355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Иэн Сэмпл » В поисках частицы Бога, или Охота на бозон Хиггса » Текст книги (страница 6)
В поисках частицы Бога, или Охота на бозон Хиггса
  • Текст добавлен: 7 октября 2016, 19:19

Текст книги "В поисках частицы Бога, или Охота на бозон Хиггса"


Автор книги: Иэн Сэмпл



сообщить о нарушении

Текущая страница: 6 (всего у книги 18 страниц)

Физики не восприняли теорию Вайнберга как истину в последней инстанции, и на это были достаточно веские основания. Ученые опасались, что его теория страдает тем же недостатком, что и квантовая электродинамика, – наличием расходимостей. Их беспокойство объяснялось тем, что в определенных обстоятельствах теория Вайнберга тоже может приводить к расходимости. В квантовой электродинамике проблему расходимостей в 1940 годах решил Ричард Фейнман, изобретя технику перенормировки. Вайнберг был уверен, что нечто похожее может быть сделано и в его теории. Вот только, к сожалению, он не знал, как это сделать.

Канал Зингель, опоясывая старинный голландский город Утрехт, словно заключает его в теплые объятия. В расположенных на его набережной трех соседних домах помещался когда-то институт теоретической физики местного университета. Для института было выбрано забавное место. Если бы в то время вошли в один из домов, вас, скорее всего встретила бы женщина, утверждающая, что она графиня, но она наверняка не была графиней. Летом цыплята из сада запрыгивали через окна в комнаты и прогуливались по письменным столам. На ланчи или выпить чашечку кофе физики спускались вниз  в полуподвал, где в узком окне, выходившем на расположенную выше улицу, были видны ноги прохожих. Говорили, что в былые времена в этом здании располагался городской бордель 8888
  Колоритное описание Утрехта и использование здания физического факультета в разных целях дано в автобиографии Герарда ‘т Хоофта (The Nobel Prizes. Nobel Foundation, 1999).


[Закрыть]
.

Герард ‘т Хоофт снимал квартиру в доме сразу за углом от института. Он приехал в Утрехт после окончания средней школы в 1964 году, том самом, в котором Хиггс и другие физики опубликовали свои работы о природе массы. Молодой голландец выбрал для себя профессию физика очень рано. Когда ему было 8 лет, учитель спросил, кем бы он хотел стать, когда вырастет, и мальчик ответил: “Человеком, который знает все”. Он хотел сказать – профессором, но забыл это слово. В действительности он имел в виду ученого – человека, который стремится понять основные законы природы.

Школьником ‘т Хоофт проявил редкую способность к математике, но его способы решения задач были необычны. Как правило, наиболее одаренные оказывались лучшими в классе, научившись использовать стандартные методы. Герард ‘т Хоофт шел иным путем. Он всегда предпочитал изобретать собственные методы, причем с нуля, – стратегия, известная как расчеты из первых принципов. К примеру, если бы ему нужно было научиться водить автомобиль, он принялся бы сначала его конструировать. Продвигаясь методично, шаг за шагом, ‘т Хоофт преодолевал все трудности, возникающие в его теориях.

Незадолго до этого в институт пришел новый профессор теоретической физики, Мартинус Вельтман – “Тини”. Он был наставником ‘т Хоофта в университете и руководителем его докторской диссертации. Как и у ‘т Хоофта, у Вельтмана был свои собственный взгляд на все, но он был более упрямым и обладал ярко выраженным нонконформистским характером 8989
  Краткая автобиография Вельтмана дана в кн.: The Nobel Prizes. Nobel Foundation, 1999.


[Закрыть]
. Вельтман настороженно относился к любому, кто считал себя экспертом в чем-то, и всегда доверял своему внутреннему голосу больше, чем кому бы то ни было. Когда многие физики утверждали, что квантовая теория поля мертва, Вельтман вопреки советам коллег продолжал ею заниматься.

Вельтман работал над теориями типа теории Вайнберга и был полон решимости доказать, что расходимости им не страшны. Работа шла тяжело, уравнения разрастались, и вскоре в них входило уже около 50 000 членов. Когда стало ясно, что расчеты слишком громоздки, чтобы делать их вручную, Вельтман решил: лучший способ борьбы с громоздкими уравнениями – отдать их решать компьютеру. Через три месяца адской работы он написал необходимую компьютерную программу и приготовился ее запустить.

