412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Ирина Радунская » Превращения гиперболоида инженера Гарина » Текст книги (страница 7)
Превращения гиперболоида инженера Гарина
  • Текст добавлен: 26 июня 2025, 05:17

Текст книги "Превращения гиперболоида инженера Гарина"


Автор книги: Ирина Радунская


Жанры:

   

История

,

сообщить о нарушении

Текущая страница: 7 (всего у книги 20 страниц)

Ученые решили облегчить свой труд и увеличить точность измерения, избрав для определения времени самую быструю стрелку на циферблате неба – Луну. Законы небесной механики связывают между собой движение Луны и движение Земли по их орбитам точнее, чем зубчатые колеса часов связывают движение минутной и часовой стрелок. Измеряя движение Луны вокруг Земли, можно вычислить секунду, определяемую формально из движения Земли вокруг Солнца. Ведь в законы движения обоих светил – дневного и ночного – входит одно и то же время, время из уравнений Ньютона. Но и Луна оказалась ненадежным помощником. Хоть она и обращается по своей орбите лишь за 28 суток, «лунная секунда» не была точнее «звездной». Чтобы сделать ее надежней, надо вести наблюдения и вычисления по крайней мере лет пять! Пять лет регулярных наблюдений (прерываемых только ненастными ночами), во всеоружии новейших астрономических приборов, сложных фотографических процессов, быстродействующих электронных вычислительных машин.

В соревновании за точное время победили не гордые и величественные светила, а скромные молекулы и атомы. Атомные часы оказались гораздо более точными. Молекулы и атомы в квантовых генераторах излучают радиоволны с такой постоянной частотой, что ни один другой процесс не может соревноваться с ними по четкой периодичности. С периодом их колебаний, с этой «атомной секундой» и решили ученые сверить другие часы. Но это удалось не сразу.

Первые сообщения об атомных часах появились в 1952 году, когда Г.

Лайон в США сверил кварцевые часы, правда, не с периодом колебаний молекул аммиака в молекулярном генераторе, а с их спектральной линией поглощения в радиоспектроскопе.

Но он потерпел неудачу. Атомные часы еще не «созрели». Спектральные линии аммиака, наблюдаемые в радиоспектроскопе, были очень широкими, и новые «атомные» часы шли менее точно, чем хорошие кварцевые часы. Мы взяли здесь слово «атомные» в кавычки не только потому, что новый прибор оказался недостаточно хорошим, а из-за того, что его правильнее называть молекулярными часами. Ведь в нем наблюдался не спектр какого-либо атома, а спектр молекул аммиака. Но, как видно, прилагательное «атомный» было в то время слишком притягательным.

Настоящие молекулярные часы, которые по точности превзошли кварцевые, были впервые запущены в Физическом институте АН СССР. Басов и его сотрудники избрали при этом простую, но надежную схему импульсного регулирования. Идея была такова. Хорошие кварцевые часы при помощи специальных радиосхем сравниваются с молекулярным генератором. Как только ошибка кварцевых часов превзойдет заранее выбранную малую величину, в них автоматически вводится нужная поправка.

В Институте радиотехники и электроники АН СССР были разработаны более совершенные системы. Одна из них основана на непрерывной подстройке хода кварцевых часов по сигналу молекулярного генератора, причем подстройка производится, как говорят специалисты, с точностью до фазы. Это значит, что частоты колебаний обеих частей устройства – кварцевых часов и молекулярного генератора – всегда полностью совпадают. Вторая система, разработанная в этом институте, имеет то преимущество, что она совершенно исключает внешнее воздействие на сердце кварцевых часов – кварцевый резонатор. Схема автоматически, по сигналу молекулярного генератора, вычисляет ошибку кварцевых часов и так же автоматически вычитает из их показаний эту ошибку, выдавая время, полностью определяемое молекулярным генератором.

Может возникнуть вопрос: зачем же нужны такие ухищрения, почему нельзя управлять ходом часов непосредственно при помощи молекулярного генератора, не привлекая на помощь кварцевые часы?

