412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Хайно Фальке » Свет во тьме. Черные дыры, Вселенная и мы » Текст книги (страница 8)
Свет во тьме. Черные дыры, Вселенная и мы
  • Текст добавлен: 1 июля 2025, 11:35

Текст книги "Свет во тьме. Черные дыры, Вселенная и мы"


Автор книги: Хайно Фальке



сообщить о нарушении

Текущая страница: 8 (всего у книги 22 страниц) [доступный отрывок для чтения: 9 страниц]

“История астрономии – это история отступающих горизонтов”, – написал Хаббл в 1936 году в своей книге “Царство туманностей”[88]88
  E. P. Hubble. The Realm of the Nebulae. // New Haven: Yale University Press. (1936). Доступно онлайн здесь: https://ui.adsabs.harvard.edu/abs/1936rene.book…..H.


[Закрыть]
. Но если говорить о Млечном Пути, то в 1920‐е годы, после открытий Хаббла и других ученых, горизонт не распахнулся еще в той степени, в какой позволяют это наши нынешние знания. Космосу предстояло расширяться и расширяться, и тогда еще было неясно, где именно мы в нем находимся, поскольку пыль, скопившаяся в центре диска Млечного Пути, скрывала его от “взора” оптического телескопа.

Ситуация изменилась только в начале тридцатых, когда изобретение радиотелескопа открыло астрономам новое окно во Вселенную. В 1932 году Карл Гуте Янский впервые обнаружил космическое радиоизлучение, зарегистрировав радиошумы явно космического происхождения; при этом самые сильные сигналы приходили из окрестности созвездия Стрелец. Сегодня мы знаем, что галактический центр, находящийся посередине нашего Млечного Пути, лежит именно в том направлении.

Голландский ученый Ян Оорт тоже считал, что центр Млечного Пути лежит где‐то на этом направлении. Оорт, давший свое имя Облаку Оорта, которое окружает Солнечную систему и является домом для комет, установил, что расстояние до галактического центра составляет примерно 30 000 световых лет, и в определении этого расстояния он очень близко подошел к измеренному сегодня значению в 27 000 световых лет. Его соотечественник Хендрик ван де Хюлст продвинул радиоастрономию еще на шаг дальше. Во время Второй мировой войны, когда Голландия была оккупирована нацистами, он скрывался в утрехтской обсерватории. Работая там, он предсказал, что водород, столь широко распространенный в атомарной форме в нашем Млечном Пути, должен излучать спектральные линии в радиодиапазоне, а именно – на частоте, в точности равной 1,4 ГГц (примерно в диапазоне частот наших современных мобильных телефонов).

Это стало для астрономов озарением в самом прямом смысле этого слова. Радиоволны могут проникать через препятствия толщиной в стену, и облака пыли в Млечном Пути не представляют для них серьезной преграды. Теперь можно было регистрировать радиоизлучение, пробивающееся сквозь темные пятна Млечного Пути, и ван де Хюлст и Оорт смогли измерить его структуру и даже обнаружить спиральные рукава в Галактике. Их было бы довольно легко увидеть, если удалось бы воспарить над Галактикой, но мы с вами находимся в ее плоскости и потому смотрим на нее сбоку.

В середине 1950‐х годов нам наконец удалось точно определить наше положение в Млечном Пути. Солнечная система на самом деле находится между Рукавом Стрельца и Рукавом Персея в так называемом Местном Рукаве. Мы движемся вокруг галактического центра со скоростью 250 километров в секунду. Хорошо, что нам не нужно составлять наши календари, руководствуясь галактическим годом: чтобы сделать полный оборот на этой галактической карусели, нашей планетной системе требуется 200 миллионов земных лет.

Подобно тому, как планеты обращаются вокруг Солнца, Солнце, в свою очередь, обращается вокруг центра Млечного Пути. Сегодня мы можем заметить его движение, понаблюдав за черной дырой в галактическом центре с помощью наших радиотелескопов в течение нескольких недель, как это регулярно делают мои коллеги Андреас Брунталер и Марк Рейд[89]89
  M. J. Reid and A. Brunthaler. The Proper Motion of Sagittarius A*. III. The Case for a Supermassive Black Hole. // The Astrophysical Journal 892 (2020): 39. https:// ui.adsabs.harvard.edu/abs/2020ApJ…616..872R.


