Текст книги "Крушение парадоксов"
Автор книги: Ирина Радунская
Жанры:
Прочая научная литература
,сообщить о нарушении
Текущая страница: 8 (всего у книги 14 страниц)
Для многих специалистов, работающих в наиболее сложных областях физики плазмы, это прозвучало так, как если бы обыкновенному смертному сообщили, что теперь можно ходить по морю как посуху.
В 1963 году в тоненькой книжечке журнала «Письма ЖЭТФ» Н.Ф. Пилипецкий и А.Р. Рустамов сообщили о первом экспериментальном наблюдении нового явления – самофокусировке световых лучей. В их опытах были фотографически зарегистрированы тонкие светящиеся нити в жидкостях, через которые проходил предварительно сфокусированный луч рубинового лазера. В наши дни эффект самофокусировки проявляется в большинстве опытов, связанных с прохождением гигантских импульсов света лазеров через жидкости. Эффект можно наблюдать и в газах, и в твердых телах.
Новый эффект требовал и теоретического анализа. Первым рассчитал профиль светового пучка, самоканализирующегося под влиянием высокочастотного эффекта Керра, молодой физик из Горького, теперь уже профессор, В.И. Таланов.
Таланов принадлежит к третьему поколению замечательной советской школы физиков, основанной академиками Мандельштамом и Папалекси. Эта школа прославила нашу страну замечательными трудами и крупнейшими открытиями в области нелинейной теории колебаний, радиофизики, оптики и многих других сфер науки. Ко второму поколению этой школы принадлежат такие выдающиеся ученые, как академики А.А. Андронов и М.А. Леонтович. В ее третье поколение входят академики А.В. Гапонов, В.Л. Гинзбург, а также создатели квантовой электроники академик А.М. Прохоров и академик Н.Г. Басов, начинавший свою научную работу под руководством Прохорова, но бывший первоначально учеником академика И.Е. Тамма, сотрудника Мандельштама.
Пусть читатель простит меня за этот экскурс в научную генеалогию. Она здесь совсем не излишня.
А теперь ненадолго перейдем к истории и упомянем о географии.
В годы первой пятилетки наш народ начал поход за большой наукой. Расширялись старые научные центры, создавались новые. Один из них был заложен на Волге, в старом промышленном городе Горьком. Школа Мандельштама послала туда крепкое ядро. В него вошли талантливые молодые физики А.А. Андронов, Г.С. Горелик, М.Т. Грехова и другие. Они поддержали и умножили традиции школы. И, в свою очередь, вырастили поколение учеников. К ним относится и Таланов.
Прежде чем заняться теорией самоканализирующихся световых пучков, Таланов успел внести существенный вклад в нелинейную теорию колебаний и в теорию распространения электромагнитных волн. Самоканализация электромагнитных волн – один из типичных примеров того, как нелинейности определяют наиболее существенные явления. Здесь Таланов был во всеоружии. Его теория была построена для распространения интенсивного пучка электромагнитных волн в плазме. Но в ней полностью содержалась основная картина – формирование волноводного канала в любой среде, где канал может поддерживаться действием самого поля. Впоследствии он разработал весьма общую теорию этого явления, получил ряд новых важных результатов. Но о них позже. Теперь мы должны пересечь океан.
В том же году, когда появилась работа Таланова, в журнале «Письма в Физические обозрения», печатающем только те статьи, которые и автор и редактор считают срочными, появилась статья Р. Чао, Е. Гармайр и Ч. Таунса «Самофокусировка луча оптического мазера». Американский физик Таунс, один из творцов квантовой электроники и мазера, не применяет слова «лазер», предпочитая ему сочетание «оптический мазер». Не наше дело обсуждать терминологические споры. Мне, как и другим непосвященным, они кажутся лишенными глубокого смысла. Ведь лазер и оптический мазер означают точно одно и то же. Возможно, здесь играют роль вопросы престижа или более глубокие мотивы.
Статья начиналась так: «Ниже мы рассмотрим условия, при которых электромагнитный луч создает себе диэлектрический волновод и распространяется не дифрагируя». Авторы не знали о работе Аскарьяна, но позднее, узнав о ней, признали его приоритет. В отличие от Таланова, рассмотревшего в своей первой работе лишь движение электромагнитной волны в плоском канале, они рассчитали цилиндрический канал, возникающий в подавляющем большинстве опытов с лазерами. Их короткая статья содержит глубокое и ясное рассмотрение физической сущности двух процессов, способных вызвать самофокусировку и канализацию света, – электрострикции и керр-эффекта.
