355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Иосиф Полак » Время и календарь » Текст книги (страница 2)
Время и календарь
  • Текст добавлен: 29 марта 2017, 01:01

Текст книги "Время и календарь"


Автор книги: Иосиф Полак



сообщить о нарушении

Текущая страница: 2 (всего у книги 4 страниц)

6. ДЕКРЕТНОЕ ВРЕМЯ

С лета 1930 года наш Союз живёт по несколько изменённому поясному времени. Это изменение произошло следующим образом. После первой мировой войны в разных странах, в том числе и в СССР, стали производить перевод часовой стрелки на час или больше вперёд. Перевод делался на определённый календарный срок, большею частью на лето, путём правительственного распоряжения, поэтому такое время называют декретным поясным временем, или просто декретным времен ем. Последний такой перевод стрелки, во всех поясах на час вперёд, у нас был сделан декретом Совнаркома СССР 16 июня 1930 года. Срок действия этого декрета был продлён 9 февраля 1931 года впредь до отмены.

Поэтому в настоящее время (1947 год) каждый населённый пункт СССР живёт не по времени того пояса, в котором он находится, а по времени смежного восточного пояса. Москва, например, живёт по времени не 2-го пояса, а 3-го. Именно это время, идущее на 3 часа впереди мирового времени, теперь называется московским временем.

Такое время введено для более полного использования населением солнечного света (в утренние часы), что ведёт к некоторой экономии электроэнергии и к более равномерному её расходованию в течение суток.

Легко сообразить, что в Москве часы теперь поставлены не на 30 минут 17 секунд назад, а на 29 минут 43 секунды вперёд против местного времени.

Все числа предыдущего примера выходят, таким образом, на 1 час больше, и для 7 ноября в Москве мы имеем:

Восход солнца…7 час. 49 мин. по декретному времени.

Кульминация…12 час. 14 мин. по декретному времени.

Заход…16 час. 39 мин. по декретному времени.

Все подобные расчёты приходится делать только астрономам или любителям астрономии. Для широких же кругов населения декретное время так же удобно, как международное поясное время. Минуты и секунды в обоих временах одинаковые, во всех поясах одни и те же, так что при переезде из пояса в пояс меняются только часы.

7. ГДЕ НАЧИНАЕТСЯ ДЕНЬ?

В 5-й главе было упомянуто, что в 12-часовом поясе (у Берингова пролива) время на 12 часов впереди гринвичского, так что когда в Гринвиче полдень воскресенья, то на Чукотском носу уже 12 часов ночи с воскресенья на понедельник. Но, с другой стороны, читатель узнал, что на западном побережье США часы на 9 часов позади гринвичских, а если обратиться к карте, то мы найдём местности (например, крайняя оконечность Аляски – у Берингова пролива), где часы должны быть даже на 12 часов позади гринвичских. Следовательно, там в тот же гринвичский воскресный полдень будет ещё только полночь с субботы на воскресенье.

Таким образом в Беринговом проливе для американца только ещё начинается воскресенье, тогда как для советского гражданина с противоположного берега воскресенье уже кончилось и начинается понедельник. Кто из них прав?

Не следует думать, что это недоразумение придумано для примера; нет, такая встреча и такой спор действительно происходили.

Русские казаки, продвигаясь на восток, перешли в XVIII столетии Берингов пролив и заняли Аляску. Здесь они встретились с английскими переселенцами, которые проникли в Аляску со стороны Атлантического океана, двигаясь к западу.

Оба народа при своём движении вели одинаковый счёт дней недели; тем не менее, когда они встретились, то оказалось, что русские праздновали воскресенье на день раньше американцев.

Ещё интереснее другой случай из истории географических открытий. Когда в 1522 году вернулась в Испанию экспедиция Магеллана, впервые совершившая кругосветное плавание, то моряки этой экспедиции (сам Магеллан погиб в пути) узнали, что они вернулись в пятницу, между тем как по их счёту был четверг. Ошибиться они не могли, так как тщательно вели корабельный журнал. Тем не менее, выходило, что они совершили религиозное преступление: во время путешествия праздновали все праздники не в надлежащие дни. Во избежание чего-либо худшего, они поспешили принести публичное церковное покаяние.