Как и во многих других случаях, здесь прямой путь не является наилучшим. Ведь мощность молекулярного генератора не превышает миллиардной доли ватта. Этим не повернешь никакой стрелки. Между молекулярным генератором и часами нужно включить подходящий усилитель. Кроме того, необходимо преобразовать период его колебаний поближе к периоду часов. Ведь период вращения секундной стрелки равен минуте, а период колебаний молекулярного генератора составляет лишь одну двадцать четвертую от миллиардной части секунды. Учтите, что и усиление мощности и преобразование периода нужно осуществить без потери точности. Именно поэтому оказалось удобным строить молекулярные часы, используя в них в качестве составной части стабильные кварцевые генераторы.

Пока ученые мудрили, приспосабливая молекулярный генератор для подстройки часов, у него появился опасный конкурент. Он сразу же захватил поле боя. Родились удивительные часы: не просто точные, а претендующие на звание эталона времени. Они тоже вели свое начало от радиоспектроскопа, но не от известного нам радиоспектроскопа Басова и Прохорова, а от совсем другого, родившегося еще в 1937 году. Вы вправе удивиться и спросить: позвольте, радиоспектроскопия появилась в сорок пятом, а автор говорит о тридцать седьмом годе – не ошибся ли он? Нет, не ошибся. Это один из курьезов науки, если угодно – результат бега по пересеченной местности, когда спортсмен не всегда видит тех, кто впереди и позади него.

ТЫ ЗАДАВАЛ ПРАВИЛЬНЫЕ ВОПРОСЫ?

В 1927 году в лаборатории Штерна появился американец Исидор Раби. Для физика, только что окончившего университет, он был не молод. Вскоре ему должно было исполниться тридцать. Но Раби быстро доказал коллегам, что он недаром прожил свои годы. Он родился в Австрии, но с двух лет жил в Истсайде, в районе нью-йоркской бедноты. Поступив в городскую школу, мальчик стал первым учеником. Он до сих пор вспоминает, как мать встречала его по возвращении из школы: «Задавал ли ты сегодня дельные вопросы учителю?» Пожалуй, только физик может оценить ее мудрость, потому что он знает, как важно научиться задавать правильный вопрос природе. В этом залог правильного ответа.

Окончив школу, Раби получил стипендию и поступил на химический факультет. Физика в США в то время была не в почете. Она не делала денег. Иное дело – химия. Шла первая мировая война, и страна остро нуждалась во взрывчатых веществах, красителях и других продуктах химии.

Проработав после окончания курса химиком-лаборантом всего один год, Раби вдруг поступил в частную банковскую фирму. Но два года служения золотому тельцу убедили его в том, что это не для него. Он вернулся в Корнельский университет, чтобы пройти дополнительный курс и стать доктором химических наук. Однако вскоре Раби понял, что в химии ему больше всего нравится физика, и он перешел в Колумбийский университет, единственное место в Нью-Йорке, где можно было стать физиком. В 1927 году, защитив докторскую диссертацию, он почувствовал, что настоящим физиком так и не стал. В те годы этого можно было достичь только в Европе. Получив осенью стипендию для научной работы, он пересек океан и под руководством Штерна освоил технику экспериментов с атомными пучками. Вернувшись в Нью-Йорк, Раби собрал вокруг себя группу молодых ученых, ставших ядром одной из первых в США школ экспериментальной физики.

Десять лет спустя Раби значительно усовершенствовал исследования атомных пучков. В отличие от Штерна, который применял в своих экспериментах только сильные неоднородные магнитные поля, он дополнительно ввел в свой прибор еще и радиоволну.

Если помните, пучок атомов серебра в приборе Штерна и Герлаха распадался под влиянием магнитного поля на две части (в зависимости от их энергии). И атомы оседали на стеклянной пластинке в виде двух серебряных пятнышек. Раби же поставил на пути атомов второе магнитное поле, противоположное по своему действию и, не дав атомам осесть в двух точках, снова свел их в одну. И стал наблюдать, сколько атомов пройдет через это двойное испытание. Зачем ему это понадобилось? И для чего он использовал еще радиоволну? Минутку терпения.