[Закрыть]
. Высокая скорость галактического центра относительно нас – иллюзия, поскольку именно мы движемся относительно центра Млечного Пути вместе со всеми звездами вокруг нас.

Из-за этого в долгосрочной перспективе картина нашего неба также изменится. Примерно через 100 000 лет семь звезд знаменитого Большого Ковша, входящего в гораздо большее созвездие Большая Медведица, станут выглядеть иначе, чем сегодня. Трапециевидный ковш с ручкой будет выглядеть так, как будто кто‐то расплющил его о стену.

Млечный Путь по‐прежнему является объектом пристального изучения. Миссия Gaia Европейского космического агентства (ЕКА) сообщает нам массу новых подробностей его строения и истории развития. В 2018 году Амина Хельми раскрыла секрет, который наш Млечный Путь хранил с незапамятных времен. (Амина Хельми – галактический археолог и профессор Гронингенского университета, и в этом качестве она является преемницей своих великих предшественников Каптейна и Оорта.) Десять миллиардов лет назад наша Галактика поглотила целую галактику Гайя-Энцелад, и орбиты ее осколков до сих пор пересекают нашу Галактику. Захватив такую жирную галактическую добычу, диск нашего Млечного Пути вырос в размерах, а в центре у него образовалось небольшое брюшко, так называемый балдж (выпуклость).

Но Млечный Путь пока не закончил свое развитие. Вокруг него обращается еще много маленьких галактик, а через несколько миллиардов лет мы сольемся с равной нам по размеру соседней галактикой Андромеды. Нашу родную Галактику еще ждут впереди захватывающие события.

6
Галактики, квазары и Большой взрыв
Галактики в движении

На моем вводном занятии в начале каждого семестра я всегда несколько минут занимаюсь со студентами физкультурой. Я прошу пятерых студентов встать у стены плечом к плечу так, чтобы они образовали линию, перпендикулярную стене. Ближайшая к стене студентка должна, согнув в локте и прижав к телу левую руку, опереться ею о стену. Все остальные кладут свои левые руки на плечо соседа/соседки. По моей команде они одновременно должны вытянуть левые руки так, чтобы между каждым студентом и его соседом слева образовалось расстояние, равное длине руки. Что же тогда произойдет?

Если все они одновременно вытянут руки, то студентка, стоящая прямо у стены, должна будет сделать один шаг в сторону. Ее сосед, чтобы удержать равновесие и чтобы расстояние от него до соседки слева оказалось равным длине руки, должен сделать два шага в сторону, в результате чего он уже будет стоять на расстоянии двух длин руки от стены. А его соседу справа придется, соответственно, в ту же секунду отпрыгнуть на три шага в сторону. Ну, а что же ждет бедную студентку, стоящую последней? Все верно: она получит изрядный толчок и отлетит в сторону – сделать пять шагов за секунду просто нереально. К счастью, обычно мне удается ее поймать.

Эта демонстрация иллюстрирует процессы, происходящие при расширении пространства. Что случается, когда между двумя студентами или, скажем, между двумя галактиками появляется небольшой зазор? Они все будут отскакивать друг от друга, и чем больше будет становиться расстояние между ними, тем быстрее им придется двигаться. Это простое наблюдение, но когда мы распространяем его на космос, оно меняет наше представление о Вселенной так же радикально, как открытия Коперника, Кеплера или Ньютона[90]90
  В частности, по закону Хаббла, чем дальше от нас находится галактика, тем быстрее она от нас удаляется. – Прим. пер.


[Закрыть]
.

Вскоре после того, как Эйнштейн опубликовал свою теорию относительности, он обнаружил, что у него возникла проблема с “его вселенной”: она оказалась нестабильной. Как известно, гравитационное взаимодействие обуславливает только притяжение объектов друг к другу. Технически, вселенная, заполненная материей, должна сжаться в точку, как воздушный шар, когда из него выходит воздух. Сегодня мы называем этот сценарий “Большим сжатием”.