Таунсу и его сотрудникам удалось рассчитать, при какой мощности, в каких условиях будет подавлена дифракционная расходимость луча и он окажется захваченным в канал. Правда, значение критической мощности было вычислено только при учете электрострикции. Существенным ограничением явилось и то, что математические вычисления относились только к состоянию, при котором луч уже захвачен в канал. Как это произошло и возможен ли вообще процесс захвата, осталось за пределами математического рассмотрения.
Статья Таунса с сотрудниками стимулировала целый ряд исследований. П. Келли, по-видимому, первым рассмотрел процесс схлопывания первоначально параллельного пучка света и установил, на каком расстоянии после вхождения света в нелинейную среду происходит самофокусировка. Интересно, что, указывая на своих предшественников, Келли располагает их в таком порядке: Аскарьян, Таланов, Таунс с сотрудниками.
Келли получил свои главные результаты при помощи численных расчетов. Вскоре Таланов, а затем сотрудники Московского государственного университета С.А. Ахманов, А.П. Сухорукое и Р.В. Хохлов опубликовали аналитическое решение той же задачи. Однако приближенные методы, которые пришлось применить для решения этой весьма сложной задачи, теряли силу вблизи точки схлопывания. Численное решение Келли тоже не говорило ничего о том, что же происходит с пучком вблизи точки схлопывания и за ней. Мнение, высказанное впоследствии Келли, а также Талановым, таково: лазерный луч за точкой схлопывания переходит в очень тонкую и чрезвычайно интенсивную световую нить. То же писали Таунс и другие. Лишь Хохлов и его товарищи из МГУ допускали, что за точкой схлопывания возможно образование более сложного и узкого своеобразного световода, подобного нити с периодически изменяющимся поперечным сечением.
Все последующие теоретические работы исходили из того, что за точкой схлопывания возникает волноводный режим распространения света. Все они были посвящены уточнению отдельных деталей, повышению строгости математических выкладок, уточнению расчетов.
Все, решительно все экспериментальные работы тех лет подтверждали предсказание теории. В них сообщалось о том, что за точкой схлопывания наблюдается волноводное распространение света в виде очень тонких нитей. Экспериментаторы соревновались в уточнении мельчайших подробностей, изучении разнообразных частных случаев, в увеличении точности измерений.
Все сходились на том, что эта область квантовой электроники в основном завершена. Были написаны итоговые статьи и монографии. Интересы исследователей постепенно перемещались в другие области науки.
Тонкое место
Как это часто бывает, благополучие и рутина чреваты катаклизмами. Они тем неожиданнее, чем более основательным кажется возведенное здание. Но катаклизмы безошибочно указывают, что под фундаментом нет достаточно надежной основы. Хорошо, если слабина своевременно обнаружена. Ее можно ликвидировать и продолжать украшать и наращивать башни.
Однако нужно, чтобы делом занялся не эстет-архитектор, а любитель основательности, не гнушающийся сумрачной серости грунтов и обыденности фундаментов.
В нашей истории, к счастью, такой любитель нашелся. Молодой сотрудник лаборатории колебаний ФИАН, представитель четвертого поколения школы Мандельштама, Владимир Николаевич Луговой обратил внимание на известное всем тонкое место теории самофокусировки. В нем как в фокусе сошлись все варианты теории. Большинство авторов понимало трудности, возникавшие при попытке точно описать поведение лазерных лучей вблизи точки схлопывания. Понимали – и даже не пытались детально разобраться в том, что там происходит. Ведь приходилось ограничиваться приближенными теориями. А приближенные теории говорили разное.
Из одних получалось, что по мере приближения к этой точке лучи, ранее изгибавшиеся к оси, постепенно начинали подходить к ней все более полого. В других теориях эти лучи выпрямлялись и входили в область, где теория теряла силу, так что продолжения всех лучей должны были бы сойтись в точке схлопывания, как в фокусе. В третьих... но не будем углубляться в различные варианты.
