Текст книги "Открытие «шестого» чувства"
Автор книги: Игорь Акимушкин
сообщить о нарушении
Текущая страница: 3 (всего у книги 5 страниц)
Может быть, магнитное поле и силы Кориолиса служили гидами?
Мысль о том, что, возможно, птицы ориентируются, ощущая направление силовых линий магнитного, поля Земли, впервые высказал в 1855 году наш соотечественник Миддендорф. С тех пор идея эта на какое-то время не раз становилась предметом жаркой полемики среди орнитологов. А сравнительно недавно американский физик Йегли и вслед за ним и американские журналы с большим шумом объявили, что удалось, наконец, экспериментально доказать наличие у птиц магнитного чувства. Но доказательства эти, как видно, немногих убедили.
Пробовали помещать птиц в сильное магнитное поле, облучали их короткими радиоволнами, бомбардировали лучами радаров, прикрепляли к крыльям намагниченные пластинки. Результаты либо утверждали, что птицы совершенно не чувствительны к Электромагнитным и магнитным полям, либо, в лучшем случае, были неопределенными.
Тогда вспомнили о силах Кориолиса. Они проявляют себя, когда какое-нибудь тело движется по поверхности земли или летит над ней. Первопричина их – вращение Земли. В северном полушарии силы Кориолиса стараются отклонить всякое движущееся тело вправо, в южном – влево.
Так вот предположили, что, быть может, эти силы отклоняют и жидкость, заполняющую полукружные каналы внутреннего уха птицы, а жидкость давит на стенки этих каналов, на особые чувствительные волосики. В зависимости от направления полета давление это будет иметь разную силу, что в свою очередь может служить указателем при поисках правильного курса.
Действительно, полукружные каналы (они есть и в ушах человека) представляют идеальный, казалось бы, орган для восприятия сил Кориолиса. Это если судить по анатомическому устройству ушей. Однако математические вычисления показали, что влияние сил, вызванных вращением Земли, на такие маломощные «приемники», как тончайшие трубочки в миниатюрном ухе певчей пташки, будет меньшим даже Броуновского движения, то есть молекулы жидкости, заключенные в полукружных каналах, будут перемещаться с большей силой и энергией, подчиняясь постоянно действующим законам термодинамики, чем силам Кориолиса. Значит, влияние последних будет полностью подавлено хаосом теплового движения молекул.
Так одна за другой наукой были отвергнуты все гипотезы, которые пытались как-то объяснить интереснейшую из тайн природы. И еще в 1942 году один из ученых, немало потрудившийся над этой головоломкой, писал: «Таким образом, мы не видим пока пути, который приблизил бы нас к разрешению загадки… Пока нам остается лишь не очень приятная обязанность отвергнуть фантастические, надуманные гипотезы и убрать их с дороги как строительный мусор».
А еще через несколько лет доктор Крамер начал свои опыты, которые помогли, наконец, найти правильную дорогу среди строительного мусора отвергнутых теорий.
Опыты Крамера
Давно было замечено, что певчие птицы, скворцы, например, славки и сорокопуты, даже в клетках, когда приходит пора улетать на юг или, наоборот, весной лететь на север, очень беспокоятся. В эту пору они сидят обычно на жердочках, повернувшись головой в направлении перелета, то есть в ту сторону, куда летят сейчас над лесами и полями их сородичи и куда устремились бы и они, если б были на свободе. Птицы бьют в возбуждении крыльями, словно им невмоготу сидеть на месте, а иногда срываются с жердочек и пытаются лететь.
Даже в клетке птицы не ошибаются в выборе правильного направления. Крамер решил проверить, будет ли разница в их поведении в солнечные и ненастные дни.
Он сконструировал клетку диаметром в 70 сантиметров целиком из металлической сетки и поместил ее в небольшом, закрытом со всех сторон павильоне. Лишь вверху были проделаны шесть окон. Птицы в клетке, подвешенной внутри этого павильона, могли видеть только небо и ничего больше. Павильон был на колесах и легко поворачивался вокруг своей оси. Лежа в павильоне под клеткой, можно было наблюдать за поведением птиц через решетчатое дно клетки.
И вот оказалось, что когда небо было затянуто облаками, скворцы летали и прыгали по клетке во всех направлениях.
Но как только облака рассеивались и солнце выглядывало из-за туч, сейчас же поведение птиц становилось иным. Все движения скворцов теперь были направлены в одну сторону– на северо-запад. Активность их, как выражаются специалисты, была строго ориентированной.
