Текст книги "Крушение парадоксов"
Автор книги: Ирина Радунская
Жанры:
Прочая научная литература
,сообщить о нарушении
Текущая страница: 11 (всего у книги 14 страниц)
Расстояния между пучностями равны расстояниям между узлами. Они вдвое меньше длины волны, бегущей по свободной поверхности воды вдали от препятствия, куда не доходят отраженные волны.
Желая передать краски окружающего мира, Липман нашел способ фиксировать в фотоэмульсии стоячие волны света. Поверхностный слой эмульсии, примыкающий к зеркалу, остается прозрачным. Темные слои, отделенные равными прозрачными промежутками, – следы пучностей световых волн, то есть тех областей, где амплитуды падающих и отраженных волн складывались и интенсивность фотохимического действия была максимальной. Расстояния между слоями равны половине длины световой волны, для зеленого цвета равной 0,5 микрона, для красного примерно 0,6, для фиолетового – 0,4. Поэтому, в зависимости от цвета соответствующего места изображения меняется расстояние между темными слоями на липмановской фотографии.
Именно в этих расстояниях зафиксированы сведения о расцветке изображения. Эта тонкость, эта ювелирная работа света и покорила Виктора. Изящное сплетение пучностей и узлов как бы ждало дешифратора. Казалось, этот код никому не понять. А ключ к расшифровке липмановских фотографий был тем не менее очень прост. Нужно подставить их под пучок яркого белого света. Пластинка отразит его так, что от частей, в которых слои отстоят на 0,25 микрона, побегут интенсивные волны зеленого цвета, там, где эти слои отстоят на 0,3 микрона, мы увидим красный свет, и так далее. Каждый участок пластинки действует как фильтр, оптический фильтр, выделяющий из хаоса белого света лишь волны, длина которых вдвое больше расстояния между слоями эмульсии. Только эти волны отражаются от каждого из слоев согласованно, так что каждая отраженная волна складывается с остальными, отраженными от других слоев. Волны, длина которых не соответствует расстоянию между слоями, отражаются от них хаотически. Каждая часть «чуждого» света, отразившаяся от различных слоев, имеет свою фазу, скажет физик. Поэтому, налагаясь, они не усиливают друг друга, а, смешиваясь между собой, образуют неопределенный сероватый фон, смазывающий окраску липмановских фотографий. Впрочем, качество этих фотографий ухудшалось и природой самой фотоэмульсии. Зернышки серебра на ней обычно слишком крупны, чтобы в черно-белом коде зашифровать всю световую гамму реального мира.
Как-то Денисюк в присутствии Виктора обсуждал со своими товарищами, аспирантами Кушпилем и Субботиным, проблемы научного творчества. Это был сложный и запутанный разговор. Виктор запомнил из него только один факт, рассказанный Денисюком.
Оказывается, Липман тоже мечтал о способе точного воссоздания объемной структуры предметов и даже провел большую работу в этом направлении. Но чем объяснить, что он, человек, первым сумевший зафиксировать в фотоэмульсии распределение волновых полей, стоявший на прямом пути к голографии – к открытию, которое вскоре принесло Денисюку и звание доктора наук honoris causa, и звание члена-корреспондента АН СССР, и Ленинскую премию, избрал другой путь?
Он хотел создать «окно в пространство предметов» и первым предложил применить для этого растровую оптику, ту, на которой основано современное стереокино и стереооткрытки. Но что это по сравнению с голографией, до которой он так и не дотянулся. Липман свернул обратно с перспективного пути волновой оптики в тупик геометрической оптики и уже не смог из него выйти.
Копия мира
Денисюк тратил время и силы на создание толстослойных эмульсий, объединяющих большую разрешающую способность с большой чувствительностью, вовсе не для усовершенствования цветных фотографий Липмана. Денисюк, реалист и настоящий ученый, отнюдь не стремился конкурировать таким путем с дешевыми и удобными методами современной цветной фотографии.
Он шел к более важным и трудным целям. Он стремился зашифровать в эмульсии обширную информацию о внешнем мире. Он хотел научиться воссоздавать предметы во всей их объемности. Хотел реальных копий. Хотел фантастику сделать былью.