Объясняется это так. Путешественник, объехавший Землю, подобно Магеллану, в направлении с востока на запад, то-есть навстречу суточному вращению земного шара, сделает вокруг земной оси меньше оборотов, чем человек, никуда не ездивший. Предположим, что этот последний обернулся вместе с земным шаром около земной оси 1000 раз (столько дней приблизительно продолжалось путешествие Магеллана). Путешественник же за это время, кроме 1000 оборотов, сделает ещё один полный оборот вокруг земной оси, но во встречном направлении: этот оборот придётся, следовательно, не прибавить к общему числу всех оборотов, то-есть суток, а вычесть из него. Получится 999 суток. Столько раз для путешественника взойдёт и зайдёт Солнце, столько дней он и насчитает в своём корабельном журнале. Если бы он плыл в противоположном направлении, то насчитал бы один день лишний.

Чтобы ошибки подобного рода не повторялись, была установлена, по международному соглашению, так называемая линия изменения даты. Эта линия приблизительно совпадает со средней линией 12-часового пояса, то-есть с меридианом, имеющим долготу 180 градусов от Гринвича. Она проходит между Азией и Америкой по Берингову проливу и идёт дальше на юг по Тихому океану, нигде не касаясь суши. Во всём 12-м поясе время по часам одно и то же: на 12 часов впереди гринвичского времени или на 12 часов позади, что то же самое. Но день по календарю по разные стороны линии изменения даты всегда разный: к западу от линии (ка азиатской стороне) – на сутки впереди против американского счёта. Таким образом эту линию можно назвать также линией, на которой начинается день: каждое новое число наступает прежде всего на этой линии. Например, новый год встречают раньше всех жители Чукотки и Новой Зеландии, затем Камчатки, Австралии и т. д. Через 10 часов новый год начинается в московском поясе, через 17 часов в Нью-Йорке, через 20 часов в Сан-Франциско и только через 23 часа на Аляске и Сандвичевых островах.

Представим себе, что к линии изменения даты одновременно, например, около полудня, подходят два корабля, один с востока (от Америки), другой с запада (от Азии). На первом корабле день был, положим, понедельник 1 января, а на втором, следовательно, вторник 2 января. Этот свой счёт каждый корабль сохраняет до полуночи. Когда же начинаются новые сутки, то на кораблях производится «изменение даты»: на первом корабле, идущем от Америки к Азии, один день пропускается, и следующий день записывается как среда 3 января; наоборот, на корабле, идущем к Америке, один и тот же день считается два раза: после вторника 2 января («европейского») следующий день опять будет вторник 2 января («американский»).

8. СЛУЖБА ВРЕМЕНИ

Точное время теперь узнают большею частью по радио. Когда радио не было, часы выверяли обычно у часовщиков, которые узнавали время на телеграфе. Откуда же получают время работники радио и телеграфа?

Ответ на этот вопрос один: из астрономической обсерватории, так как точное время определяется с помощью астрономических наблюдений, на обсерватории, и нигде больше.

Для определения времени на обсерваториях употребляется так называемый пассажный инструмент (рис. 8).

Рис. 8. Пассажный инструмент.

Этот инструмент установлен так, что его зрительная труба всегда направлена по меридиану, и поэтому с ним можно наблюдать каждое светило только в тот момент, когда оно проходит через меридиан (в момент кульминации); Солнце, например, в пассажный инструмент можно видеть только в истинный полдень. Поэтому, как только Солнце появится в поле зрения этого инструмента, мы знаем, что наступил полдень. А так как на каждый день момент истинного полдня известен, то, наблюдая прохождение Солнца через меридиан, можно проверить наши часы.

Для большей точности в поле зрения пассажного инструмента натягивается вертикальная нить, которая должна обозначать меридиан. Полднем (истинным) считается момент, когда центр Солнца пройдёт через нить. Но этот момент трудно определить точно, так как на диске Солнца центр не отмечен. Поэтому предпочитают определять время по наблюдениям прохождения через меридиан не Солнца, а звёзд, которые в трубу видны точками.

На обсерваториях употребляется теперь почти исключительно этот способ. Он основан на том, что каждая звезда проходит через меридиан в строго определённый свой момент звёздного времени (как было объяснено в главе 2-й). Для многих звёзд эти моменты теперь точно определены. Поэтому достаточно пронаблюдать в пассажный инструмент прохождение такой звезды через меридианную нить, и астроном будет знать звёздное время в момент прохождения звезды. Это время он и поставит на особых часах, которые идут по звёздному времени, то-есть уходят вперёд против обыкновенных часов на 3 минуты 56 секунд в сутки.