Тогда к каждому окошку павильона прикрепили по зеркалу и повернули их так, что солнечный свет стал падать на клетку под другим углом; не с юга-запада, а с юго-востока.
Птицы сразу же повернулись на юго-запад, хотя только что не могли оторвать взоры от северо-запада.
Еще раз и под другим углом повернули зеркала – пересели и скворцы на жердочке.
Так просто и бесспорно было доказано, что птицы в выборе нужного им направления ориентируются по солнцу. Птица должна видеть солнце или хотя бы ближайшую к нему часть небосвода в пределах дуги в 30–45 градусов. Чистое небо вдали от солнца не может служить для нее ориентиром, потому что в отличие от пчел и других членистоногих птицы не чувствительны к поляризованному свету.
Отчет о своих опытах Крамер опубликовал в 1950 году и сейчас же начал другую серию экспериментов.
Вокруг клетки, снаружи, прикрепили двенадцать кормушек, совершенно одинаковых и на равном расстоянии одна от другой. Скворцов кормили только в одной из этих кормушек. Они вскоре к этому привыкли и безошибочно ее находили, хотя она ничем не отличалась от одиннадцати других.
Единственным указателем, по которому ее можно было бы отыскать, оставалось солнце, вернее, положение этой кормушки по отношению к солнцу. Когда окна затемняли, скворцы беспомощно метались от одной кормушки к другой. Если же с помощью зеркал меняли угол между кормушкой и направлением солнечных лучей, скворцы летели к другой кормушке, отстоящей от первой ровно на такой же угол.
Эти же опыты повторили, заменив естественное солнце мощной лампой, снабженной рефлектором, которую перемещали по приделанной к потолку железной рейке. Результаты были те же.
И туг заметили еще одну поразительную черту в умении птицы ориентироваться.
Солнце в течение дня все время ведь перемещается в небе, и значит положение кормушки по отношению к нему каждый час бывает разным. Л птицы тем не менее всегда безошибочно ее находят, словно бы знают, как от часа к часу меняется положение солнца, и учитывают изменяющийся в связи с этим угол между кормушкой и солнцем.
Вывод из этого неожиданного открытия мог быть только один: у птиц есть чувство времени! Очень точный хронометр, счетчик времени, или, как еще называют его, – физиологические часы.
Тут мы должны немного отвлечься, чтобы поговорить об этих самых часах. Если этого не сделать сейчас, нам трудно будет понять друг друга, когда – речь пойдет о дальнейших опытах и теории солнечной навигации
Физиологические часы
Пчеловодам давно известно: если подкармливать пчел всегда в одно и то же время, они запомнят часы кормежек и будут прилетать в «столовые» без опозданий. Но вдруг случится непогода и даже пусть неделю простоят нелетные дни – пчелы прилетят опять туда, где их кормили, и в те же часы, лишь только пригреет солнце. Если же быстро на самолете перевезти этих пчел с Украины, скажем, на Алтай, они и тут будут искать корм по местному украинскому времени. Ни для кого также не новость, что многие цветы раскрываются утром, когда вылетают на добычу насекомые, опыляющие их. Раскрываются они незадолго до рассвета, «как будто знают, – пишет один ученый, – что через несколько часов взойдет солнце». Перенесите эти цветы в помещение, в котором нет света, они все равно раскроются в положенное время.
И уж, конечно, каждый из нас по своему опыту знает, что и без будильника может проснуться, когда захочет. Нужно только небольшим напряжением воли поставить на определенный час свои «головные часы», как называют исследователи этот неизвестный пока физиологический механизм. «Головные часы» некоторых людей с такой точностью измеряют время, что они, просыпаются за минуту до звонка будильника.
Пробовали помещать человека на несколько дней в башню молчания, где не было никаких часов, никаких звуков и впечатлений из внешнего мира, а «головные часы» по-прежнему отсчитывали время. И если ошибались, то не больше, чем на пятнадцать минут в сутки.
Еще точнее работают они под гипнозом. Гипнотизер говорит усыпленному пациенту: «Проснетесь через 240 минут и выпьете этот стакан воды». И хоть нет в помещении, где проводится опыт, никаких часов, человек просыпается ровно через 240 минут и пьет воду.
Все эти наблюдения, в достоверности которых никто теперь уже не сомневается, говорят о том, что и у растений, и у животных, и даже у человека есть в организме какие-то «ходики», какие-то циклические физиологические процессы, совпадающие во времени с движением солнца по небу. Короче говоря, есть солнечные часы.