Во всех случаях оставалось совершенно неясным, как же лучи света ведут себя там, куда теоретики не могут проникнуть. Что с ними происходит дальше? Не берет ли дифракционная расходимость верх над нелинейными процессами там, где лучи сходятся слишком сильно? Не начинают ли сказываться какие-то еще не учтенные процессы?
Если лучи сходятся к оси все более полого, то сходятся ли они где-нибудь в точку или плавно переходят в тонкий канал, как думало большинство? Если же они, выпрямляясь, вонзаются в точку схлопывания, как в фокус линзы, то почему они не расходятся за фокусом? А может быть, они там вновь изгибаются и плавно входят в узкий канал? Или за фокусом лучи действительно расходятся, чтобы собраться вновь в следующем фокусе?
Эксперименты, впервые вполне уверенно произведенные Чао, Гармайр и Таунсом, обнаружили узкий канал, в который обращался луч, пройдя в среде именно тот путь, который предсказывала ему теория. Последующие опыты в большинстве случаев давали аналогичные результаты. Правда, в некоторых условиях возникали какие-то обрывки светящихся нитей, которые можно было толковать в пользу гипотезы периодически сужающихся каналов.
При очень больших мощностях картина чрезвычайно усложнялась. Вместо одного узкого канала возникало несколько, а иногда и множество таких нитей. Экспериментаторы ставили удивительные по тонкости замысла и исполнения опыты. Они наблюдали то, что никогда не пришло бы в голову ни Ньютону, ни Фарадею, ни Френелю – королям оптики. В те годы они и не помышляли о том, как глубок океан тайн света.
Но современных теоретиков все эти находки экспериментаторов не смутили. В нелинейных средах возможно и не такое. Теория убедительно показала, что уже на ранних стадиях фокусировки исходный пучок может распасться на несколько частей, тяготеющих к различным областям. В статьях замелькало магическое слово «неустойчивость». Действительно, из более точных уравнений следовало, что при очень больших мощностях пучки становятся неустойчивыми и стремятся распасться на отдельные нити. Казалось, все хорошо, но... что же все-таки происходило с пучками там, вблизи точек схлопывания?
Луговой не мог удовлетвориться общепринятым, основанным на опыте представлением о том, что там, безусловно, возникает узкий канал. Его не удовлетворяло это «безусловно», этот постулат, который нужно было принять на веру, как постулат о параллельности в геометрии Эвклида.
Свыше двух тысячелетий на этом постулате строилась геометрия, а затем и физика. До тех пор пока не нашлись люди, отказавшиеся принимать его на веру. Что будет, если отказаться от этого постулата, спросили они себя. Можно ли обойтись без него? Невозможно, ответила строгая математика.
Но, может быть, его можно заменить другим, упорствовали критиканы. Попробуйте, соглашалась математика.
И они попробовали, Лобачевский и Риман. И создали две новые геометрии. Две неэвклидовы геометрии. Они работали независимо и, конечно, случайно избрали различные из двух существующих возможностей – параллельные линии в бесконечности сходятся или параллельные линии в бесконечности расходятся. Оба варианта столь же правомочны, как постулат Эвклида.
Теперь неэвклидова геометрия – полноправный отдел математики и надежный инструмент физики. Вселенная, изучаемая в огромных масштабах, не может быть описана при помощи эвклидовой геометрии. Вблизи больших масс отклонения от нее заметны и при сравнительно малых расстояниях. Это установил автор теорий относительности Эйнштейн, а затем убедительно подтвердил опыт.
Но если даже чисто геометрический постулат может оказаться лишь особым, частным случаем, то как можно примириться с постулатом в физической теории!
И Луговой сообщает о своих сомнениях тому же семинару, перед которым за пять лет до этого Аскарьян выдвинул идею самофокусировки и самоканализации света. Он обращает внимание на то, что приближенные аналитические методы, основанные на предположении о неизменной форме пучка, не могут дать правильной картины за точкой схлопывания. Он показал, что при распространении интенсивного светового пучка в нелинейной среде его форма существенно изменяется.
Статья Лугового, содержащая эти соображения и результаты, появилась в журнале «Доклады Академии наук СССР» в 1967 году. Но во всех экспериментальных работах, продолжавших появляться до следующего года, сообщалось о том, что за точкой схлопывания пучка наблюдается волноводное распространение света в виде очень тонких ярких нитей.