В те времена данные в компьютеры вводились с помощью перфокарт, а результата приходилось ждать несколько дней. Вельтман в своем портфеле носил сотни перфокарт. Хорошо уже было то, что они были пронумерованы, то есть даже если они падали на пол и перепутывались, компьютер все равно их воспринять. Вельтман дал программе имя “Schoonschip”, что в переводе с голландского означает “Чистый корабль – так в старину моряки, вычистив перед плаванием судно от носа до кормы, называли свой корабль. А еще так в Голландии говорили когда хотели что-то начать с чистого листа.

Первые же расчеты с помощью программы “Schoonschip” показали, что уравнения Вельтмана неправильны. Когда программа выплюнула результат, стало ясно, что проблема расходимостей не исчезла. Вельтман продолжал биться, подправлял уравнения и вставлял их обратно в “Schoonschip”. А в это время ‘т Хоофт делал то, что он умел делать лучше всего, – строил свою теорию из первых принципов. Закончив, он понял, что механизм Хиггса – неотъемлемая часть его теории. Он, в сущности, заново построил теорию Хиггса 9090
  Так описал это Герард ‘т Хоофт в интервью, данном автору в 2009 году.


[Закрыть]
. А когда проверил свои расчеты, то увидел – проблема расходимости решена!

Однажды осенним днем 1970 года Вельтман и ‘т Хоофт прогуливались по дорожке, ведущей от одного здания института к другому. Вельтман жаловался на трудности с расчетами и говорил, что нужно построить всего одну перенормируемую теорию, которая могла бы объяснить массу частиц. “Я знаю, как это сделать”, – сказал ‘т Хоофт. Вельтман в изумлении уставился на него. “Что?!” – воскликнул он. “Ну да, я могу сделать”, – повторил ‘т Хоофт. От неожиданности Вельтман на миг потерял дар речи и чуть не врезался в дерево. “Напишите, мы посмотрим”, – сказал он.

При сравнении их расчетов стало ясно, что Вельтман в своей теории не учел некой важной вещи, а именно – механизма Хиггса. Он думал, что этот механизм – просто некий трюк, и решил его проигнорировать. Когда же он ввел его, вставил соответствующие члены в свои уравнения и прогнал программу через компьютер еще раз, оказалось, что расходимости действительно возникали, но тут же компенсировали друг друга. Таким образом работа, завершенная в 1970 году, не только подвела под теорию Вайнберга твердую основу, но и доказала, что она правильна, именно благодаря механизму Хиггса. Следующим летом Вельтман организовал конференцию по физике элементарных частиц в Амстердаме и на последнем заседании отвел ‘т Хоофту десять минут для сообщения об их открытии. “Мы им всем покажем!” сказал Вельтман ‘т Хоофту. Физики действительно восприняли их результаты с восторгом. Как изящно выразился теоретик из Гарвардского университета Сидни Коулман, “поцелуй ‘т Хоофта расколдовал лягушку Вайнберга и превратил ее в прекрасную принцессу” 9191
  Burton Feldman. The Nobel Prize: A History of Genius, Controversy and Prestige. Arcade Publishing, 2001.


[Закрыть]
.

Это было летом 1972 года, в клубе преподавателей Эдинбургского университета. Хиггс только что закончил ланч, когда появился Кен Пич, его друг и коллега. “Ты – звезда!” – воскликнул Пич вместо приветствия. Он только что вернулся с совещания, состоявшегося в знаменитом Фермилабе – Национальной лаборатории имени Ферми, крупнейшем американском физическом центре, расположенном на окраине Чикаго. Имя Хиггса звучало почти в каждом докладе, затрагивающем темы нарушения симметрии или происхождения массы. Именно тогда Питер в первый раз услышал о том, что слова “поле Хиггса” и “механизм Хиггса” вошли в научный лексикон.