К счастью, Эйнштейн смог проделать со своими уравнениями один трюк, а именно: вставить в них свободный параметр – так называемую “космологическую постоянную”. С ее помощью он ввел некую таинственную силу, заставляющую Вселенную расширяться, – своего рода антигравитацию. Введя эту космологическую постоянную, Эйнштейн смог спасти модель своей вселенной от неизбежного Большого Сжатия, однако тот факт, что пришлось искусственно ввести этот параметр, его раздражал.

Дальше – больше. В 1922 году советский физик Александр Фридман сообщил Эйнштейну, что он может описать Вселенную с помощью уравнений теории относительности даже без введения в них этой таинственной постоянной, – но только при условии ее расширения. Эйнштейн отверг эту идею. Он считал Вселенную вечной и неизменной, и в то время у него были веские причины так думать.

И все же эти базовые убеждения Эйнштейна удалось поколебать. Сделал это один католический священник, который не только математически описал расширяющуюся Вселенную, но даже заявил, что астрономы уже видели признаки такого расширения. Этим священником был Жорж Леметр из Бельгии. Выпускник иезуитского колледжа, переживший ужасы Первой мировой войны, он стал священнослужителем и параллельно начал изучать математику и физику в Лёвене. Свое обучение он продолжил в Кембридже, у прославленного астрофизика Артура Эддингтона, а завершил в Бостоне – в Массачусетском технологическом институте (MIT), где получил степень доктора философии.

Леметр первым обратил внимание на странные характеристики галактических туманностей, которые американец Весто Слайфер обнаружил, работая в обсерватории Лоуэлла в Аризоне. В 1917 году Слайфер измерил скорость галактик с помощью эффекта Доплера. Мы знаем про этот эффект в акустике: если мимо нас проезжает машина скорой помощи с ревущей сиреной, то пока она едет к нам, мы слышим более высокий звук, а как только она нас минует и начинает удаляться, мы слышим более низкий звук. То, что верно для звука, верно и для света. Если галактики движутся к нам, свет “сжимается” и становится более голубым; если они улетают от нас, свет “вытягивается” и становится более красным. Как мы знаем, свет всегда движется с постоянной скоростью в обоих направлениях, но восприятие нами цвета меняется. Итак, измеряя длины волн характерных спектральных линий атомов в свете галактик с помощью спектрографа, вы можете зафиксировать даже малейшие сдвиги этих линий и, следовательно, измерить скорость галактик в том направлении, вдоль которого вы смотрите.

Результат оказался неожиданным: если не считать нашей соседки – галактики Андромеды, – длины волн характерных линий в основном смещались в красную сторону. То есть почти все галактики (кроме туманности Андромеды) от нас удаляются! Это было более чем странно и не могло оказаться совпадением. Представьте себе большой танцпол, заполненный скользящими по нему парами. Разве число пар, движущихся к вам, не должно быть примерно таким же, как число пар, удаляющихся от вас? А что если окажется, что все они от вас удаляются? Вы решите, что все хотят держаться от вас подальше?

Ответ Леметра таков: дело не в нас – расширяется вся Вселенная, а вместе с ней удаляются и источники света. Сопоставив скорости галактик, рассчитанные Слайфером, с расстояниями, рассчитанными Хабблом, Леметр обнаружил, что галактики удаляются от нас с тем большей скоростью, чем они от нас дальше. Самые далекие галактики движутся быстрее всех – совсем как последняя в ряду бедная маленькая студентка на моей вводной лекции.

Все почувствовали огромное облегчение. Значит, покраснение приходящего к нам из других галактик света происходит не из‐за каких‐то неприятных и отталкивающих свойств нашего собственного Млечного Пути! Другие наблюдатели в других галактиках увидят то же самое, что и мы. В отличие от стены в моем классе, Млечный Путь не прикреплен ни к чему в космосе и не находится в центре Вселенной, а движется в толпе космических танцоров так же, как и все остальные. Весь космический танцпол продолжает все время расширяться.

Это можно представить еще вот как: пусть танцпол находится на внешней поверхности гигантского воздушного шара и танцоры танцуют на этой поверхности. Если шарик начнет надуваться, танцпол будет расширяться, а все танцоры – отдаляться друг от друга. Только те из них, которые держат друг друга в объятиях, останутся неразлученными, как Млечный Путь и Андромеда. Их взаимное притяжение сильнее, чем сила, заставляющая Вселенную расширяться.