Конечно, глядя на установку Денисюка, Виктор не без основания вспомнил о методе Липмана. Так по одному слову иногда вспоминаешь целое стихотворение.
Однако в методах Денисюка и Липмана общим было только одно – в обоих стоячие волны света фиксируются в толще фотографической эмульсии. Все остальное различно – и цель, и метод получения стоячих волн, и сам источник света. В установке Денисюка не было не только фотоаппарата, без которого невозможно получение липмановских фотографий, но даже фотографического объектива. Зато ему приходилось защищать свою установку от любого постороннего света, работать в затемненной комнате.
Виктора поражала простота этой установки. Больше всего места на массивном столе занимала мощная ртутная лампа в непроницаемом металлическом кожухе, охлаждаемом водой. Свет лампы выходил наружу лишь через специальный фильтр, пропускающий только чрезвычайно узкую часть спектра. Этот свет делился на две части. Одна попадала на плоское зеркало и отражалась от него на фотографическую пластинку. Другая часть освещала миниатюрную шкалку, укрепленную на специальном штативе. На шкалке были видны тоненькие черточки и маленькие цифры.
Из полной темноты призрачным зеленым светом вырваны эта шкалка и прямоугольная фотопластинка. Больше ничего не видно. Все случайные блики поглощаются тяжелыми черными занавесями. Даже присутствие зеркала и самой лампы угадывается лишь по блеску случайных пылинок. Долго, очень долго длится экспозиция, А потом пластинка проходит обычные процедуры проявления, фиксирования, промывки и сушки.
Виктор внимательно рассматривал эти пластинки, стараясь найти на них какие-нибудь признаки изображения. Но тщетно. Пластинки казались серыми, будто они были засвечены неопытным фотографом. Правда, под микроскопом на них обнаруживались непонятные призрачные узоры. Но и микроскоп не показывал ничего похожего на шкалку, образ которой должен был быть зафиксирован на пластинке.
Однако стоило осветить эту пластинку ярким солнечным светом или просто светом сильной электрической лампы, как происходило чудо. За пластинкой возникала шкалка, точно такая, как та, что стояла здесь несколько часов назад, а теперь лежит в коробочке, спрятанной в ящике стола.
Виктора поражало, что шкалка казалась освещенной зеленым светом, хотя свет, падающий на пластинку, был белым. Но еще более неожиданным было другое. Передвигая голову из стороны в сторону, можно было разглядывать шкалку с разных сторон. Она казалась столь реальной, что хотелось потрогать ее рукой, но протянутая рука встречала лишь пустоту. Там, где глаза ясно видели шкалку, ничего не было!
Денисюк торжествовал, наверное, не менее, чем известный всему свету художник, нарисовавший на своей картине муху так, что каждый, кто подходил к картине, хотел ее смахнуть. Говорят, что эта муха родилась в результате соревнования двух гениев, стремившихся превзойти друг друга в реалистичности своих картин.
У Денисюка пока не было соперника, и он не мог столь вещественно убедиться в силе своего искусства. Впрочем, соперник у него был, правда на другом конце Европы, но Денисюк пока о нем ничего не знал и не мог сравнить свои результаты и его.
Пока он радовался один. Ему удалось зафиксировать образ предмета и воспроизвести его! Пусть на самой пластинке и не видно ничего похожего на объект. Но и слово, написанное на бумаге, ничем не похоже на то, что оно обозначает. Однако оно по-своему отображает мир, и человеку достаточно прочесть его, чтобы воссоздать его смысл. Пластинка Денисюка делала почти то же. На ней не было обычного изображения, но при подходящем освещении удивительно жизненное изображение появлялось за пластинкой.
Денисюк очень сожалел, что не смог показать такую пластинку Юдину. Евгений Федорович долго и сильно болел, а потом скончался от рака горла незадолго до окончания решающего опыта. Он успел увидеть лишь первое подтверждение правильности идей своего аспиранта. Денисюк изготовил на своей установке образ вогнутого зеркала, и этот образ вел себя как настоящее вогнутое зеркало, сводил лучи света в точку. Как и ожидал Денисюк, образ зеркала напоминал зонную пластинку Френеля, ведь оптические свойства выпуклой линзы и вогнутого зеркала почти одинаковы.