Суточные ритмы были открыты у растений еще в прошлом веке. Люди заметили, что в определенное время суток растения выбрасывают споры, интенсивно растут, открывают и закрывают цветы. Листья поднимаются, напрягаясь днем, и опускаются ночью. И другие изо дня в день и в одни и те же часы повторяющиеся процессы: вся жизнь у птиц, рыб, зверей, насекомых, червей в разное время суток протекает по-разному – в определенное время они спят, ищут пищу, поют, роют норы, идут на водопой. Даже вылет из куколок у многих насекомых происходит из года в год в одни и те же дни и часы.
Распорядок этот врожденный. С первого дня появления на свeт все животные и растения живут по солнечным часам, которые отсчитывает какой-то внутренний механизм, бессознательно приспосабливая к ним не только свой обмен веществ и физиологию, но и привычки свои и режим.
Но если зародыши животных и семена растений поместить в полную темноту или, наоборот, содержать при непрерывном освещении, то такие животные, когда родятся, а растения, когда прорастут, не обнаружат никаких периодических ритмов, словно бы нет у них физиологических часов. Но стоит новорожденных хоть на мгновение осветить мимолетной вспышкой света (если развивались они в темноте) или ненадолго погасить свет (если их содержали при непрерывном освещении), как сейчас же появится у них такой ритм.
С тараканами проделали такие опыты: отрезали им головы. Насекомые сразу же теряли чувство времени, но жизнь не теряли: бегали и без головы еще много дней. Когда безголовому таракану прирастили кусочек ткани, взятой из головы другого таракана, он сразу стал жить по часам, но по часам того таракана, кусочком головы которого его наделили.
Срастили спинками двух тараканов: одного с головой, другого без головы, и новые «сиамские близнецы» стали обладателями одних общих часов – часов того таракана, у которого была голова.
У позвоночных животных (и у человека) работой клеточных хронометров заведует, приводя их, что называется, к одному знаменателю – к единому времени, центральная нервная система, то есть мозг. Но мозг такую регуляцию осуществляет через особые железы, выделяющие в кровь гормоны – вещества-регуляторы. Известно уже более 40 физиологических и психических процессов, суточным ритмом которых управляют гормоны. Адреналин и меланофорный гормон гипофиза играют, по-видимому, главную роль – роль пружины в наших «ходиках». Действие этой пружины представляют себе пока так: день и ночь, свет и темнота, чередуясь со строгой последовательностью, заводят пружину физиологических часов. Свет побуждает к деятельности симпатическую нервную систему, а она заставляет выделяться в кровь адреналин. Темнота возбуждает парасимпатические нервы и гипофиз, который в больших дозах, чем днем, производит меланофорный гормон.
Ритмические, совпадающие во времени с движением солнца по небу колебания концентраций веществ-регуляторов – то адреналина больше, то меланофорного гормона – задают тон всем другим процессам в организме, подчиняя их одному 24-часовому циклу. На механических часах каждый отрезок суток обозначен цифрой – в часах физиологических такой цифрой служит определенная доза веществ-регуляторов.
А сама эта доза, мы уже знаем, зависит от чередования света и темноты. Свет – тот внешний источник энергии, Который заводит внутренние часы обитателей подсолнечной планеты.
Если нормальное суточное чередование света и темноты изменить, то физиологические часы животных (и растений тоже) начнут отмечать время по-новому.
Подобные опыты делали сотни раз. Например, крыс, тараканов, мух, голубей или… фасоль освещали, скажем, десять часов подряд, а потом на десять часов помещали в полную темноту. Их физиологические часы уже через день-два, в крайнем случае через неделю-две, полностью перестраивались и приспосабливались к 20-часовым суткам[1]1
Человеку требуется 8—10 дней, чтобы полностью приспособить свои физиологические ритмы к новому течению дня и ночи.
[Закрыть].
Часто даже не нужно все десять часов освещать содержащихся во тьме животных. Достаточно каждый раз в одно и то же время включать свет хотя бы на час и даже всего на несколько минут, и физиологические часы подопытных «кроликов» приобретут новый «завод».
Делали и так: не нарушая нормального 24-часового ритма, лишь на шесть часов раньше включали освещение, еще когда на дворе была темная ночь; или, наоборот, уже наступал рассвет, а животных еще шесть часов держали в темноте. Их физиологические часы уже через несколько дней показывали новое время – спешили или отставали на шесть часов.
И сон, и пробуждение, и поиск пищи, и все другие внешние и внутренние проявления жизнедеятельности животного начинались на шесть часов раньше или позже прежнего.
Физиологические часы можно отвести назад и воздействием низкой температуры.