Хиггс улыбнулся. Новость подняла ему настронние. Однако Питер понимал, что, хотя именно он получил основополагающие результаты по происхождению массы, поспевать за другими в этой области становится все труднее. Через несколько лет, описывая ситуацию того времени, Хиггс сказал: “Поскольку я сделал важные работы, инициировавшие последовавшие исследования, все посчитали, что я должен понимать все, что происходит в этой области. Но чем дальше, тем меньше я понимал. Когда же стали известны результаты Вельтмана и ‘т Хоофта, я сдался и отказался участвовать в гонке”.

Хиггс решил заняться другими вещами. Он заинтересовался так называемой теорией суперсимметрии, которая раскрашивает наш мир новыми неожиданными красками. Одним махом суперсимметрия удваивает число частиц во Вселенной. Согласно этой теории каждая новая суперсимметричная частица – это пока еще необнаруженная частица с большой массой, составляющая пару с известной частицей. В этой теории, например, появляются пары селектрон – электрон, скварки – кварки. Ученые посчитали новую теорию весьма многообещающей, поскольку с ее помощью разрешались некоторые застарелые противоречия в физике. Любопытно, что в некоторых версиях теории возникала не одна частица Хиггса, а пять, и все они играли свою роль в обретении частицами массы.

То, что Хиггсу все сложнее становилось работать в своей области, было не единственной трудностью, с которой он столкнулся в это время. Весной 1972 года распался их брак с Джоди (хотя официально они так никогда и не развелись), а ведь у них уже было двое сыновей. “Я тогда был не в том состоянии, чтобы, забыв обо всем, сосредоточиться на решении теоретических задач”, – вспоминал Хиггс. В интервью газете “Sunday Times” в 2008 году Хиггс назвал причиной крушения семьи свою одержимость работой: “Мы разъехались, потому что я всегда ставил научную карьеру выше семьи. Однажды я увильнул от проведения праздников с семьей, а ведь мы собирались поехать в Америку. Но я сел тогда в самолет и полетел на конференцию. Джоди, моя жена, совсем перестала понимать, что я делаю”.

Момент, когда имя Хиггса вошло в историю, трудно определить однозначно. Хиггс считает, что это случилось в 1972 году на конференции в Фермилабе. По словам Хиггса, он стал самым известным теоретиком по чистой случайности. В 1967 году на приеме, устроенном в честь открытия некой конференции в Рочестере, штат Нью-Йорк, Хиггс с бокалом вина в одной руке и бутербродом в другой рассказал о своей работе американскому физику корейского происхождения, Бену Ли. Случилось так, что Ли был докладчиком на конференции в Фермилабе в 1972 году. Составляя план доклада, он вспомнил тот разговор и использовал имя Хиггса как условное обозначение теории и всего, с ней связанного. С тех пор это название в науке укоренилось. Дик Хаген считает, что словосочетание “бозон Хиггса” впервые прозвучало на Рочестерской конференция в Беркли в 1966 году. После конференции Хиггс написал организаторам письмо, протестуя против этого названия.

Если самое важное в жизни ученого – открыть новые неизвестные закономерности в природе, то на втором месте – и очень близко к первому – стоит признание за свершенные открытия. Карьера ученого строится на репутации, а признание – необходимая ее часть. Когда речь идет о больших открытиях, должная оценка может означать продвижение по службе, известность, славу и, правда очень редко, – материальное благополучие. Когда на карту поставлено столь многое, конфликты при определении ученого, сделавшего важнейшую часть работы (без которой то или иное открытие не состоялось бы), совершенно естественны. Часто основного автора определить далеко не просто. Иногда в открытии так или иначе участвуют сотни ученых. Бывает, что работа, поначалу казавшаяся не имеющей никакого отношения к открытию, впоследствии оказывается недостающей частью пазла.

В июне 1938 года Джордж Пэйджет Томсон, получивший Нобелевскую премию по физике за год до того, прочитал лекцию о своем открытии волны электрона (явлении, впервые довольно неопределенно сформулированном в 1924 году Луи де Бройлем в Париже). Между прочим он заметил, что открытия в науке редко совершаются одним человеком, обычно в нем принимает участие целая группа ученых. Вот как описал это Томсон: “Богиня мудрости, как гласят мифы, выпрыгнула из головы Зевса уже взрослой. В отличие от нее научная концепция редко рождается в готовом виде и столь же редко имеет одного родителя. Чаще всего она – детище нескольких умов, каждый из которых преобразует идеи тех, кто работал до него, и, в свою очередь, готовит почву тем, кто придет за ним“.