Но если зонную пластинку обычно изготавливали при помощи циркуля, то Денисюк получил свой «шифр» зеркала чисто оптическим путем. И шифр этот был не плоским, как обычная зонная пластинка, а многослойным, объемным. И благодаря этому пластинка Денисюка отбирала и фокусировала только лучи того цвета, при помощи которого на ней был получен зашифрованный образ зеркала.
И Юдин, уже тяжело больной, поздравил своего аспиранта с замечательной удачей.
Предшественник
Смерть Юдина была тяжелым ударом для Денисюка. В то время он все еще считался чудаком, и его работы не принимались всерьез.
Вскоре Денисюку пришлось перенести и еще одно потрясение. Один из сотрудников оптического института, возвратившись из заграничной командировки, привез сборник аннотаций, докладов, прочитанных на конференции, в которой ему пришлось участвовать. В аннотации одного из докладов, показавшейся ему интересной, Денисюк обнаружил ссылку на статью некоего Дениса Габора. Что зацепило его? Он поспешил в библиотеку и, о ужас, прочитал в четкой и ясной форме то, что он во многих вариантах заносил в свою лабораторную тетрадь!
Те же мысли о несовершенстве фотографии, те же идеи о возможности фиксации волнового поля объекта. Денисюку показалось, что он повторил работу, выполненную Габором за десять лет до того...
Он отыскал все доступные ему работы Габора. Сидел не разгибаясь несколько дней и ночей... И у него отлегло от сердца. Да, они стремились к одной цели, исходили из тех же предпосылок, но пошли различными путями. В их работе много общего. Но были и чрезвычайно важные различия. И не просто различия. Каждый из них добился несколько иного.
Денисюк считал, что лучший способ понять сложную проблему – это попытаться рассказать о ней другому. Поэтому, помня добросовестность и тщательность доклада, сделанного Виктором на предыдущем семинаре, он предложил Виктору подготовить доклад на студенческом кружке о работах Габора и охотно помогал ему.
Денис Габор, член Королевского общества Великобритании, обладатель многих научных степеней и званий, родился в Будапеште, где после школы приступил к изучению электротехники. Закончил специальное образование в Берлине и в 1927 году получил диплом доктора-инженера за работу «Запись переходных процессов в электрических цепях при помощи катодного осциллографа». В этой работе он первым применил для записи переходных процессов магнитную линзу с железным сердечником и бистабильную электронную схему. И то и другое сейчас широко применяется и в специальных устройствах, включая вычислительные машины, и в большинстве телевизоров.
Габор многие годы работал в Берлине, исследуя электрический разряд в газах, в том числе и то, что теперь называется плазмой. В ходе этих работ он изобрел способ соединять металл со стеклом, применяя тонкие ленточки из молибдена.
Вскоре после захвата власти фашистами Габор покидает Берлин и переселяется в Англию. Здесь он изобретает катодную трубку с памятью, широко применяемую и во многих вычислительных машинах, и в радиолокаторах. Здесь в результате длительной работы он изобрел новый способ получения изображений.
В то время Габор считал важнейшей задачей усовершенствование электронного микроскопа. Электронный микроскоп отличается от обычного не принципом действия, а лишь тем, что в нем изображение образуется не световыми волнами, а электронами, попадающими на фотографическую эмульсию после того, – как они прошли через исследуемый объект. В том месте эмульсии, куда попал электрон, после проявления возникает почернение. Там, куда попало больше электронов, почернение оказывается более интенсивным.
Линзы, используемые в электронном микроскопе, конечно, отличаются от оптических линз. Это магнитные или электрические линзы, обмотки или электроды которых создают соответственно магнитные или электрические поля, искривляющие траектории полета электронов, подобно тому как оптические линзы искривляют световые лучи. Несмотря на существенное физическое различие этих линз, результаты их действия оказываются весьма близкими.
Электронный микроскоп, как и оптический, формирует в плоскости, в которой расположена фотоэмульсия, резкое и четкое изображение только от малой части исследуемого объекта. Резкие изображения остальных частей могут быть получены соответствующим перемещением эмульсии или изменением тока через магнитные линзы или напряжения на электрических линзах. Одновременно получить на эмульсии резкое изображение всей толщи объекта невозможно. Не сфокусированные части объекта дают на снимке фон, лишь ухудшающий качество изображения и не дающий никакой дополнительной информации об объекте.