Возьмите пчел, обученных прилетать в полдень за сахарным сиропом к кормушке, и продержите несколько часов на холоде, где-нибудь в погребе, чтоб температура там была около 0–5 градусов. Как только пчел выпустите, они вспомнят о сиропе. Но вспомнят с запозданием ровно на столько часов, сколько вы их продержали в погребе.
Опыты показали, что после длительной обработки холодом организм ведет себя так, как будто в течение этой обработки физиологические часы находились в состоянии покоя.
«Замораживание» быстрее достигает своей цели, чем многодневная перестройка внутренних ритмов искусственным чередованием света и тьмы, и к нему часто прибегают ученые, когда экспериментируют с растениями или с холоднокровными животными, температура тела которых быстро повышается или понижается.
Должен предупредить читателей, что в науке нет еще достаточно ясного представления ни о природе, ни о работе физиологических часов. Поэтому беглый обзор на предыдущих страницах следует рассматривать лишь как весьма схематичное и приблизительное изложение принципов действия очень сложной механики природных хронометров.
Но тем не менее, к чтению следующих глав мы приступаем теперь более подготовленными.
Солнечная навигация
Итак, вернемся к скворцам.
Когда опыты Крамера стали известны орнитологам, некоторые ученые захотели их повторить. К этому времени и изучение физиологических часов значительно продвинулось вперед. Немец Гофманн решил использовать эти достижения в своих опытах со скворцами.
Он начал с того, что проделал Крамер: приучил двух скворцов находить по солнцу корм в одной из двенадцати однотипных кормушек. Потом скворцов около двух недель продержали в помещении, в котором были созданы искусственные день и ночь, на шесть часов отстающие от нормальных суток. «Часы» скворцов тоже отстали. Когда их посадили снова в клетку под открытым небом, они, проголодавшись, полетели к кормушке, в которой привыкли всегда находить пищу. Но кормушку не нашли, хотя день был ясный. Скворцы ошиблись ровно на 90 градусов: кормушка помещалась на юге, а они искали ее на западе[2]2
Это у одного скворца. У второго кормушка была на западе, а искал он ее на севере.
[Закрыть]. Было три часа дня, а так как их часы отставали на шесть часов, скворцы «решили», что сейчас только девять часов утра, потому и отклонились сильно вправо: ведь солнце за шесть часов продвинулось на 90 градусов к западу, то есть вправо, если смотреть на его путь по небосводу.
В течение 23 дней, пока скворцов содержали и днем и ночью при свете, часы их шли неправильно, и они ошибались в своих поисках. Затем скворцов поместили под открытым небом, и недели через две часы их нагнали потерянные шесть часов.
Птицы, у которых внутренние хронометры отводили на шесть часов вперед, ошибались в поисках нужного направления, отклоняясь на 90 градусов влево.
Эти опыты, проделанные и с голубями, и со славками, и с сорокопутами, ясно показывают, что солнце у птиц – главный ориентир. Но ориентир этот не стоит на месте. Найти дорогу по нему нельзя, если не знаешь, в какой части неба в каждый час дня он находится. Тут птиц выручают хорошая память и «часы», которыми природа наделила все живое на земле.
«Это удивительно, – пишет доктор Мэтьюз, один из ведущих специалистов в науке об ориентации птиц, – что люди, веками определявшие свое местоположение по солнцу, всего лишь несколько лет назад узнали, что и птицы поступают так же».
Теперь сомнений нет, что пернатые, как и люди, находят дорогу по солнцу.
Осталось сказать несколько слов о тех птицах, которые совершают перелеты по ночам, а днем отдыхают. Таких птиц немало. Садовая славка, славка-черноголовка и сорокопут-жупан путешествуют по ночам. В экспериментах с зеркалом и искусственным солнцем они. вели себя так же, как и скворцы. По-видимому, эти птицы, хотя и летают ночью, а ориентируются все-таки по солнцу. Полагают, что они избирают нужное направление на закате, а потом всю ночь помнят его.
Что дело обстоит именно так, подтверждают некоторые наблюдения. Однажды Крамер выпустил славку-черноголовку и двух серых славок вблизи большого города. Выпустил он их после того, как солнце давно уже село, в темноте, и птички приняли отблеск на небе огней большого города за закат и взяли неправильное направление полета. Когда же на том самом месте выпускали птиц до. заката, они успевали правильно ориентироваться, и городские огни их не сбивали.