Напряженность в отношениях и споры по поводу приоритетов особенно часты, когда идет речь об открытии, достойном Нобелевской премии. Стивен Вайнберг выразил сожаление, что Нобелевский комитет не наградил Фримена Дайсона за его работы 1940-х годов, ставшие ценнейшим вкладом в разработку квантовой электродинамики. Вместо этого премия ушла к тем, чьи работы он собрал воедино и обобщил: Ричарду Фейнману, Джулиусу Швингеру и Синьитиро Томонаге. Нобелевский комитет часто оказывается перед сложным выбором. Он никогда не дает одну премию более чем трем ученым. Так Дайсон присоединился к многочисленной компании крупнейших и достойнейших ученых, у которых есть все основания чувствовать себя ущемленными.

Нобелевский комитет, по-видимому, опять окажется в затруднительном положении, когда нужно будет присуждать премию за работы по происхождению массы, поскольку они явно будут когда-то номинированы на Нобелевскую премию 9292
  В 2010 году все шесть физиков получили премию Дж. Дж. Сакураи по теоретической физике элементарных частиц за работы о происхождении массы. Церемония награждения состоялась в феврале 2010 года в Вашингтоне. Ожидалось, что впервые все шестеро встретятся, но Хиггс приехать не смог.


[Закрыть]
. Вайнберг, Салам и Глэшоу получили Нобелевскую премию в 1979 году за работу по электрослабому взаимодействию. Двадцать лет спустя Тини Вельтман и Герард ‘т Хоофт получили Нобелевскую премию за доказательство перенормируемости теории, то есть избавление ее от расходимостей. В этих случаях выбор достойнейших ученых был прост. Частицы, на которых строится теория происхождения массы, известны физикам – да и всем средствам массовой информации – как бозоны Хиггса. Это делает шансы Питера Хиггса на будущую Нобелевскую премию почти стопроцентными. Но есть еще пять других физиков, которые внесли сравнимый вклад в теорию, причем двое из них обошли Хиггса по срокам публикации. Ученые, участвовавшие в работе, ныне на пенсии, при этом обнаружение бозона Хиггса уже замаячило на горизонте. Неудивительно, что научное сообщество занервничало по поводу того, чье имя будет носить теория.

Один физик рассказал мне, как несколько лет назад в Брюсселе он попал на лекцию по теории происхождения массы. Докладчик Лэлит Сегал из Института теоретической физики в Ахене включил компьютер, расположил слайды по порядку и стал рассказывать о механизме Хиггса. Через некоторое время Сегал заметил на лице человека, сидевшего в первом ряду, проявление явного недовольства. Догадавшись о своей оплошности, Сегал сказал: “Я понимаю, эта теория была разработана несколькими учеными, но в соответствии с традицией я называю самое короткое имя”. Не успел Сегал приступить к продолжению лекции, как человек в первом ряду громко сказал: “Мое имя тоже состоит из пяти букв!” Это был Роберт Браут.

Работы по механизму Хиггса двух брюссельских исследователей – Браута и Франсуа Энглера – часто цитируют, и они не держат зла на Питера Хиггса. Работы третьей группы – Джерри Гуральника, Дика Хагена и Тома Киббла – цитировались очень редко даже теми физиками, которые работали над механизмом Хиггса. Гуральник и Хаген полагают, что некоторые европейские физики находятся в заговоре с целью вычеркнуть их из истории. Свои подозрения Гуральник высказал в статье, опубликованной в 2009 году: “Первоначально, по-видимому, не возникало вопросов с признанием нашего вклада в теорию, которую мы разрабатывали наравне с Энглером, Браутом и Хиггсом. Однако все изменилось в 1999 году. когда на наши работы перестали ссылаться в своих докладах и статьях даже те авторы которые раньше это делать не забывали”.