Габор вновь и вновь возвращается к мысли о том, что поток электронов, прошедших сквозь объект, несет в себе полную информацию о всех взаимодействиях, испытанных электронами в толще объекта. И в нем крепло стремление найти путь к использованию такой информации. Он ясно понимал, что успех, достигнутый при решении этой специальной задачи, будет иметь гораздо более широкое значение. Ведь и свет, падающий на объектив фотоаппарата или на зрачок глаза, содержит обширную информацию о всех предметах, от которых исходит свет. Но ни глаз, ни фотоаппарат, ни электронный микроскоп не могут одновременно образовать резкого изображения всех деталей независимо от их местоположения. Такова природа образования изображения при помощи линз. Линзы отображают на плоскости только плоские объекты, расположенные в определенных «сопряженных» плоскостях. Почернение фотоэмульсии пропорционально интенсивности воздействующих потоков фотонов или электронов. В результате фотоэмульсия фиксирует лишь ничтожную часть информации, переносимой светом или электронами.
Габор первым противопоставил скудость фотоизображения богатству информации, содержащейся в световом или электронном потоке. Он же указал путь преодоления этого разрыва.
Удача Габора
Путь, предложенный Габором, и сейчас кажется парадоксальным. Он состоял из нескольких скачков.
Первый – отказ от применения линз, ибо, формируя изображение одной плоскости объекта, линзы приводят к потере информации об остальной, причем большей, его части.
Второй – фиксирование на фотоэмульсии не изображения объекта, а по возможности всей информации о нем, переносимой пучком электронов или лучами света.
Третий – использование записанной информации для того, чтобы впоследствии создавать пучки света, несущие в себе всю эту информацию.
И четвертый – формирование при помощи этих пучков света изображения того объекта, информация о котором была зафиксирована в первой стадии процесса.
Габор подчеркивал, что радикальное отличие нового метода от обычной фотографии, которая записывает на фотоэмульсии изображение предмета в один прием, состоит в том, что процесс получения изображения разбит на два этапа, происходящих в различные моменты и совершенно независимо. Сперва на фотоэмульсию записывается информация об объекте, содержащаяся в потоке света или электронов, взаимодействующих с объектом. После проявления записанная информация может храниться сколь угодно долго, и, когда нужно, можно приступить ко второму этапу – воссозданию изображения на основе этой информации. Габор назвал свой метод голографией, прибегнув, как обычно, к греческому языку. «Голограмма» означает «полная запись». Воссоздание изображения при помощи голограммы он назвал «реконструкцией».
Рассматривая голограмму невооруженным глазом или даже под микроскопом, на ней невозможно обнаружить никакого изображения объекта. Невооруженному глазу пластинка представляется просто испорченной. Под микроскопом на ней можно увидеть хаотическое скопление мельчайших пятнышек, образующих кое-где узоры, напоминающие рябь, поднимаемую порывистым ветром на поверхности тихого пруда.
Всякому, имеющему хоть малейший опыт в фотографии, ясно, что получить такую запись, попросту поместив фотоэмульсию на пути потока электронов или света, взаимодействовавших с объектом, нельзя. Фотоэмульсия, реагирующая лишь на интенсивность потока, сама по себе способна зафиксировать только ничтожно малую часть информации, заключенной в этом потоке. Наивная попытка такого рода неизбежно приведет к порче пластинки. Она будет засвечена, скажет фотолюбитель.
Для того чтобы записанная информация оказалась более полной, необходимо принять особые меры. Заслуга Габора определяется тем, что он не только понял слабость известных методов, но предложил новый и нашел путь его реализации.
Габор первоначально имел дело с электронным микроскопом. Но его идеи весьма универсальны и применимы ко всем случаям, когда информация о каком-либо объекте переносится волнами. Это могут быть и звуковые волны. Электронный микроскоп лишь частный случай. Для его действия существенно, что электроны подчиняются волновым закономерностям. Волновые свойства электронов доминируют в электронном микроскопе в такой же мере, как их корпускулярные свойства играют основную роль в работе радиоламп и фотоэлементов.