Определив звёздное время, астроном вычисляет среднее солнечное время и ставит его на обыкновенных часах. Это будет местное время обсерватории; его затем легко перевести в поясное или декретное время, по которому живёт население.

Мы дали здесь только общий план определения времени на обсерватории. В действительности дело происходит гораздо сложнее, так как невозможно сделать абсолютно точный инструмент и невозможно произвести наблюдение с абсолютной точностью. Поэтому момент прохождения звезды через меридиан мы всегда определим с некоторой ошибкой. Чтобы по возможности уменьшить эту ошибку, помещают в поле зрения не одну нить, а целый ряд их на точно известных расстояниях друг от друга, и отмечают прохождение звезды через каждую из нитей; наблюдают не одну звезду, а несколько, не менее 6–8; наконец, применяют особую, отчасти автоматическую, регистрацию моментов прохождения звезды через нити и т. д.

В результате этих ухищрений на обсерваториях удаётся определять время или, как обычно говорят, «поправку часов», с чрезвычайно большой точностью, именно, с возможной ошибкой не более двух-трёх сотых долей секунды! Вот за такую величину, почти неуловимую человеческими чувствами, может ручаться астроном при определении поправки своих часов.

Но недостаточно определить время, надо уметь его сохранить до следующего астрономического определения. Поэтому на обсерватории должны быть особенно точные часы, за показание которых можно было бы ручаться и в те дни, когда определение времени по звёздам не производится.

Астрономические часы по своему устройству похожи на обычные стенные часы с маятником, без боя, но только все части их механизма сделаны чрезвычайно тщательно.

Особенное внимание при изготовлении часов обращают на маятник: ведь часы идут правильно только в том случае, если маятник качается всё время с одинаковой скоростью. А так как изменение температуры в воздушного давления сильно влияет на качание маятника, то главные часы обсерватории обыкновенно устанавливают в таком помещении, где температура мало меняется, например, в подвале; вдобавок их заключают ещё под закупоренный стеклянный колпак, внутри которого поддерживается постоянное воздушное давление (рис. 9).

Рис. 9. Астрономические часы под стеклянным колпаком.

Понятно, что хорошие часы надо оберегать от сотрясений и как можно реже трогать. Вот почему обсерваторские часы, к удивлению посетителей нередко показывают неверное время. Астроном довольствуется тем, что почаще определяет и записывает поправку своих часов, но стрелок не переставляет, так как это расстроило бы ход часов. Если даже поставить часы совершенно точно, то через некоторое время они опять станут показывать неверно, так как нет часов, которые шли бы абсолютно правильно, не уходили бы вперёд и не отставали. Поэтому астрономы заботятся лишь о том, чтобы часы уходили вперёд иди отставали каждые сутки по возможности на одну и ту же величину. Эта величина называется ходом часов; у хороших часов ход должен оставаться одинаковым в течение сравнительно долгого времени. Желательно, конечно, чтобы ход был невелик, тогда и поправка будет изменяться медленно, и её точнее можно будет определить для нужного момента. У лучших современных часов изменения хода составляют несколько сотых долей секунды в сутки. По таким часам можно получить верное время с ошибкой меньше 0,1 секунды даже неделю спустя после проверки их по звёздам (после «определения поправки»), настолько хорошо они «держат ход».

9. ТРОПИЧЕСКИЙ ГОД И КАЛЕНДАРНЫЙ ГОД

Наша основная единица времени, солнечные сутки, очень неудобна для измерения длинных периодов.

Если бы мы вздумали измерять днями, например, возраст человека, то получались бы такие большие числа, что нам пришлось бы сделать то, что всегда делают в подобных случаях: взять более крупную единицу.

Например, при измерении веса основная единица есть грамм; но для взвешивания больших тяжестей мы употребляем единицу в 1000 граммов (килограмм) и в 1000 килограммов (тонну). Кажется, что и для измерения времени проще всего было бы составить новые единицы, например по 100 или по 1000 дней каждая, и придумать для них особые названия. Но тут-то выявляется резкое отличие времени от других величин: более крупная единица времени, как бы предназначенная для измерения длинных промежутков, уже дана самой природой, и обойти её мы не можем. Единица эта – год.