Роберт Браут и Франсуа Энглер из Свободного университета в Брюсселе были первыми, опубликовавшими работу про то, что в настоящее время широко известно как механизм Хиггса. Они находились в изоляции от международного сообщества физиков, занимавшихся элементарными частицами, а кроме того, были новичками в этой области. Хиггс был следующим, напечатавшим работу по этой теме, и первым, обратившим внимание на существование новой частицы, бозона Хиггса, который должен существовать, если теория верна. Третьей группой, опубликовавшей работу на ту же тему несколько недель спустя, были Гуральник, Хаген и Киббл.

Сегодня Хиггс испытывает явную неловкость оттого, что теория связывается только с его именем. В разговоре он называет частицу Хиггса “скалярный бозон”, или “так называемый бозон Хиггса”. На какой-то конференции Питер признал нелепость ситуации, начав свою лекцию так: “В отличие от принятой на этой конференции терминологии я хочу прежде всего отказаться от приоритета на некоторые концепции, которые обычно связываются в литературе с моим именем” 9393
  См. статью “SBGT and all that” Питера Хиггса (сборник Weak Neutral Currents, edited by David В Cline. Westview Press, 1997).


[Закрыть]
. Он предложил назвать механизм Хиггса механизмом “АБЭГХХКХ” в честь всех его авторов (Андерсон, Браут, Энглер, Гуральник, Хаген, Хиггс, Киббл и ‘т Хоофт).

То, что мы называем механизмом Хиггса, почти наверняка является важнейшим ингредиентом гораздо более общей теории объединения электромагнитного и слабого взаимодействий, что и доказали работы Глэшоу, Вайнберга, Салама, Вельтмана и ‘т Хоофта. На повестку дня встал вопрос о проверке теории Вайнберга. К счастью, теория предсказала существование трех видов частиц, которых никогда прежде не видели. Расчеты Вайнберга показали, что две W-частицы должны весить примерно в сорок раз больше, чем протоны, а Z-частицы – в два раза больше W-частиц. В руках у физиков появился надежный компас – теперь они знали, где искать эти частицы.


Глава 5
Европейцы уходят в отрыв

Это произошло 30 декабря 1972 года. Самолет коснулся земли, взвизгнули резиновые колеса, шасси прогнулись, приняв на себя полную тяжесть самолета. Двигатели замедлили свое вращение, гул стал тише, самолет подрулил к терминалу и остановился. По внутренней связи пилот разрешил пассажирам отстегнуть ремни безопасности и поздравил с прибытием в зимнюю сумрачную Англию.

Дональд Перкинс, физик из Оксфордского университета, наблюдал из здания терминала аэропорта Хитроу, как пассажиры берут свои чемоданы и становятся в очередь на паспортный контроль. Прибывший из Германии самолет доставил туристов из разных стран на празднование Нового года в Лондоне и англичан, возвращающихся домой по еле окончания рождественских каникул. Перкинсу не пришлось долго искать в толпе человека, которого он встречал, Гельмут Фейснер, физик из университета Ахена, первым увидел его; он широко улыбался и размахивал фотоснимком.

Фейснер прошел таможню, поздоровался и сразу потащил Перкинса к столу. Немец положил на стол фотографию, и они оба стали пристально изучать ее. На черном фоне были видны белые пятна, тонкие вихри и кольца, похожие на следы от пуль. Для неопытного глаза картина казалась бессмысленным нагромождением полос и пятен, но для Перкинса и Фейснера одного взгляда на фотографию было достаточно, чтобы их сердца учащенно забились. Это было настоящее открытие! Перкинс сразу понял всю его важность, и они с Фейснером отправились в бар отпраздновать событие. Фейснер, кроме того, предложил заехать по дороге на аукцион “Кристи” и за большие деньги продать фотографию. Он назвал ее “Bilderbuch event” – иллюстрацией из книги с картинками. Это был пример того, как новый результат в физике можно представить в виде картинки с пояснениями 9494
  Два подробных отчета об открытии нейтральных токов особенно информативны. Первый был написан Дональдом Перкинсом, находившимся в центре событий (“Gargamelle and the discovery of neutral currents”, в кн.: The Rise of the Standard Model. Cambridge University Press, 1997). Второй полезный отчет написан Питером Галисоном (“The discovery of neutral currents”, в сборнике “Weak Neutral Currents”. Westview Press, 1997).


[Закрыть]
.