Леметр опубликовал свои результаты в 1927 году на французском языке, сославшись на данные измерений расстояний Хаббла. Два года спустя Хаббл опубликовал собственные результаты – с аналогичными выводами и используя почти те же данные, – но только по‐английски. Однако он не упомянул ни Слайфера, измерениями которого оперировал, ни Леметра, с которым лично обсуждал результаты. Как историки науки, так и современники Хаббла говорят, что он “очень избирательно относился к подбору ссылок, не упоминая в своих публикациях работы своих коллег”[91]91
  Emilio Elizalde. Reasons in Favor of a Hubble-Lemaître-Slipher’s (HLS) Law. // Symmetry 11 (2019): 15. https://ui.adsabs.harvard.edu/abs/2019Symm…11…35E.


[Закрыть]
. Это еще мягко сказано. В научном мире ссылки на ваши работы и признания коллег являются единственной твердой валютой. Поведение, подобное поведению Хаббла, к сожалению, не редкость, но оно крайне неэтично.

В науке иногда дело обстоит примерно так, как в античном героическом эпосе Гомера “Илиада”: истории, которые о тебе будут рассказывать потом, важнее твоих деяний и даже твоей жизни. Хаббл хотел застолбить себе особое место в истории, и ему это удалось. Знаменитый космический телескоп назван в его честь, а закон расширения пространства долгое время назывался просто законом Хаббла. Только в 2019 году Международный астрономический союз проголосовал за переименование его в закон Хаббла-Леметра.

Этот закон сыграл решающую роль в расширении горизонтов Вселенной. С его помощью стало возможным измерять расстояния между Землей и самыми удаленными галактиками. Измерить расстояние в миллиарды световых лет больше не являлось проблемой. Если удавалось найти характерные спектральные линии атомов, испускающих свет в некой галактике, красное смещение этих спектральных линий служило мерой расстояния до нее.

Альберт Эйнштейн был совершенно не согласен с таким новым развитием событий. Ведь – если повернуть ход истории вспять – это расширение означало бы, что вся Вселенная уже давным-давно должна была быть сжатой в одну точку! В очередной раз, как и в случае с черными дырами, уравнения Эйнштейна приводили к сингулярности во времени и пространстве. Это значило, что Вселенная должна была иметь начало! Леметр оказался первым, кто осмелился озвучить эту мысль и заговорить о первичном атоме, из которого миллиарды лет назад, как из яйца, родилась молодая Вселенная.

Но Эйнштейну не понравилась и эта теория. Разве не подозрительно она звучала в устах священника, явно принимавшего желаемое за действительное? Разве эта идея не выросла из библейских представлений об акте творения? Католик Леметр вызывал недоверие, и ученые по‐прежнему скептически относились к его модели, а некоторые даже высмеивали ее, с иронией называя “Большим взрывом”. Да-да, этот термин первоначально имел отрицательную коннотацию, но, поскольку в конечном счете стоящая за ним идея была хорошо обоснована, то он все‐таки закрепился. В немецкой же литературе общеупотребительным стал термин Urknall, что означает “изначальный, довременной взрыв”, и мне он кажется более точным.

В долгих разговорах Леметр пытался убедить Эйнштейна, что его модель статичной вселенной не работает. И все же до того как теория Большого взрыва стала общепринятой, прошло много времени. Когда я был еще молодым ученым, я встречал выдающихся исследователей преклонных лет, решительно отвергавших эту идею. Похоже, они боялись, что, согласившись с теорией Большого взрыва, они позволят Творцу “выпрыгнуть из гроба”. Забавно, что история повторилась, но теперь стороны поменялись ролями. Если во времена Коперника и Галилея именно Ватикан отверг новую модель Вселенной, то во времена Леметра одним из первых, кто поддержал его новую теорию расширяющейся Вселенной, стал в 1951 году папа Пий XII.

Говорят, что старая теория умирает вместе с последними критиками новой. Так и случилось. Сейчас теорию динамичной, расширяющейся Вселенной полностью принимают все ученые, несмотря на то, что разгадать тайну Большого взрыва нам лишь предстоит.