Ответ машины
Только Прохоров поддержал своего молодого сотрудника. Он сам включился в эти исследования и привлек к ним А.Л. Дышко, специалистку по вычислительной математике. Раз приближенные аналитические методы оказались непригодными, пришлось призвать на помощь электронную вычислительную машину. Предстояла сложная трудоемкая работа.
Решили отказаться от каких-либо предвзятых предположений о судьбе пучка за точкой схлопывания. Машине были предложены уравнения, описывающие наиболее простую задачу: на плоскую границу вещества, о котором известно, что в нем наблюдается квадратичный эффект Керра, падает пучок света. Машина должна была определить, что будет происходить с ним по мере продвижения в глубь вещества.
Легко представить волнение, с которым исследователи ожидали результат, рождавшийся в электронных недрах вычислительной машины БЭСМ-6.
Проработав положенное время, машина сообщила: при этих условиях волноводного режима нет. За точкой схлопывания образуется некоторое число фокусов – областей с очень высокой концентрацией энергии и чрезвычайно малыми размерами.
Ответ в корне расходился не только со всеми вариантами существующих теорий, но и противоречил всем известным экспериментальным данным!
Было от чего прийти в уныние. Ведь они надеялись получить строгую и надежную картину перехода от постепенной самофокусировки через точку схлопывания к тонкой нити. Но ошибки не было. Уравнения верны, и машина сработала правильно.
Тогда они предложили машине вторую задачу, точнее соответствующую условиям большинства опытов. Перед попаданием в нелинейную среду пучок света предварительно проходит собирающую линзу. Машина решила и эти уравнения.
Ответ был тем же. Никакой нити. Цепочка отдельных фокусов.
В чем же дело? Может, постановка задачи в чем-то не соответствует реальности? Возможно, цепочка фокусов результат того, что из всего многообразия явлений при расчете учитывался только эффект Керра? Вполне вероятно и такое предположение – возникновение тонких нитей вызвано не эффектом Керра, а каким-то другим процессом.
Уравнения были усложнены. Теперь они отражали и действие вынужденного комбинационного рассеяния. Явления хорошо изученного, проявляющегося особенно сильно при больших интенсивностях света и известного как одна из причин самофокусировки.
Снова часы ожидания перед машиной. И новый ответ. Многофокусная структура должна существовать! Учет вынужденного комбинационного рассеяния приводит только к изменению численных величин. Узкого канала не возникает и в этом случае.
Казалось, оставался единственный путь. Перебирать один за другим все эффекты, способные привести к формированию тонких каналов. Записывать все новые, вероятно все более сложные, уравнения. И уповать на мощь БЭСМ-6. Возможно, что будет обнаружен эффект, ответственный за волноводное распространение света, за образование тонких, ярко светящихся нитей.
Нужна мощная интуиция для того, чтобы избрать другой путь. Отвергнуть очевидность многочисленных опытов. Отказаться от обаяния общепризнанных теорий. Сойти с проторенной тропы.
Прохоров и Луговой решили по-новому взглянуть на ответы машины. Не как на ошибку. Не как на результат неверного выбора исходных физических данных. А как на правильный вывод, соответствующий слишком упрощенно поставленной задаче. Ведь гигантский импульс лазера длится мгновение, точнее – десятки наносекунд, проще – сотые части от миллионной доли секунды. А они предлагали машине задачи, в которых пучки света действуют непрерывно с постоянной мощностью. И в зависимости от этой мощности получали различные расстояния до множества фокусов.
Вот где причина! Во время гигантской вспышки лазера мощность света меняется от нуля до огромной величины. Расстояния до фокусов не могут при этом быть постоянными. Они должны изменяться вместе с увеличением мощности. Фокусы должны перемещаться!
Бегущие фокусы?
Да, бегущие фокусы. Вот разгадка тайны. Может быть, они бегут так быстро, что и для глаза, и для приборов они сливаются в яркую непрерывную нить?
Новые сложные расчеты оправдали надежды. Да, конечно, фокусы движутся! При условиях, характерных для большинства экспериментов, выполненных в различных лабораториях, фокусы летят со скоростью, близкой к миллиарду сантиметров в секунду. Скорость, всего в тридцать раз меньшая, чем скорость света!
Не мудрено, что траектория их движения выглядит как яркая светящаяся нить.