Раби обладал смелостью, необходимой каждому первопроходцу. В формулах квантовой механики скрывалась возможность взаимодействия между микрочастицами и радиоволнами. Взаимодействия, ничем не отличающегося от того, которое уже давно наблюдалось между этими частицами и светом. Но кванты света в миллионы раз энергичнее квантов радиоволн. И нужно было сочетать решимость с тонким искусством, чтобы поставить своей целью наблюдение столь слабых эффектов. Ведь все работавшие с атомными пучками знали, что непосредственное введение радиоволн в прибор Штерна ровно ничего не дает. Просто некоторое число частиц перейдет из правого пятнышка в левое, и столько же перекочует слева направо. Задача состояла в том, чтобы надежно отделить частицы, взаимодействовавшие с радиоволной, от тех, которые этого не совершили.

Установка Раби состояла как бы из двух приборов Штерна, установленных один за другим. Влияние второй установки полностью уничтожало действие первой. Атомы, выходящие из источника, сперва, как у Штерна, распадались на два пучка, затем снова собирались вместе, опять расходились, но в противоположных направлениях и, наконец, сходились в одну точку. Но это не было переливанием из пустого в порожнее. Раби здесь поступил как хороший аптекарь – перед точным взвешиванием уравнивающий чаши своих весов. Теперь они почувствуют ничтожную крупинку лекарства.

В середине установки Раби поместил катушку, через которую проходили токи высокой частоты от генератора радиоволн. Радиоволна ударяла по атомам. Пока ее частота была далека от той, на которую настроены сами атомы, они не обращали на нее никакого внимания. Они летели в строгом порядке, послушные одной силе – магнитному полю. Но вот ученый начинает вращать ручку настройки радиогенератора и менять его частоту. Постепенно он подбирается к частоте, на которую настроены атомы. Он нащупывает их резонансную волну, как нащупываем мы нужную нам радиостанцию на шкале обычного радиоприемника. И чем ближе настройка радиогенератора к настройке самих атомов, тем большее «волнение» их охватывает. И вот – резонанс! Радиоволна и атомы получили возможность разговаривать на одном языке, на одной частоте. Одни атомы излучают избыток своей энергии, отдают ее радиоволне. Другие, слабенькие, пользуются случаем и занимают у нее часть энергии. Идет интенсивное взаимодействие. Магниты забыты. Атомы не слушают их. Они уже не попадают в одну точку, а разбредаются кто куда!

Что же делает в это время Раби? Раби внимательно следит за стрелкой гальванометра, который он поставил на выходе своего прибора и заставил следить за теми атомами, которые прошли через оба магнита. Пока не было резонанса и все атомы попадали в одну точку, гальванометр «молчал», стоял на нуле. В момент резонанса стрелка вздрагивала и начинала ползти вправо. Чем больше отклонение, тем точнее резонанс. Штерну приходилось томительно ждать, пока на стеклянной пластинке заблестят серебряные пятнышки. Раби получал результат мгновенно.

Он использовал резонанс для изучения поведения атомов в радиочастотном поле. Оно было своеобразным скальпелем, обнажавшим сокровенные свойства и характер атомов.

В дальнейшем, когда прибор Раби был значительно усовершенствован, физики додумались использовать атомы в момент резонанса как камертон для подстройки частоты радиогенераторов. Ведь в момент наивысшего взаимопонимания между атомами и радиоволной, излучаемой генератором, их частоты одинаковы. Точно зная частоту атомов, а ученые ее знали, можно с уверенностью назвать частоту генератора. Так атомы стали играть роль часов Спасской башни, по которым сверяются тысячи часов.

Итак, еще в 1937 году Раби смог наблюдать спектральные линии атомов в радиодиапазоне. Его прибор был, по существу, радиоспектроскопом. Радиоспектроскопом, родившимся раньше, чем радиоспектроскопия. Это не игра слов, ведь общепризнано, что радиоспектроскопия возникла лишь в 1945 году, когда ученые начали систематически исследовать спектры газов в диапазоне сантиметровых радиоволн.

Вспомните героя Мольера, удивившегося, узнав, что он говорит прозой.

Раби не удивился, когда после второй мировой войны родилось слово «радиоспектроскопия». Просто в лаборатории рядом с атомнолучевыми радиоспектроскопами коротковолнового диапазона появились газовые радиоспектроскопы сантиметрового диапазона. Приборы Раби были предысторией. Обычный случай в истории науки.