В 1972 году только немногие физики слышали о бозоне Хиггса, а те, кто слышал, считали, что охоту за этой частицей начинать еще слишком рано. Причина была проста: физики понятия не имели, как ее найти. Они знали о бозоне Хиггса столь мало, что казалось, обнаружить его почти так же трудно, как иголку в стоге сена. Вот почему вместо этого физики отправились на охоту за доказательствами правильности теории электрослабого взаимодействия, разработанной Стивеном Вайнбергом и Абдусом Саламом в 1960-х годах и подкрепленной работами Тини Вельтмана и Герарда т‘ Хоофта 1971 года. Важность ее было трудно переоценить, после теории электромагнетизма Максвелла, построенной в конце XIX века, это была первая теория, объединяющая две силы природы. Физики знали: того, кто найдет доказательства правильности теории, ждет Нобелевская премия.

Но оказалось, что доказательства, которые физики собирались добыть, тесно связаны с проблемой происхождения масс. Действительно, теория электрослабых взаимодействий основывается на механизме Хиггса. Именно поле Хиггса дает массу новым частицам – W– и Z-бозонам, предсказанным теорией. Итак, если теория электрослабых взаимодействий подтвердится, механизм Хиггса или что-то, похожее на него, скорее всего правильно описывает процесс обретения массы. Это не будет строгим доказательством теории Хиггса, но явится первым косвенным свидетельством правильности идеи.

В теории электрослабых взаимодействий было сделано много предсказаний, которые физики могли в своих экспериментах подтвердить или опровергнуть. Кроме двух новых частиц (причем, в отличие от частицы Хиггса, у физиков была ориентировка, подсказывающая, где их искать), в теории электрослабого взаимодействия был описан некий тонкий эффект, называемый “нейтральным током”. Обычный электрический ток возникает при перетекании отрицательно заряженных электронов из одного места в другое. Нейтральный ток – новый вид тока, создаваемый электрически нейтральными Z-частицами, проскальзывающими между другими частицами. Физики считали, что, имея необходимое оборудование, они могли бы сфотографировать нейтральные токи. И след нейтрального тока должен быть похож на спиральный трек, явно различимый на фотоснимке Гельмута Фейснера, который тот держал в руках в день своего появления в Хитроу.

Если бы W– и Z-частицы или мимолетные нейтральные токи не обнаружились в экспериментах, электрослабую теорию можно было бы выбросить на свалку, и вся идея Хиггса о происхождении массы частиц была бы поставлена под сомнение. Чтобы найти ответы на эти вопросы, физики, специалисты по элементарным частицам обратились к помощи неутомимых рабочих лошадок – ускорителей, установок, разгоняющих потоки частиц до феноменальных скоростей. Несущиеся в них частицы либо обрушиваются на поверхность металла, либо сталкиваются с другими частицами, летящими в другом направлении.

Ускорители начали строить в конце 1920-х годов. Поначалу это были примитивные устройства, собранные из узлов других приборов. В ранних моделях пучки частиц, летевших с большой скоростью, использовались для разрушения атомных ядер. В течение последующих десятилетий ускорители превратились в самые сложные и громоздкие установки на планете, и сегодня при столкновениях частиц, летающих в них с огромной скоростью, выделяется огромная энергия и возникают совершенно новые частицы.

История ускорителей началась в 1900-х годах, когда Эрнест Резерфорд и другие физики стали проводить эксперименты в области атомной физики. Резерфорд уже тогда знал, что радиоактивные материалы испускают потоки быстрых частиц, которые можно использовать для изучения строения атома. Обычно в качестве радиоактивного материала брали радий – он испускает альфа-частицы, состоящие из двух протонов и двух нейтронов и вылетающие со скоростью, превышающей 20 000 километров в секунду. Именно альфа-частицы и применил Резерфорд в экспериментах, которые привели его в 1911 году к открытию структуры атомного ядра.