Теперь слово опять должно быть предоставлено эксперименту. Но эксперименту, поставленному в полном соответствии с условиями, для которых Прохорову и его сотрудникам удалось сформулировать задачу и выполнить соответствующие расчеты.
Первое сообщение о том, что наблюдаемые сбоку тонкие световые нити представляют собой след движущихся фокусов, явилось плодом совместной работы сотрудника Прохорова В.В. Коробкина и А.И. Аллока, выполненной в США, где Коробкин работал в течение нескольких месяцев. Затем М.Т. Лой и И.Р. Шен сообщили, что в результате самых тщательных исследований, выполненных в соответствии с условиями теории Прохорова и его сотрудников, они не обнаружили волноводного распространения света, но наблюдали движущиеся фокусы. Наконец, Прохоров с возвратившимся домой Коробкиным, Р.В. Серовым и М.Я. Щелевым не только наблюдали движущиеся фокусы, но и измерили их скорость. Она хорошо совпадала с предсказаниями теории.
Казалось, достаточно. Но Прохоров и Луговой не прекратили работы. Вместе с А.А. Абрамовым они доказали, что не только гигантские импульсы, но и в тысячу раз более короткие импульсы, те, которые принято называть сверхкороткими, тоже образуют движущиеся фокусы.
Подведем итоги. Твердо установлено теоретически и экспериментально, что мощный лазерный импульс, падающий на вещество, в котором возможен эффект Керра, самофокусируется. В результате возникает цепочка фокусов, чрезвычайно быстро движущихся по направлению к лазеру.
А как же тонкие нити? Как самоканализация света и его волноводное распространение, предсказанные Аскарьяном? Что делать с многочисленными теориями маститых авторов? Как относиться ко всем экспериментам, подтвердившим эти теории?
Не мне решать такие проблемы. Ведь факты – упрямая вещь. Но важно и толкование фактов.
Бегущие фокусы стали объективной реальностью. Они существуют, и условия их существования точно установлены.
Ясно и то, что теория волноводного распространения света еще не завершена. Слабые места ее известны. Не исключено, что и расчеты, аналогичные проведенным Дашко, Луговым и Прохоровым, выполненные для более сложных условий, соответствующих большинству прежних опытов, приведут к нитям или множеству нитей, а не к движущимся фокусам, соответствующим более простым условиям.
История еще не закончена. Невозможно предсказать, кто и где сделает следующий, решающий шаг. Но не сомневаюсь, что это будет человек или группа людей, столь же бестрепетно критикующих общепринятые теории, как Аскарьян и Луговой, обладающих чувством нового и глубокой интуицией Прохорова. Словом, то будут люди, не боящиеся идти против течения.
Глава VI. Качели
Лазер рождает лазер
Наши недостатки лишь продолжение наших достоинств. Как часто приходится сталкиваться с этим будничным вариантом великого закона единства противоположностей. Сфера действия его безгранична. А сила состоит в том, что в нем заключена возможность бесконечного развития. Ибо если достоинства неотделимы от недостатков, то и в недостатках заключены скрытые достоинства. Нужно лишь суметь обнаружить их и развить.
Все преимущества лазеров по сравнению с обычными источниками света обязаны тому, что в них неразрывно сочетаются квантовые свойства атомов, ионов или молекул с радиотехническим принципом обратной связи. Такое сочетание обеспечивает излучению лазера высокую упорядоченность в пространстве и во времени – высокую когерентность, говорят для краткости физики. Именно когерентность позволяет направлять все его излучение на маленькие площадки, размеры которых соизмеримы с длиной волны света. В его луче, сжатом до микронных размеров, плотность энергии столь велика, что ни одно из веществ не способно ему противостоять. Здесь бессильны представления старой оптики.
Когерентность дает лазерам возможность соперничать по стабильности с лучшими квантовыми стандартами частоты радиодиапазона. Но стабильность, неизменность его частоты, не всегда благо. Спектроскописты, химики, биологи, специалисты многих областей науки и техники мечтали о лазере, частоту которого можно было бы изменять, подобно тому как радист-оператор поворотом рукоятки заставляет свой передатчик работать на наиболее благоприятной частоте.