Однако другие наблюдения показывают, что Черноголовка и садовая славка избирают правильное направление и не видя солнца на закате. Когда ночное небо звездное, они летят без ошибок. Густые облака и слишком яркая луна мешают им. По-видимому, птички эти, помимо солнца, могут ориентироваться еще и по звездам. Опыты в планетарии подтвердили и это предположение.
Кто еще ориентируется по солнцу?
Некоторые животные методам солнечной навигации обучаются постепенно, не сразу берут солнце в помощники, а лишь когда поживут немного, да привыкнут к расписанию, по которому термоядерный шарик перекатывается по небу.
Рыжие лесные муравьи, например, весной еще «не знают», по-видимому, что солнце – ориентир подвижный. За лето они эту истину усваивают твердо и, ориентируясь по солнцу, постоянно помнят о ней. Но если весной, на некоторое время, накрыть лесного муравья непрозрачным колпаком, а потом его снять, он побежит по неправильному пути. Впечатление такое, что, находясь в темноте, муравей не учел, что солнце это время не стояло на месте, поэтому когда он снова увидел свет, побежал под прежним углом к подвижному светилу и, конечно, побежал не туда. Летом и осенью этого не происходит: муравьи уже «знают», что солнце на месте не стоит, а природные хронометры помогают им внести поправку, как бы долго ни длилась их вынужденная остановка.
Итак, муравьи тоже ориентируются по солнцу. Но, по-видимому, не все: некоторые виды их, несмотря на все усилия экспериментаторов, не обнаружили таких способностей.
Паук-волк живет у берегов рек и озер. Если паука бросить в воду, он поплывет к берегу, на котором его поймали. Поплывет прямо, как бы далеко ни занесли его.
Исследователи брали этого паука, переносили на противоположный берег и там бросали в воду. Паук плыл изо всех сил к берегу, но странное дело, не к ближайшему, около которого бросили его, а к тому, где родился и жил. Рискуя жизнью, плыл поперек течения.
Какой берег родной, а какой не родной, паук узнавал по солнцу. Исследователи это доказали, искажая положение солнца с помощью зеркала. Потом паука подвергли тем же испытаниям, что и скворцов. После того, как продержали его много дней в темноте, физиологические часы паука вышли из строя, и он не мог уже, глядя на солнце, определить, какой берег свой, а какой чужой. Ненормальное чередование искусственного дня и ночи, пережитое накануне, сбивало его с толку.
Береговые блохи, рачки-бокоплавы, прыгающие, как кузнечики, по морским пляжам тоже находят свой дом по солнцу.
Эти рачки любят путешествовать, их не раз находили на суше далеко от моря. А однажды морского скакуна поймали на вершине горы. Он, правда, еще не добрался до самой вершины, но был схвачен на пути к ней – на высоте больше тысячи метров над уровнем моря.
У морских блох навигационные способности развиты прекрасно. В лабораториях они не хуже скворцов умели находить по солнцу правильное направление. Их всегда тянуло к морю и, где бы вы ни выпустили песчаных скакунов, они кратчайшей дорогой устремлялись к нему. Это на своей родине, в Италии. А вот когда песчаных скакунов привезли в Аргентину, они не смогли найти моря: их хронометры работали еще по европейскому времени, без связи с местным солнцем и только путали рачков.
Некоторые исследователи думают, что песчаные скакунчики, а также осьминоги, крабы и другие морские животные безошибочно находят дорогу к морю (когда заносят их на сушу), руководствуясь морскими шумами: инфра– и ультразвуками, которые не слышит человек.
Чтобы проверить и эту гипотезу, несколько сот морских блох продержали в лаборатории в условиях искусственного дня и ночи. На дворе был день, а в лаборатории ночь, и наоборот.
Когда рачков выпустили невдалеке от моря, они поползли не к нему, а прямо от него. Никакие морские шумы не помогли потому, что физиологические часы их опаздывали на 12 часов. Выпущенные же вместе с ними контрольные, не обработанные светом и тьмой, рачки поскакали правильно – прямо к морю.
Опыты с раками, крабами, пауками, саранчой и другими членистоногими животными окончательно подтвердили, теорию солнечной навигации. Почти каждое животное, подвергнутое испытанию, рано или поздно обнаруживало незаурядное умение ориентироваться по солнцу. Невольно приходит на ум мысль: видимо, это обычное в природе дело – отправляясь в путь, доверять судьбу свою солнцу. Возможно, и киты, и дельфины, и тюлени, так же как и птицы, пересекающие весной и осенью морские широты, плывут по планете, поглядывая на солнце в небе и прислушиваясь к «стуку хронометров» в своей груди.
Уже недолго осталось ждать – новые исследования скоро покажут, так ли это.