Правильное периодическое возвращение времён года, особенно в умеренном климате, почти так же заметно, как смена дня и ночи; а так как с временами года связан весь распорядок хозяйственной жизни, то человек уже с незапамятных времён стал пользоваться годом как естественной мерой времени. И впоследствии в календарях всех народов год являлся основной единицей для измерения длинных промежутков времени, и так, конечно, будет всегда.

Но год имеет неприятную особенность: эта «крупная» единица времени не содержит целого числа «мелких» единиц – дней; длина так называемого тропического года составляет, как уже говорилось в главе 3-й, 365 дней 5 часов 48 минут 46 секунд. Это и является причиной ряда затруднений.

Представим себе, что для взвешивания малых тяжестей употребляется грамм, а для больших – не килограмм, а фунт. Так как фунт не содержит целого числа граммов (1 русский фунт равен 409,51 грамма), то перевод граммов в фунты и обратно отнимал бы очень много времени. Поэтому для облегчения расчётов пришлось бы округлить число граммов в «фунте». Это и случилось у нас при введении метрической системы: вспомним, что пока население не привыкло к килограммам, некоторое время была в употреблении переходная мера 400 грамм, которую считали за фунт.

Что получится, если мы станем измерять время точными «тропическими» годами?

Представим себе, что было бы решено с полуночи на 1 января 1947 года считать дальше «тропическими» годами. Так как истинный год содержит сверх 365 дней ещё почти 6 часов, то следующий, новый 1948 год начнётся не в 0 часов 1 января, а почти в 6 часов утра 1 января; следующий 1949 год начнётся ещё на столько же позже – около 12 часов дня 1 января, а до этого часа будет считаться ещё старый, 1948 год. С течением времени начало года будет переходить на другие числа месяца, на 2, 3, 4 января и т. д. Ясно, какие неудобства появились бы при таком порядке; поэтому никогда ни один народ и не пробовал считать точными тропическими годами.

Очевидно, для счёта времени можно употреблять только такой год, в котором всегда было бы целое число дней. Чтобы отличить такой год от тропического, его называют гражданским или календарным годом; длина его должна быть по возможности близка к тропическому году.

Теперь мы подходим к самому важному месту календарного вопроса. Календарный год может быть либо длиннее тропического года, либо короче. Рассмотрим, что произойдёт в этих обоих случаях.

Что будет, если метр, которым нам приходится измерять длинное расстояние, короче истинного, положим, на 1/4 миллиметра, и измерение мы производим с точностью только до 1 миллиметра, не обращая внимания на величины меньше 1 миллиметра? Пока мы измеряем отрезок в 2–3 метра, заметной ошибки не будет, но, отложив наш неверный метр 4 раза, мы в измерении ошибёмся на миллиметр, при измерении 8 метров– уже на 2 миллиметра, при 12 метрах – на 3 миллиметра и т. д. При измерении, например 4 километров, то-есть 4000 метров, мы сделаем ошибку уже в целый метр.

В какую сторону мы ошибёмся? Наш метр слишком короток; на измеряемой длине он уложится большее число раз, чем нормальный метр, и в результате измерения мы получим число большее, чем следует. Мы будем считать, что прошли 4 километра, а действительная длина составляет только 3 километра 999 метров. Обратно, если наш метр длиннее истинного, то мы получим длину меньше настоящей.

То же будет и с измерением времени календарными годами. Если календарный год короче астрономического, то в измеряемом промежутке времени мы насчитаем больше годов и частей года, чем это есть на самом деле. Возьмём календарный год в 365 дней (как в древнем Египте), и будем считать для простоты, что он ровно на 6 часов короче тропического. Примем за начало года 21 марта – момент начала весны. Ошибка в длине нашего года, постепенно накопляясь, через 4 года составит целые сутки; пройдёт ровно 4 тропических года, опять наступит весеннее равноденствие, но по нашему счёту пройдёт больше, именно 4 года и 1 день, и мы будем считать день равноденствия не 21, а 22 марта. Ещё через 4 года равноденствие по нашему календарю перейдёт на 23 марта, потом на 24 и т. д.

Таким образом, если календарный год короче тропического, то времена года по такому календарю наступают с течением времени всё позже, переходят на более поздние числа. Если же календарный год длиннее тропического, то начало времён года будет переходить постепенно на всё более ранние числа; весеннее равноденствие придётся вместо 21 на 20 марта, потом на 19, 18 и т. д.