И все-таки они, строго говоря, были не только предысторией, оборванной и незавершенной. Нет, они имели свою собственную историю, которая продолжается и в наши дни. Радиоспектроскоп Раби положил начало еще более точным атомным часам и даже не часам, а целой ветви новых стандартов времени.

Но прежде чем прибор Раби можно было применить для калибровки частоты радиопередатчика, для управления его частотой, наконец, для создания стандартов частоты и атомных часов, его необходимо было «причесать».

Казалось бы, в приборе Раби радиоволна и атомы общаются на одной волне. Причем на волне строго определенной. На языке науки это значит, что спектральная линия атомов должна быть идеально узкой. Но увы! Ее портили какие-то добавки, как хрипотца иногда портит голос певца. К основной резонансной частоте атомов добавлялись ненужные, лишние частоты. Спектральная линия уширялась.

Это не устраивало ученых. Они должны были по возможности удалить лишний «вес» линии. Но прежде надо понять причину, отдаляющую их от идеала. Может быть, атомы сталкиваются и мешают друг другу? С этим явлением физики уже встречались в радиоспектроскопии газов. Нет, здесь это было невозможно. В атомных пучках таких столкновений не бывает. Атомы не сталкиваются ни друг с другом, ни со стенками установки. Летя целым коллективом, они тем не менее ведут себя как совершенно изолированные.

Причина была не такой простой. Оказалось, что спектральные линии в атомных пучках уширяются главным образом потому, что сама установка имеет ограниченные размеры. Не то что малые, а именно ограниченные. Атомы общаются с радиоволной слишком короткое время, только в те мгновения, когда они пролетают через область, занятую электромагнитным полем, – объемный резонатор в случае сантиметровых волн, катушка или конденсатор при более длинных волнах. И это занимает всего тысячные доли секунды! Конечно, за такое короткое время атомы, попросту говоря, не успевают разобраться, какая волна резонансная, какая нет, на какую им положено реагировать, на какую нет. И излучают в ответ на требование соседних волн! Атом в данном случае ведет себя так же, как обычный волномер – прибор, измеряющий длину волны. Он тоже не может быстро различить две радиоволны, частоты которых очень близки. И он должен взаимодействовать с измеряемой волной в течение вполне определенного времени. В период измерения в волномере должны установиться устойчивые колебания. Если это условие не выполнено, точный отсчет частоты невозможен. И у атомов должно быть время, чтобы они могли опознать окружающее их электромагнитное поле.

Здесь проявляется один из чрезвычайно мощных законов природы. Он гласит: точность измерения энергии пропорциональна времени, затраченному на измерение. Но энергия и частота излучения атомов так тесно связаны, что этот закон распространяется и на частоту.

Это хорошо понял и начал борьбу с этим явлением Норман Рэмси. Уже в 1949 году он добился существенного увеличения точности измерения частоты в атомных пучках. Еще в конце тридцатых годов Рэмси овладел техникой атомных пучков и вместе с Раби и другими его сотрудниками провел этим методом ряд тонких исследований. Понимая, что простым увеличением размеров установки многого достичь нельзя, Рэмси начал искать другие пути. Он решил сделать так, чтобы атомы взаимодействовали с одной и той же радиоволной не в один прием, а дважды, в двух небольших, удаленных одна от другой областях. Если они не успели среагировать на волну в первый раз, дореагируют во второй. В результате на широкой спектральной линии, определяемой временем взаимодействия атомов с каждой частью волны, возникает узкая пика, ширина которой связана со временем их пролета в промежутке между обоими полями. Метод разделенных полей – так Рэмси назвал свой способ. Этот метод получил широкое признание. Он позволяет наблюдать спектральные линии, ширина которых составляет около 20 миллиардных долей от частоты! Это наиболее узкие спектральные линии, полученные до сих пор в атомных пучках, причем в будущем, говорят физики, можно рассчитывать на наблюдение еще более узких линий.

Освоив наблюдение узких спектральных линий атомов цезия, лежащих в хорошо освоенном диапазоне трехсантиметровых радиоволн, ученые приступили к созданию атомных часов. Это была очень заманчивая перспектива, и такие работы почти одновременно начались и в СССР, и в США, и в Англии.