Другой свет: радиоастрономия

Тысячелетиями люди могли смотреть на небо только невооруженным глазом. Позже, начиная с XVII века, им помогали в этом оптические телескопы. Но девяносто лет назад, с распространением совершенно новой методики, произошла революция в изучении космоса. Когда в 1932 году Карл Гуте Янский открыл космическое радиоизлучение, мы мгновенно увидели всю Вселенную в совершенно ином свете – буквально ином, потому что мы впервые использовали для наблюдений не видимый свет, а свет из другого диапазона электромагнитного спектра. Для астрономов это означало, что они вступают на абсолютно неизведанную территорию, к которой еще нужно было привыкнуть. Вначале некоторые воротили от нее носы, и потребовалось некоторое время, чтобы новая дисциплина – радиоастрономия – нашла свое место в рамках более широкой науки – астрономии, а ее инструменты стали называться телескопами, но уже не оптическими, а радиотелескопами. Компоненты оптических телескопов, с помощью которых формируется изображение, обычно изготавливаются из различных видов стекла, а радиотелескопы изготавливаются из стали.

Сегодня мы регистрируем космическое излучение во всем спектре электромагнитных волн, используя для этой цели радио-, инфракрасные, оптические, рентгеновские и гамма-телескопы. Мы принимаем радиоволны с частотой 0,01 ГГц, у которых длина волны сравнима с размером дома. Или гамма-лучи с частотой 100 миллиардов ГГц, с длиной волны в 100 миллионов раз меньше размера атома. Один гигагерц равен одному миллиарду колебаний в секунду – это тот тип излучения, который мы используем в wi-fi. Видимый свет колеблется с частотой 500 000 ГГц. Излучение, испускаемое Вселенной, можно сравнить с космической симфонией, где каждой отдельной частоте соответствует нота в музыкальной гамме света. Инструменты, которые есть у нас сегодня, охватывают диапазон частот в шестьдесят три октавы, что соответствует фортепиано с клавиатурой длиной почти 12 метров. До появления радиоастрономии мы слышали светомузыку Вселенной, исполняемую только в одной октаве. Благодаря радиотелескопам постепенно добавились басовые ноты, что придало Вселенной совершенно новое звучание. Внезапно небо, озаренное радиочастотным излучением, засияло не только звездами, но и черными дырами и светом, оставшимся от Большого взрыва. Позже, с появлением рентгеновских и гамма-телескопов, мы услышали и более высокие ноты.

Прорыв в новой области астрономии произошел после Второй мировой войны, и это не было случайностью: военные действия в воздухе обусловили развитие радаров. Помимо очень многого плохого эта смертоносная война дала человечеству и кое‐что хорошее: помогла создать необходимую технологию (хотя при всей ценности радиоастрономии мы никогда не должны забывать о ее печальном происхождении). После войны большое количество радиоантенн, тарелок-приемников и передатчиков оказались ненужными, и астрономы выстроились за ними в очередь.

В последующие годы в исследованиях использовались в основном гигантские радиоантенны, которые когда‐то создали инженеры для радиолокационных станций. В Англии группа бывших солдат Королевских ВВС под руководством Бернарда Ловелла начала строительство гигантского телескопа диаметром 76 метров в Астрофизическом центре Джодрелл-Бэнк. Из-за ошибки в расчетах его размеры оказались совершенно неподходящими для выполнения первоначально поставленных задач. Проект начал испытывать финансовые трудности, и Ловелл испугался, что его отправят в тюрьму. Но запуск первого советского спутника в 1957 году спас телескоп, поскольку группа, обслуживающая его, оказалась единственной во всей Англии, способной принять и расшифровать радиосигналы со спутника. (Конечно, это удалось сделать не с помощью гигантского радиотелескопа, а с помощью простой антенны[92]92
  По версии самого Ловелла, эта история выглядела так: “Когда был запущен спутник, Советы объявили частоту, и любой мог поймать ее с помощью обычного приемника. Мне позвонил Кокберн, в то время директор по управляемым вооружениям в Министерстве авиации. Он сказал: «Как вы думаете, сможем ли мы убедить вас поставить радар на ваш телескоп, чтобы мы могли обнаружить ракету-носитель?» Это был мой шанс. Нам удалось запустить радар и телескоп, а также подключиться к диспетчерской. Мы получили потрясающее отражение от контрольной ракеты. Это спасло нас. В этом значение 4 октября”. – Прим. науч. ред.