Многие говорят, что самая интересная часть современной оптики – нелинейная оптика. Это утверждение, вероятно, справедливо. Ведь нелинейная оптика стала общедоступной лишь с рождением лазеров, в то время как обычной линейной оптике не менее трехсот, а может быть, и более двух тысяч лет. Трудно найти что-либо новое в почве, перелопаченной на такую глубину. Не мудрено, что все, о чем писалось до сих пор во второй части этой книги, так или иначе связано с нелинейной оптикой, оптикой предельно сконцентрированных световых полей.
В долазерную эру оптики имели дело лишь с крайне слабыми полями, и для наблюдения нелинейных явлений приходилось создавать очень чувствительную аппаратуру. Обсуждая эту ситуацию, академик Вавилов, введший в науку термин «нелинейная оптика», писал: «Физики настолько свыклись с линейностью обыденной оптики, что до сих пор нет даже формального строгого математического аппарата для решения реальных «нелинейных» оптических задач».
С появлением лазеров, особенно лазеров с управляемой добротностью резонатора, дающих гигантские импульсы света мощностью в миллиарды ватт, нелинейные явления приобретают большое, иногда решающее значение не только для физики, но и для технических применений. Кстати, именно член-корреспондент Академии наук СССР Рем Викторович Хохлов со своим сотрудником профессором Сергеем Александровичем Ахмановым написали первую монографию в этой области, суммировав и значительно развив в ней и теорию, и математический аппарат, который имел в виду Вавилов. Впрочем, во время работы над этой монографией они были на восемь лет моложе и не имели столь высоких ученых званий.
В предыдущих абзацах мы уже несколько раз применили выражение «нелинейные явления». Иногда совершенно невозможно избежать научных терминов. Однако специальные термины, в том числе и научные, вовсе не засоряют язык. Наоборот, они делают его проще, яснее и позволяют достичь краткости. Одно-два слова заменяют целую фразу, а иногда и несколько фраз.
Представим себе, например, график движения поезда, идущего с постоянной скоростью. Изображая путь, пройденный им за какое-нибудь время, мы получим прямую линию. Опуская слово «прямая», физик говорит о «линейном законе движения», имея в виду, что пройденный путь пропорционален времени. Если же график изображает путь, пройденный свободно падающим камнем, то мы увидим на нем не прямую, а изогнутую линию. Не вдаваясь в подробности, не уточняя истинной формы этой кривой, физик говорит, что она не прямолинейна. Для краткости он говорит: она нелинейна. Это значит, что путь, пройденный падающим камнем, не пропорционален времени, он связан со временем нелинейной зависимостью.
В воздухе, стекле, воде, в большинстве известных сред путь, пройденный светом, пропорционален времени. Значит, скорость света в таких средах постоянна. Для большинства веществ это верно при всех достижимых интенсивностях света, даже для лучей оптических квантовых генераторов. Но есть небольшое количество кристаллов, в которых скорость света меняется в зависимости от его силы. Более того, эта зависимость изменяется, если меняется направление света по отношению к ребрам кристалла и его граням. Такой закон распространения света естественно назвать нелинейным. Иногда слово «нелинейный» относят к самому кристаллу, имея в виду, что закон распространения света в кристалле отличен от линейного.
В радиотехнике давно применяют нелинейные зависимости тока от напряжения, наблюдающиеся в радиолампах и полупроводниковых приборах. Их используют, например, для умножения частоты. Это значит, что, имея ламповый генератор какой-то определенной частоты, можно, не меняя ничего в генераторе, получить колебания вдвое, или втрое, или даже вдесятеро большей частоты.
Естественно, что после создания оптических квантовых генераторов физики решили получить нечто подобное и в оптике. Ведь до сих пор мощные квантовые генераторы работают только на двух длинах волн – квантовые генераторы с ионами неодима дают инфракрасные волны длиной около одного микрона, и рубиновые генераторы с ионами хрома излучают красный свет длиной около 0,69 микрона. Между тем, удвоив частоту неодимового генератора, то есть уменьшив его волну вдвое – до 0,5 микрона, можно получить зеленый свет. А утроить его частоту – значит получить ультрафиолетовые лучи длиной в 0,33 микрона. И не какие-нибудь лучи, а почти идеальные! Лазер рождает лазер!
Аналогичный результат дает умножение частоты рубинового генератора. Его вторая гармоника попадает в фиолетовую часть спектра, а третья дает жесткие ультрафиолетовые лучи.