ОТ РАБИ ДО ЭССЕНА

Раньше всего успех пришел к английскому ученому Люису Эссену.

Эссен давно известен своими выдающимися радиофизическими исследованиями. Он в течение многих лет работает в Национальной физической лаборатории, расположенной в небольшом городке Теддингтоне графства Мидлсекс вблизи Лондона.

Мы уже встречали его как одного из создателей кварцевых часов. Кварцевые кольца Эссена, разработанные в конце двадцатых годов, сделали его имя широко известным среди радиоспециалистов. Впоследствии он завоевал признание систематическими и плодотворными исследованиями вращения Земли, точнейшими измерениями скорости света и многими другими тонкими исследованиями.

Оригинальные черты Эссена-исследователя, пожалуй, рельефнее всего проявились именно в работе над измерением скорости света. Для того чтобы увидеть всю оригинальность его метода, стоит немного остановиться на работах предшественников.

Первым около 300 лет назад за это взялся астроном Олаф Рёмер. Для измерений скорости света нужно иметь очень точные часы и работать с большими расстояниями, на преодоление которых свет затрачивает заметное время. В качестве часов Ремер использовал вращение спутников Юпитера, а стрелкой ему служили моменты их затмений, когда тень планеты закрывала спутники.

Ремер заметил, что промежутки времени между затмениями периодически изменяются. Он правильно понял, что причиной изменений является непостоянство времени, затрачиваемого светом на пробег к Земле при удалении или приближении Юпитера. Измерения Рёмера с нашей точки зрения очень грубы, но, применяя его метод при современной технике наблюдений, можно получить неплохие результаты.

Примерно через сотню лет астроном Джеймс Брадлей заметил, что скорость падения дождевых капель можно определить, измеряя угол, под которым капли пересекают боковое стекло движущейся кареты. Наша «карета» – Земля движется в пространстве. Поэтому фотоны, падающие на Землю от удаленных звезд, тоже летят немного наискосок. Хотя образуемый при этом угол очень мал, Брадлей измерил его и получил значение скорости света, отличающееся от современного всего на один процент.

Прошло еще около ста лет, и Арман Физо применил зубчатое колесо для измерения времени прохождения света от источника до удаленного зеркала и обратно. При подходящей скорости вращения свет, прошедший между одной парой зубьев, возвращался между следующей. Вскоре Леон Фуко заменил в аналогичном опыте зубчатое колесо вращающимся зеркалом.

Сорок лет назад известный уже нам замечательный экспериментатор Майкельсон довел этот метод до высокого совершенства и, проведя опыт между горами Вильсон и Антонио в Калифорнии на расстоянии около 35 километров, измерил скорость света с точностью до одной стотысячной. Одним из основных источников ошибки при этом было отсутствие точных данных о температуре, давлении и влажности воздуха на всем пути светового луча.

Для дальнейшего увеличения точности нужно было переходить к измерениям в вакууме. Но при этом точность измерения уменьшалась из-за уменьшения достижимых размеров установки. Трудность удалось в существенной мере преодолеть применением новейших методов прерывания света, но это не привело к заметному улучшению результатов Майкельсона.

Так обстояло дело с измерением скорости света, когда этой задачей заинтересовался Эссен. Его подход к задаче поразил оптиков. Он отказался от применения света. Будучи радиофизиком, он предпочел иметь дело с радиоволнами. Впрочем, скорость радиоволн измеряли и другие ученые, в частности Мандельштам и Папалекси. Но они имели в виду другие цели и изучали распространение радиоволн в земной атмосфере. Переход от их результатов к скорости электромагнитных волн в пустоте был сопряжен с теми же трудностями учета влияния атмосферы, которые остановили Майкельсона.

Но Эссен поставил себе четкую задачу и соответственно выбрал путь ее решения. Он остановился на сантиметровых волнах и решил вместо измерения их скорости между передатчиком и приемником свести дело к измерению времени их многократного прохождения между стенками объемного резонатора. Это время связано простыми формулами с размерами резонатора и его резонансной частотой. Поэтому фактически Эссен должен был точно измерить именно эти две величины.