Готовясь к докладу на семинаре, Виктор внимательно изучил те статьи Габора, которые ему удалось найти.
Его, как и Денисюка, захватили работы Габора, заинтересовала сама личность ученого. Их обоих удивили и разносторонность интересов Габора, и широта подхода к казалось бы локальным проблемам. Он показался обоим личностью обаятельной и несколько даже загадочной. Даже биография шестидесятилетнего ученого была необычной и удивляла непоследовательной щедростью и расточительностью научных идей. И Денисюк и Виктор много думали о нем, гадали о его научных перспективах. Доклад получился общим.
Для того чтобы рассказать товарищам, как волновая сущность электронов проявляется в электронном микроскопе, и передать всю глубину идей Габора, Виктор смог обойтись без помощи квантовой физики и даже без ссылок на ранний вариант квантовой механики – волновую теорию де Бройля.
– Достаточно лишь принять, – сказал он в предисловии, – как опытный факт, что все то, что при работе оптического микроскопа является результатом действия световых волн, наблюдается и в электронном микроскопе. Все, за исключением масштаба. Ибо длина волн видимого света лежит в пределах от 0,4 до 0,8 микрона, в то время как волны, связанные с электронами, много короче.
Шутки русалки
Свой рассказ Виктор начал не со света, а с волн, бегущих по поверхности воды после падения камня. Он призвал на помощь маленьких гномиков, живущих на берегу пруда и неспособных видеть, что происходит в его середине.
– Если они будут, – говорил Виктор, – в безветренную погоду наблюдать за волнами, приходящими к берегу, они смогут узнать многое. Например, если волны имеют форму кусков окружности, значит они вышли из какого-то центра. Определив, как идут касательные в двух точках этой волны, гномы легко выяснят не только расстояние до точки, из которой вышла волна, но и ее точное положение на поверхности пруда.
– А теперь представьте себе, – продолжал он, – что русалка, живущая в этом пруду, захотела подшутить над нашими гномами, слишком хваставшими своим умением. Взяв у Амура его лук, она прицелилась в гнома, но вместо того, чтобы выпустить разящую стрелу, повернула лук горизонтально и ударила им по поверхности воды. Вы представляете себе, каким русалочьим смехом она залилась, когда бесхитростный гном сообщил ей точные координаты падения камня? И как она с самоуверенностью первокурсницы доказывала, что лук, согнутый по форме части окружности, возбудил волну, которую невозможно отличить от порожденной камнем, если наблюдать ее лишь в малом участке удаленного берега. И ведь она права, – уже серьезно заключил Виктор, – даже миллионы гномов, став плечом к плечу вокруг всего пруда, не смогут сказать, упал ли на поверхность воды камень, или красавица забросила туда свой обруч.
Мораль проста. Зная, какая информация передается волной, можно создать точно такую же волну иным способом и воспроизвести эту информацию еще раз, не повторяя события, бывшего ее первоначальным источником.
Два камня, одновременно упавшие в воду, возбудят две кольцевые системы волн. Чем больше камней, тем сложнее картина, образуемая волнами. Но, зная законы физики и проведя достаточно внимательно необходимые наблюдения, можно не только выяснить, в каких точках должны были падать камни, но и воспроизвести эти волны, воздействуй на поверхность воды шаблонами соответствующей формы.
Именно такую задачу поставил и решил Габор. Он нашел способ зафиксировать волну, взаимодействовавшую с объектом наблюдения, так, чтобы можно было впоследствии воспроизводить такую же волну сколь угодно много раз. Габор определил, насколько подробно необходимо фиксировать информацию о записываемой волне, чтобы реконструируемая волна воспроизводила сведения об объекте. Он указал, каким путем достичь поставленной цели, и на опыте подтвердил правильность нового метода.
Для того чтобы зафиксировать световую волну, отображающую объект, он ставил на ее пути фотопластинку и направлял на нее также часть света прямо от источника, освещавшего объект. Складываясь между собой, обе эти волны образовывали систему стоячих волн, которая и фиксировалась в эмульсии после ее проявления в виде системы мельчайших темных и светлых полосок. Так получалась голограмма. Потом Габор направлял на голограмму свет от того же источника. И происходила поразительная вещь. Темные полоски голограммы устраняли из света все лишнее, все то, что не несло информацию о предмете. А пропускали через себя лишь точно такие же световые волны, которые при получении голограммы попадали на нее от объекта.