Пропуская луч квантового генератора через специально выращенные кристаллы, Франкен и его сотрудники первыми смогли зарегистрировать появление излучения удвоенной частоты. Однако коэффициент преобразования был очень мал. Лишь ничтожная доля энергии падающей волны превращалась в энергию волны удвоенной частоты. Хохлов и его сотрудники глубоко проанализировали новое явление и поняли, что причина лежит в различии скоростей обеих волн. В результате, действия различных участков кристалла не складываются, а даже частично уничтожаются. Но уравнения подсказали Хохлову выход из положения. Оказывается, в кристалле можно найти направления, в которых падающая волна и волна с умноженной частотой бегут с такими скоростями, при которых все точки работают согласованно и результаты их действия складываются. При этом большая часть энергии падающей волны превращается в энергию волны с умноженной частотой. Так были созданы весьма эффективные оптические генераторы гармоник.
Гром с ясного неба
Перечитав предыдущий абзац, я увидела, что прошла мимо самого интересного. В нем все верно. Да, уравнения подсказали! Но, пока они не написаны, эта фраза лишена истинного смысла. А писать уравнения в такой вот научно-художественной книге не принято. Вернувшись еще немного назад, я прочитала: «в радиотехнике давно применяют...», «физики решили...» Как все просто звучит.
На деле все было весьма не просто. Радиотехника подсказала только цель. Сколько ни освещай лазером радиолампу, диод или транзистор, световой гармоники не получишь. Конечно, физики и не пытались сделать что-либо столь несуразное. Их защищало то, что обычно называют физической интуицией, а по существу – способность применять предыдущий опыт в новых ситуациях. Эта способность вытекает из глубокой общности законов природы и из единства математических методов описания природы. В данном случае речь идет о нели – нейной теории колебаний, разработанной главным образом учеными из школ Мандельштама и Папалекси, Крылова и Боголюбова. Заметим, кстати, что Хохлов и Ахманов принадлежат к третьему поколению школы Мандельштама – Папалекси, о которой нам уже не раз приходилось упоминать.
Нелинейные явления в волновых процессах уже давно встречались акустикам. Теперь они доставляют неприятности каждому из нас громоподобными звуками, возникающими всякий раз, когда самолет преодолевает звуковой барьер. Дело в том, что звук – волна сжатия и разрежения воздуха. Пока звук слаб, он бежит в воздухе без искажения. Только это позволяет нам разговаривать и наслаждаться музыкой. Но если звук слишком силен...
Там где воздух сжат, скорость звука больше, чем в местах разрежения. Поэтому отдельные участки сильной звуковой волны нагоняют другие ее участки. Плавные звуковые волны искажаются. В них возникают крутые фронты, подобные нарастающим отвесным гребням прибоя, все увеличивающимся по мере набегания морских волн на прибрежную отмель. Такие искаженные и все нарастающие фронты звуковых волн, бегущие в воздухе много быстрее, чем обычные звуки, и есть то, чем тревожит нас сверхзвуковая авиация.
Самым важным из всего сказанного было для оптиков то, что самолет, летящий быстрее звука, не возбуждает ударной волны, так же как не появляется она при дозвуковой скорости. Она возникает только, когда скорость самолета близка к скорости звука. Только при таких условиях звук, возбуждаемый летящим самолетом в течение многих периодов звуковой волны, усиливает ее все больше и больше. При этом почти вся энергия двигателей самолета перекачивается в энергию звуковых волн. Двигатели должны иметь большой запас мощности, чтобы оторвать самолет от высасывающих энергию сопутствующих звуковых волн, прорвать звуковой барьер, обогнать жадные волны, уничтожить синхронизм, вследствие которого самолет вынужден тащить на себе массы воздуха, превращающиеся для него в тяжелые путы.
Если бы, не стремясь к скорости, летчик захотел уподобить свой самолет громыхающей колеснице Ильи-пророка, ему пришлось бы лететь точно со скоростью звука.
Именно такую цель ставили перед собой физики: фаза луча лазера должна бежать в веществе точно с той же скоростью, как и фаза порождаемой им волны второй или третьей, а иногда и более высокой гармоники. Здесь приходится применить слово «фаза», для того чтобы не вызвать неудовольствия тех, кто уже привык к этому слову. Те же, кто предпочитает обходиться без него, вполне могут продолжать думать о волне как таковой, имея в виду гребень простой волны, форма которой совпадает с известной каждому школьнику синусоидой.