[Закрыть]
.)

Голландцы тоже принялись исследовать небо в этом новом диапазоне электромагнитного спектра. Сначала они работали на немецком радиолокационном оборудовании, а затем построили на окраине города Двингело свой 25‐метровый телескоп, используемый для измерения излучения водорода с длиной волны 21 сантиметр, возможность наблюдения которого предсказал Хендрик ван де Хюлст.

Радиотарелка диаметром 64 метра, построенная в Австралии недалеко от небольшого городка Паркс в Новом Южном Уэльсе, вошла в историю благодаря невероятным усилиям ученых, первыми наладившими трансляцию по телевидению кадров высадки на Луну экипажа “Аполлона-11”.

В 70‐е годы немецкие радиоастрономы построили самый большой в мире полноповоротный радиотелескоп диаметром 100 метров в небольшом городке Эффельсберг недалеко от Бонна, тогдашней столицы Западной Германии. Будучи аспирантом в Радиоастрономическом институте Макса Планка, в ведении которого находится этот инструмент, я использовал его для своих первых радиоастрономических наблюдений.

Существовал только один радиотелескоп большего размера – 300‐метровая тарелка в обсерватории Аресибо в Пуэрто-Рико, построенная в 60‐е годы Министерством обороны США и позже переданная астрономам. Телескоп был установлен в естественном углублении и не допускал никаких перемещений тарелки. В результате с его помощью можно было наблюдать лишь небольшую часть неба. Этот объект стал известен благодаря фильму “Золотой глаз” о Джеймсе Бонде, в котором главный злодей заливает тарелку водой. В 2020 году кабели оборвались, тарелка сломалась, и радиотелескоп пришлось демонтировать.

Примерно в то же время в городке Грин-Бэнк американцы строили полноповоротную радиотарелку диаметром 90 метров. (Этот городок находится в сельской части штата Западная Вирджиния, которая была объявлена зоной радиомолчания. Сегодня он очень популярен среди тех, кто боится радиации.) Но в 90‐е телескоп в одночасье рухнул из‐за усталости металла. За день до этого мой коллега из Бонна[93]93
  Ричард Поркас был последним, кто сфотографировал 90‐метровый телескоп в Грин-Бэнк. Фото долго висело в коридоре Радиоастрономического института Макса Планка в Бонне.


[Закрыть]
сделал фотографию телескопа – как выяснилось, последнюю: на следующее утро на месте телескопа он уже снимал груды обломков. Как правило, мы, радиоастрономы, не суеверны, но после этого случая все начинали немного нервничать, когда он доставал свою камеру.

Телескоп Грин-Бэнк был построен заново, и на этот раз его средний поперечник стал на один метр больше, чем диаметр 100‐метрового радиотелескопа в немецком Эффельсберге. Я никогда не мог понять, в чем состоит научное обоснование необходимости увеличить диаметр на метр. Совершенно ясно, что эта технология достигла своего предела. Никто не сумел бы – да и не стал бы – строить еще большие телескопы.

Тем не менее нам, астрономам, срочно требовались более крупные установки для получения более четких изображений. Разрешение изображения телескопа зависит от длины волны света и диаметра телескопа: чем больше телескоп, тем четче полученное с его помощью изображение. С другой стороны, оно становится тем более размытым, чем больше длина волны, на которой проводятся наблюдения. Радиоастрономия работает с гораздо большими длинами волн, чем оптическая астрономия, а это означает, что 100‐метровый телескоп в Эффельсберге получает не более четкие изображения, чем человеческий глаз. Черную дыру на этом телескопе вы обнаружить не сможете. Если вам нужны четкие изображения, вы должны придумать что‐то более масштабное. И тут на помощь пришла радиоинтерферометрия. Эта методика состоит в соединении воедино нескольких телескопов с целью создания эквивалентного им одного гигантского телескопа.