Мы взяли в нашем примере для длины календарного года целое число дней, самое близкое к длине тропического года, и всё-таки оказалось, что времена года переходят на другие числа слишком быстро – каждые четыре года на один день. Такое передвижение было бы очень заметно в течение уже одного поколения. Школьнику в младших классах приходилось бы заучивать одну дату наступления весны или зимы, в старших классах – другую, а в вузе, чего доброго, ещё третью. Через 720 лет смещение составило бы полгода, март стал бы осенним месяцем, а сентябрь – весенним, зима наступала бы в июне, а лето – в декабре. Читая описание сражения, случившегося в таком-то календарном месяце несколько столетий тому назад, мы не сразу сообразили бы, зимой или летом оно происходило.

Все эти неудобства, конечно, не слишком серьёзны, но всё-таки желательно, чтобы времена года в течение хотя бы нескольких столетий были связаны с одними и теми же месяцами и числами. Как это сделать?

Ответ очевиден: календарный год не должен иметь всегда одно и то же число дней; время от времени его длину приходится изменять, чтобы держать счёт дней в согласии с небесными явлениями. Если бы тропический год содержал 365 дней и ровно 6 часов, то в 4 года накоплялась бы ошибка ровно в один день. Чтобы исправить эту разницу, надо к каждому четвёртому календарному году прибавлять один день, считать в нём не 365 дней, а 366. Тогда мы опять придём к согласию с тропическим годом.

Действительно, 3 простых года по 365 дней и 1 год в 366 дней (так называемый високосный) (вместе составят в точности столько же дней, как 4 года по 365 дней 6 часов каждый. Если после трёх простых годов четвёртый год всегда считается високосным, то (можно сказать, что мы измеряем время годом, содержащим 365 дней 6 часов, или 365 1/4 суток. Этот отрезок времени, равный:

365 дням 6 часам = 365,25 суток,

называется юлианским годом (происхождение этого названия будет объяснено дальше).

10. МЕСЯЦ И НЕДЕЛЯ

Год содержит слишком большое число дней; поэтому необходимо иметь меры времени, промежуточные между днём и годом. Такие меры человек нашёл в движении Луны.

Красивая картина изменений Луны привлекла к себе внимание человека раньше всех других небесных явлений. Одна и та же форма Луны, или, как говорят, одна и та же лунная фаза повторяется по истечении сравнительно короткого промежутка времени, так что число дней в нём было довольно легко сосчитать и запомнить. Так возникла ещё одна единица для измерения времени – месяц, промежуток времени между двумя одинаковыми фазами Луны, например, от новолуния до следующего новолуния или от полнолуния до полнолуния.

Точная длина лунного месяца составляет 29 дней 12 часов 44 минуты 2,9 секунды = 29,53059 дня, то-есть приблизительно 29 суток с половиной.

Почти все народы начали считать время месяцами раньше счёта годами. Число дней в месяце брали, конечно, целое. Но вскоре люди убедились, что если считать в месяце всегда 29 дней, то новолуние переходит на более поздние числа; через год, например, оно перейдёт с 1-го числа на 7-е. При 30-дневном месяце переход лунных фаз будет итти в обратную сторону. Поэтому уже в глубокой древности народы, жившие по Луне, научились чередовать 30-дневные и 29-дневные месяцы с таким расчётом, чтобы новолуние всё время приходилось на начало месяца.

Теперь мы живём не по лунному, а по солнечному календарю. Наши «месяцы» с движением Луны не согласованы, и только название этой единицы времени напоминает нам о её происхождении.

Остаётся ещё одна мера времени, именно, семидневная неделя. Происхождение её также связано с движением Луны: четверть лунного месяца, например промежуток от первой четверти до полнолуния, приблизительно составляет семь дней. Но так как истинная длина четырёх лунных четвертей, то-есть лунного месяца, на 1 1/2 суток больше четырёх недель, то уже в следующем лунном месяце лунные фазы наступают не в те дни недели, на которые они приходились в предыдущем месяце, а на 1 или 2 дня позже.

Счёт неделями возник в глубокой древности у вавилонян (халдеев), китайцев и некоторых других народов, Древние греки и римляне недели не знали; она проникла в Рим с Востока вместе с христианством. Потом из Египта был взят обычай называть дни недели именами Солнца, Луны и пяти планет. Эти планетные названия дней сохранились в западноевропейских языках до нашего времени.


    Ваша оценка произведения:

Популярные книги за неделю