Закончив свои уникальные эксперименты в Манчестере, Резерфорд переехал в Кембриджский университет, где стал руководителем престижной Кавендишской лаборатории, а спустя шесть лет – президентом Королевского общества. В то время он уже был одним из самых влиятельных физиков в мире. В 1927 году он обратился с президентской речью к членам Королевского общества, в которой подчеркнул, что для физиков крайне важно иметь в качестве инструмента пучки частиц с более высокими, чем у альфа-частиц, энергиями 9595
  Frank Close, Michael Marten and Christine Sutton. The Particle Odyssey: Journey to the Heart of Matter. Oxford University Press, 2004.


[Закрыть]
. “Это позволило бы проводить исследования в новых необычных и важных областях и использовать их не только для выяснения вопросов, связанных со строением и стабильностью атомных ядер, но и для решения множества других проблем”, – сказал он.

Слова Резерфорда были услышаны. Вскоре в Кавендише ирландский физик Эрнест Уолтон и его коллега, йоркширец Джон Кокрофт, начали собирать установку, на которой планировалось получать пучки частиц, не используя радиоактивные материалы. Установка была еще несовершенна, но она работала! На одном конце Уолтон и Кокрофт установили стеклянную колбу, заполненную водородом. Приложенное к стенкам колбы напряжение выдирало электроны из атомов водорода, оставляя внутри сосуда голые ядра водорода, то есть протоны 9696
  Для получения дополнительной информации см. кн.: Mark Oliphant. Rutherford: Recollections of the Cambridge Days. Elsevier Science, 1972.


[Закрыть]
. Положительно заряженные протоны ускорялись другим напряжением, приложенным к торцам 8-метровой трубы, состыкованной с колбой. Идея состояла в том, чтобы ускоренные в трубе протоны врезались в объект, поставленный на их пути.

Уолтон и Кокрофт подумали и о технике безопасности. Во время тестирования установки они забрались в сделанное ими небольшое деревянное укрытие в центре лаборатории, обложенное свинцом для экранирования. Устройство Уолтона и Кокрофта стало, как Резерфорд и предполагал, очень полезным инструментом. В 1932 году физики направили поток частиц из этого протоускорителя на литий, самый легкий из металлов. Пучок протонов врезался в мишень и раскалывал атомы лития на две части. Уолтон и Кокрофт получили Нобелевскую премию на двоих в 1951 году за изобретение метода ускорения частиц и расщепление атома.

Расщепление атома было эпохальным достижением, но, чтобы раздробить атомы на еще более мелкие составляющие и изучить их, физикам требовались ускорители помощнее. Обычно ускоритель характеризуют величиной энергии частиц, которую они приобретают в них. (Используемые в этой области единицы энергии называются электронвольтами (эВ), один электронвольт – количеств кинетической энергии, которое электрон получает, когда он ускоряется напряжением 1 вольт.) Электронвольт не очень большое количество энергии Требуется примерно 600 триллионов электронвольт, чтобы поднять монетку в один фунт стерлингов на миллиметр от земли. Чтобы расщепить атом требуется 100 000 эВ. А чтобы выбить электрон из атома, нужно только 14 эВ. Физики используют для описания энергии пучков обозначения, кратные тысячам электронвольт: кэВ – для тысяч, МэВ – для миллионов, ГэВ – для миллиардов, и ТэВ – для триллионов электронвольт.

Одной из неприятных проблем, преследовавших первых конструкторов ускорителей, было создание сильных электрических полей, необходимых для разгона частиц до более высоких скоростей. В принципе можно разогнать пучки частиц до каких угодно энергий, ускоряя их сильными полями на больших расстояниях. Физики попытались делать так, но эта идея провалилась: они научились получать огромные электрические поля, но через установку побежали искры – возникал пробой.

В то время как Уолтон и Кокрофт упорно трудились над усовершенствованием своего ускорителя на основе стеклянной трубы, американский физик Эрнест Лоуренс из Калифорнийского университета в Беркли придумал новую конструкцию, решившую проблему больших электрических полей 9797
  J. L. Heilbron and Robert W. Seidel. Lawrence and His Laboratory: A History of the Lawrence Berkeley Laboratory. Vol. I. University of California Press, 1989.


[Закрыть]
. Он позаимствовал идею из статьи норвежского инженер Рольфа Видроу, опубликованной в немецком техническом журнале. Лоуренс не знал языка и не мог прочитать текст статьи он уловил смысл прост рассматривая рисунки. Вместо того чтобы ускояться, двигаясь в длинной прямой трубке, частицы раскручивались по спирали, ускоряясь на каждом витке. Соответственно в этой установке оказалось возможным использовать более слабые электрические поля.