Если теперь свет, прошедший через голограмму, попадал в глаза наблюдателю, у того создавалась полная иллюзия того, что там, за голограммой, имеется реальный объект.
– Однако, – закончил Виктор, – несмотря на несомненную перспективность работ Габора, они не получили развития. Более того, они оказались надолго забытыми. Причина заключалась в отсутствии источников света, необходимых для эффективной реализации идей Габора.
Теперь мы могли бы сказать: Габор, подобно хорошему разведчику, действовал далеко впереди общего фронта науки и техники. Да и доклад Виктора относился еще к долазерной эре. Развивая его рассуждения, можно охарактеризовать ситуацию, не изменившуюся и ко времени начала работ Денисюка, следующим примером. Дело обстояло так, как если бы русалка, желая еще раз подшутить над гномами, раздробила камень в мелкий порошок и высыпала его в воду. В результате до берега добежала лишь столь беспорядочная и слабая рябь, что гномы не смогли ничего понять даже с помощью наиболее совершенной электронной вычислительной машины.
Все источники света, существовавшие в период первых работ Габора, как, впрочем, и те, с которыми мы и теперь встречаемся в обычных условиях, возбуждают световые волны примерно так же, как песчинки в опыте нашей русалки. Каждая частичка раскаленной проволочки в лампе накаливания, каждый атом в газосветной лампе излучают световые волны независимо от других. Наш глаз приспособлен к этому. Он реагирует лишь на интенсивность света. Так же ведет себя фотоэмульсия. Им важна не тонкая структура приходящих волн, а только полная энергия, приносимая всеми волнами. Точнее, глаз и фотоэмульсия фиксируют распределение световой энергии по светочувствительной поверхности. Но сведений о распределении энергии совершенно недостаточно для того, чтобы воспроизвести еще раз совокупность волн, действовавших на фотоэмульсию.
Свои опыты Габор проводил со световыми волнами. Эксперимент с электронами был намного сложнее, да и необходимость в нем в существенной мере отпала. Другие исследователи к тому времени значительно усовершенствовали электронный микроскоп, так что несовершенная еще методика Габора оказалась неконкурентоспособной.
Однако, как показали дальнейшие статьи Габора, которые в изобилии появлялись в научных журналах, Габор не был обескуражен. В науке оставалось много нерешенных проблем, способных привлечь настоящего исследователя, и он занялся другими работами, надолго отказавшись от «неудачной». Габор построил структурный вариант теории информации, значительно отличающийся от статистической теории Винера – Котельникова – Шеннона. Он разрешил загадочный парадокс Ленгмюра, объяснив, почему и как электроны в низкотемпературной плазме способны неожиданно быстро приходить к равновесному – максвелловскому состоянию.
Добавим и то, о чем не мог знать Виктор, докладывая в далеком от нас 1959 году о работах Габора. Теперь Габору 70 лет, но он продолжает активно работать. Габор живо интересуется социальными проблемами. Его книга «Изобретая будущее», изданная в 1963 году и переведенная на семь языков, оказала заметное влияние на современную футурологию – науку, имеющую целью научно прогнозировать будущее развитие человеческого общества, включая науку и многое другое. Габор работает и над созданием плоского телевизионного экрана, который можно было бы вешать на стену, как картину...
Объемная голография
Внимательно изучив работы Габора и сравнив их со своими, Денисюк смог со всей ясностью установить и их идейную общность, и всю глубину их различия.
Общей была задача отображения объекта путем фиксации волнового поля, исходящего от объекта. Общим был метод фиксации, основанный на сравнении этого волнового поля с опорным волновым полем, например с полем сферических волн. Общим был способ расшифровки записи, при котором на голограмму (Денисюку понравился этот термин) направлялась волна такой же структуры, как и структура опорной волны, использованной при получении голограммы. Этим и ограничивалась общность. На ее фоне четко выступали различия. И были ясно видны причины, направившие ученых различными путями. Габор отталкивался от электронного микроскопа. Может быть, поэтому и в его оптических опытах опорный пучок света направлялся на пластинку с той же стороны, что и свет от объекта.