Будучи, как и Майкельсон, первоклассным экспериментатором, Эссен отказался от таких помощников, как звезды и планеты, от колоссальных расстояний и провел необходимые измерения в специально приготовленном резонаторе, из которого был тщательно выкачан воздух. Учтя влияние электрических свойств стенок резонатора и всех вспомогательных элементов, он получил чрезвычайно точное значение скорости света.

Таков этот ученый, один из лучших современных экспериментаторов, задавшийся целью перевести английский эталон времени на квантовую основу. Для этого Эссен должен был превратить физический прибор, применявшийся до того лишь для исследования атомных ядер, в метрологическую установку. Он применил в ней метод разделенных полей Рэмси и провел чрезвычайно тщательное сравнение частоты наблюдаемой в ней спектральной линии цезия с группой превосходных кварцевых часов, контролируемых в течение длительного времени по астрономическим наблюдениям Гринвичской обсерватории. Изучив достаточно подробно свойства своей установки, разработав метод ее независимой настройки, Эссен смог объявить о том, что им созданы атомные часы, которые идут лучше любых известных в то время часов. Ошибка в одну минуту могла накопиться в них не скорее, чем за 300 лет.

В 1955 году, когда молекулярный генератор был лишь годовалым младенцем, Эссен уже мог включить свои часы в службу времени. Это были своеобразные часы. Сердцем их служила атомнолучевая трубка с пучком атомов цезия. Она обеспечивала рекордную точность отсчета частоты (а не времени). При этом атомная трубка не работала непрерывно. Ее непрерывная работа оказалась ненужной. Группа кварцевых часов, созданных Эссеном, была так хороша, что ошибка в одну сотую от одной миллиардной секунды накапливалась в них только за неделю. Поэтому достаточно было один раз в неделю включать атомнолучевую трубку и проверять при ее помощи ход кварцевых часов, измеряя частоту входящих в них кварцевых генераторов. При этом никакой регулировки кварцевых часов не производилось. Нужные поправки оставались на бумаге, а если ошибка часов накапливалась, то необходимая поправка вводилась один раз в год.

Длительная работа с атомным стандартом частоты позволила Эссену проделать новые, более точные исследования нерегулярности солнечной и эфемеридной секунды.

Не удовлетворившись достигнутым, Эссен построил огромную девятиметровую атомнолучевую трубку. Ее пришлось поместить вертикально, пробив перекрытие между двумя этажами. Но эта трубка не повысила точности измерений, и Эссен применил ее в качестве радиоспектроскопа для точного измерения частоты спектральной линии атомов рубидия.

За выдающийся вклад в науку, внесенный работами по созданию и применению атомного стандарта частоты, доктор Люис Эссен был в 1959 году награжден Академией наук СССР золотой медалью имени А. С. Попова. Вскоре после этого его работы получили достойную оценку и на Британских островах. Эссен был избран членом Королевского общества, играющего в Англии роль Академии наук.

Теперь цезиевые стандарты частоты работают во многих странах.

Точность их увеличилась еще в 10 раз, и ошибка в одну секунду накопится лишь за 3000 лет. Многое здесь сделали советские ученые, и можно не сомневаться в том, что и эта цифра не останется предельной.

Уже выпускаются сравнительно небольшие атомные часы, предназначенные для применения в лабораториях и в навигационных системах. Но это требует специального рассказа.

Молекулярный генератор потерпел поражение в соревновании с цезиевым стандартом частоты. По стабильности они оказались одинаковыми, но по точности определения частоты, удобству и простоте применения цезиевый стандарт оказался лучше. Сейчас молекулярный генератор оттеснен на второстепенные позиции. Он применяется в некоторых службах времени в качестве дублера, используется в лабораториях в качестве превосходного радиоспектроскопа и готовится к реваншу.

В Горьком и в Токио заработали генераторы на молекулах формальдегида, в Москве – на молекулах аммиака, в которых атомы водорода заменены дейтерием, в США для этой цели применили даже молекулы одного из самых страшных ядов – синильной кислоты.

Пока молекулярный генератор находится в стадии усовершенствования, он выслал на поле боя своего заместителя.


    Ваша оценка произведения:

Популярные книги за неделю