магнитного поля, фиксируемого в каждой половине прибора. Задача была решена, но вес прибора, его размеры и потребляемая им энергия стали больше. Это было слишком грубое решение задачи.
Лена и Александр рискнули пойти другим путем. Они установили, что основную роль в искажении результирующей формы спектральной линии играют столкновения атомов рубидия с инертным газом, вводимым в колбочку магнитометра так же, как в колбочку стандартов частоты с оптической накачкой. Оказывается, именно эти столкновения приводят к различию во взаимодействии света с отдельными спектральными линиями, совокупное действие которых дает сигнал измерения магнитного поля.
В стандартах частоты используется только спектральная линия, не зависящая от магнитного поля. Те линии, которые от него зависят, сдвигаются в стороны вспомогательным магнитным полем и не участвуют в работе. Поэтому в стандартах частоты инертный газ не искажает формы рабочей линии. Здесь же искажения формы были неизбежны.
Выход был один. Нужно убрать из колбы инертный газ. Вредным на этот раз оказалось как раз то, что недавно было необходимым!
Получалось вроде сказки про белого бычка. То инертный газ напускался специально, и это был шаг вперед. Теперь это оказалось тормозом. Но ведь опыт работы со стандартами частоты показал, что обойтись без инертного газа в рабочей колбе нельзя. В колбочках разумных размеров это привело бы к сильному расширению спектральной линии рубидия из-за эффекта Допплера и к потере стабильности частоты. Может быть, поэтому никто не решался на такой шаг и при разработке магнитометра.
Попав в безвыходное положение, ученый должен найти в себе смелость отбросить давящий груз авторитетов. По-новому взглянуть на драгоценный, но инертный капитал чужого и собственного опыта. И молодой оптимизм победил. Дашевская обратила внимание на то, что колбочка рубидиевого стандарта частоты облучается радиоволнами длиной около 5 сантиметров, а длины волн, соответствующие рабочему диапазону магнитометра, – это сотни и тысячи метров. Именно это огромное различие следует использовать. Ведь колбочка магнитометра несравненно меньше этих длинных волн. Поэтому, даже летая по всей колбочке, атом рубидия остается практически в одном и том же участке действующей на него радиоволны. В этом случае эффект Допплера исчезает так же, как он исчезает в сантиметровом диапазоне, когда атом рубидия мечется почти на месте, стиснутый со всех сторон миллионами атомов инертного газа.
Если это так, а здесь не могло быть ошибки, то для магнитометра инертный газ вовсе не обязателен. Значит, нужно испытать колбочки, не содержащие никакого инертного газа!
Конечно, для того чтобы реализовать эту идею, нужно покрыть стенки колбочки парафином, чтобы и соударения со стенками не уширяли спектральных линий. Дашевская сделала такое покрытие и убедилась, что теория верна теперь. Ее прибор с одной колбочкой, одним фотоприемником и усилителем дает совершенно симметричную спектральную линию и измеряет самые слабые магнитные поля так же точно, как вдвое более сложные приборы в остальных странах.
Гоняться за двумя зайцами – в большинстве случаев бесплодная затея. Но иногда, к сожалению очень редко, они сами лезут в руки. На этот раз повезло Дашевской. Природа выдала ей премию. Возможно, она решила поощрить в лице этой маленькой женщины наш слабый пол. Ведь женщины еще не добились равноправия в среде физиков. Впрочем, лирика тоже еще не вошла в перечень областей, прочно освоенных женщинами.
Изгнав из колбочки своего магнитометра инертный газ, Дашевская смогла выбросить из прибора и специальный фильтр, который до того приходилось помещать между колбочкой и спектральной лампой. Фильтр должен был отсекать часть света лампы, потому что в присутствии инертного газа эта часть света препятствовала процессу оптической накачки. Теперь газа не было и эта часть света оказалась безвредной. Фильтр стал ненужным.
Но раз начав, трудно остановиться. Решив поощрить Дашевскую, природа подарила ей еще маленького «зайчонка». Нет, это была не денежная экономия, хотя фильтр, о котором мы говорим, не очень дешев. И физикам и их магнитометру гораздо полезнее было то, что, выбросив фильтр, который поглощал и часть полезного света, она повысила эффективность прибора.
Советские ученые сделали еще одно усовершенствование, упростившее работу с магнитометром. Дело в том, что его показания немного зависят от температуры. Изменения температуры влияют на давление паров рубидия внутри колбочки, а это, в свою очередь, воздействует на спектральные линии. Поэтому для получения предельных точностей прибор приходится термостатировать, то есть помещать колбочку в камеру с автоматически регулируемой температурой. А эта камера, к сожалению, увеличивает размеры и вес магнитометра тем больше, чем точнее должно поддерживаться постоянство температуры.
Для того чтобы облегчить условия термостатирования, молодые физики решили поместить в колбочку магнитометра смесь рубидия и цезия. При этом образуется как бы раствор одного металла в другом, а давление паров над таким раствором зависит от температуры много слабее, чем давление паров чистого металла. Разумеется, о таком поведении паров над растворами было известно и раньше. Но как редок, как ценен творческий шаг от пассивного знания к практическому применению!
Конечно, не легко взглянуть на факты, десятилетиями переходящие из учебника в учебник, не как на окаменелость. Еще труднее решиться изменить в них хоть небольшую деталь. А там пойдет. Дальше побеждают настойчивость и трудолюбие.
Только что мы видели, как инертный газ, бывший долгое время совершенно необходимым, оказался вредным. Теперь выяснилось, что вместо тщательнейшей очистки рубидия к нему нужно что-то подмешать.
Правда, нечто подобное уже встречалось на пути ученых, создающих полупроводниковые приборы. Они сперва очищают свои материалы так, что на миллион, а то и на миллиард атомов не приходится и одного атома примеси, а потом добавляют в эту стерильную среду специально подобранные и строго дозированные присадки.
Здесь, к счастью, все было гораздо грубее. И первоначальная очистка не столь совершенна, и присадки можно было отвешивать на весах. Пришлось лишь провести сотни опытов, подбирая наиболее удачные компоненты. А когда работа позади, она уже не кажется такой трудной.
Итак, еще одна из ветвей радиоспектроскопии принесла щедрые плоды в виде малогабаритных квантовых стандартов частоты и сверхточных измерителей магнитного поля.
Но и это не последняя ветвь щедрого дерева.