Денисюк, может быть бессознательно, опирался на опыт Липмана, у которого эти пучки падали на эмульсию с различных сторон. У Габора интерференционные максимумы отстояли сравнительно далеко один от другого, и в каждом участке эмульсии располагался лишь один из них. Можно сказать, что эмульсия давала плоский разрез поля стоячих волн. В опытах Денисюка интерференционные максимумы располагались очень близко один от другого, так что в толще эмульсии укладывалось много таких максимумов. В эмульсии фиксировалась объемная структура стоячих волн. При этом Денисюку, конечно, нужны были очень хорошие эмульсии.
Такие, казалось, незначительные различия вели к существенным последствиям. Расшифровывать плоские голограммы Габора, рассматривать зафиксированный на них объект можно было только при столь же монохроматическом (одноцветном) свете, как тот, при котором голограмма была получена. Но ограниченная чувствительность глаза приводила при этом к резкому ограничению объема пространства, отображенного голограммой. Для увеличения объема требуется сужать спектр, а применение узкополосных фильтров уменьшает яркость света, и глаз ничего не видит.
Объемные голограммы Денисюка можно рассматривать при ярком белом свете. Они сами, подобно липмановским фотографиям, отфильтровывают нужную часть спектра. А применение узкополосных фильтров при получении голограммы не ограничивается чувствительностью глаза. Оно приводит только к увеличению времени экспозиции. Одно это различие давало Денисюку возможность применять голографию там, где метод Габора был совершенно непригоден.
Но обнаружилось и второе существенное различие. При рассматривании голограммы Габора образовывалось сразу два изображения объекта – действительное, подобное тому, что видно через выпуклую линзу, и мнимое, аналогичное возникающему в обычном зеркале. Изображения налагались друг на друга, вызывая взаимные помехи.
Метод Денисюка приводил к одновременному восстановлению лишь одного изображения объекта. Это могло быть действительное изображение или мнимое, в зависимости от того, с какой стороны направлялся на голограмму пучок света при восстановлении изображения. Благодаря такому свойству объемной голограммы не возникало искажений, свойственных методу Габора.
Не менее отчетливо видны и различия между объемной голограммой Денисюка и цветной фотографией Липмана, объединяемыми тем, что та и другая основаны на возникновении в толще эмульсии пространственной системы, соответствующей распределению пучностей стоячих волн света. В фотографиях Липмана белый свет, отраженный от объекта, попадает на объектив, а объектив рисует плоское изображение объекта на эмульсин. Ртутное зеркало, отражая обратно свет, прошедший эмульсию, образует в ней систему стоячих волн. После проявления в эмульсии возникают слои почернения, выделяющие из белого света цвета, «окрашивающие» изображение. Все сведения о пространственной структуре объекта оказываются утраченными в результате комбинации специфических свойств объектива и фотоэмульсии.
В голограмме Денисюка зеркало, образующее опорный пучок света, вынесено на некоторое расстояние от эмульсии. Он использует упорядоченный фильтром одноцветный свет, выделенный из излучения ртутной лампы. И жертвует воспроизведением окраски объекта. Но он может обойтись без объектива, без непосредственного формирования изображения и благодаря этому получает возможность полностью фиксировать сведения о пространственной структуре объекта, о его форме.
Но Денисюк называет свою голограмму объемной не потому, что она способна воспроизводить объемность объекта, этого можно достигнуть и при помощи плоской голограммы Габора, а лишь потому, что его голограмма формируется во всем объеме толстослойной эмульсии. Только это позволяет ему реконструировать изображение в белом свете и избежать искажений, свойственных голограммам Габора.
В отличие от Габора Денисюк не прекращал работы в области голографии. Дело двигалось медленно. Основным препятствием оставалось отсутствие подходящего источника света. Но, может быть, Денисюк предчувствовал грядущую революцию в этой области. Ведь квантовая электроника уже тогда достигла высокого уровня развития. Денисюк не занимался ею. У него хватало своих проблем. Однако он внимательно следил за работами Басова и Прохорова, за статьями других советских и иностранных ученых.