Сконструированная Лоуренсом установка стала называться циклотронным ускорителем. Внутри установки размером с небольшую тарелку частицы двигались по кругу и ускорялись на каждом витке переменным электрическим полем. Это было похоже на то, как если бы вы раскручивали карусель все быстрее и быстрее, стоя рядом и каждые несколько секунд с силой подталкивая ее. Частицы, направляемые мощными магнитами, кружили внутри циклотрона и по мере получения импульсов раскручивались по спирали. Прошло не так много времени, и в ускорителе Лоуренса частицы уже разгонялись до энергий около 5 МэВ, в то время как Уолтон и Кокрофт смогли получить лишь 800 кэВ. Установка Лоуренса, которую сам он называл “протонной каруселью”, была не только более мощной, но и довольно компактной – она умещалась на его лабораторном столе.

Лоуренс построил целую серию циклотронов, причем каждый последующий был крупнее и мощнее предыдущего. Первый имел всего 5 дюймов в поперечнике, но к 1939 году циклотроны стали гораздо более громоздкими, к примеру, в это время был построен циклотрон-рекордсмен диаметром 5 футов. Лоуренс использовал свои циклотроны для бомбардировки протонами различных элементов, в результате чего возникали их радиоактивные изотопы. Именно эти его работы привели к применению радиоактивных веществ в медицине. Брат Лоуренса врач Джон Лоуренс с помощью радиоактивного фосфора лечил лейкемию. А вскоре его коллеги придумали, как использовать пучки нейтронов, полученные в циклотроне, для уничтожения раковых клеток в организме. В 1939 году Лоуренс получил Нобелевскую премию за создание циклотрона и открытия, сделанные с его помощью, в том числе за синтез технеция – первого искусственного элемента, элемента, не существующего в природе.

По мере того как ускорители становились все более мощными, появлялись и новые технические проблемы. Действительно, частицы внутри установки разгонялись почти до скорости света. В таких условиях дальнейшее увеличение энергии мало что давало в смысле увеличения скорости. Вместо этого (и в соответствии с теорией относительности Эйнштейна) дополнительная энергия изменяла орбиты частиц, и для сохранения постоянной длины траектории ученые ввели в систему электрические поля переменной частоты. Эти более современные установки, получившие название синхроциклотроны, стали следующим поколением ускорителей 9898
  Gordon Fraser. The Quark Machines: How Europe Fought the Particle Physics War. Taylor & Francis, 1997.


[Закрыть]
.

Во время холодной войны соревнование в строительстве гигантских ускорителей частиц в США и Советском Союзе шло параллельно с состязанием в космических исследованиях. Оба государства считали необходимым вкладывать деньги в строительство ускорителей, ведь все помнили, что именно знание структуры атома в конце концов обеспечило создание атомной бомбы и победу союзников во Второй мировой войне. Получение информации об атоме и энергии, заключенной внутри его, было вопросом национальной безопасности, и ведущие страны мира продолжали гонку, практически не считаясь с затратами. Когда одна строила огромный ускоритель, другая старалась построить еще больший.

1950-е годы были периодом расцвета ядерной физики: строились большие ускорители, более десятка уже работали или сооружались в разных странах. В Брукхейвенской национальной лаборатории на Лонг-Айленде (районе Нью-Йорка) работал ускоритель “Космотрон” с энергией частиц 3 ГэВ. В Беркли, близ Сан-Франциско, на ускорителе “Беватрон” была достигнута рекордная энергия 6,2 ГэВ. В 1957 году СССР ответил запуском ускорителя в Дубне – городке, расположенном к северу от Москвы, на котором пучки частиц разгонялись до энергий 10 ГэВ. В том же году СССР запустил первый в мире искусственный спутник. Это произошло через тридцать лет после того, как Уолтон и Кокрофт построили свой первый ускоритель. К этому времени ученые уже научились разгонять частицы до энергий в 50 000 раз выше, чем на первых установках.


    Ваша оценка произведения:

Популярные книги за неделю