Первые после Второй мировой войны успешные радиоинтерферометрические измерения провела Руби Пейн-Скотт из Австралии. У нее была только одна антенна, но для увеличения базы телескопа она использовала поверхность океана в качестве дополнительного радиоотражателя. В 1964 году Мартин Райл построил в Англии One-Mile Telescope (Одномильный телескоп) и позже удостоился Нобелевской премии по физике за успешное объединение трех радиотарелок в один большой телескоп. Для получения все более четких изображений другие радиоастрономы продолжили на том же принципе создавать все более совершенные установки. В Нидерландах на месте бывшего концлагеря Вестерборк (почему‐то более подходящего места не нашлось) была построена сеть из четырнадцати 25‐метровых тарелок. А в Нью-Мексико в Соединенных Штатах появилась радиообсерватория VLA (Очень большая антенная система), состоящая в общей сложности из 27 параболических тарелок диаметром 25 метров каждая. Тарелки могли образовывать различные конфигурации, и их максимальная разрешающая способность была эквивалентна разрешению антенны с диаметром 36 километров, а это означает, что ученые обсерватории в конечном итоге получили в пользование телескоп, который превосходил по площади весь бостонский мегаполис. В течение многих десятилетий он был одним из самых эффективных астрономических инструментов в мире.

В конце концов мы начали соединять между собой радиотелескопы, разбросанные по всему земному шару. Идея заключалась в том, чтобы создавать системы размером с Землю, которые позволили бы получать максимально четкие астрономические изображения. Эта методика получила неуклюжее английское название Very Long Baseline Interferometry, которое астрономы обычно сокращают до VLBI (РСДБ – радиоинтерферометрия со сверхдлинной базой). Сверхдлинная база получается, когда телескопы располагаются очень далеко друг от друга. Благодаря этой технологии мы теперь имеем глобальные телескопы, и в конечном итоге именно эта технология позволила нам получить изображение черной дыры.

Квазары: поиски сверхтяжелых монстров

Когда астрономы обзавелись радиотелескопами, им показалось, что к привычным осязанию, обонянию, вкусу, зрению и слуху у них добавилось некое шестое чувство, благодаря которому можно совершать новые открытия. А когда они начали систематически прочесывать небо в поисках радиоисточников, то внезапно обнаружили тысячи новых небесных объектов. Никто и понятия не имел, что они собой представляют. Сначала астрономы предположили, что это звезды. Чем еще они могли быть?

В Австралии Джон Болтон зарегистрировал радиоисточник, посылавший сигналы со стороны объекта из каталога Мессье под номером M87, и – хотя и был убежден, что M87 – это самая настоящая галактика, – заявил, что радиоисточник скорее всего находится внутри нашего Млечного Пути. Из-за страха подвергнуться остракизму[94]94
  Ken Kellermann. The Road to Quasars (lecture, Caltech Symposium: “50 Years of Quasars”, September 9, 2013). https://sites.astro.caltech.edu/q50/pdfs/Kellermann.pdf.


[Закрыть]
он не осмелился поделиться со своими коллегами предположением о том, что это излучение преодолевает многие миллионы световых лет, – ведь если объект находится так далеко, а мы все еще можем его обнаружить, то его светимость должна быть невероятно высокой. Разве какое‐нибудь небесное тело, какая‐нибудь галактика или какой‐нибудь неизвестный объект в космосе могли быть источником такого мощного излучения? Гипотеза была слишком революционной.

Всего через десять лет опасения Болтона улетучились, и существование так называемых радиогалактик стало признанным фактом. Среди таких объектов были галактики M87 и Лебедь A, причем последняя, если верить закону Хаббла-Леметра, должна была находиться на расстоянии около 750 миллионов световых лет от Земли. Астрономов охватило сильнейшее волнение. Еще бы! Это радиоизлучение, которое мы и измерить‐то смогли всего несколько лет назад, позволило человечеству заглянуть в самые дальние уголки космоса и, соответственно, в далекое прошлое Вселенной.

Исследователи из Кембриджа составили большой каталог всех радиоисточников. Первая версия каталога была слишком короткой, вторая содержала много ошибок, но зато третья версия, названная 3С, послужила основой для многих последующих исследований. Новые радиозвезды и радиогалактики просто нумеровались последовательно. Однако никто не имел даже смутного представления о том, что представляют собой источники этих радиоволн. Изображения данных загадочных объектов на небе были еще крайне размыты, их положения определены крайне неточно. Было установлено, что само излучение создается электронами, движущимися почти со скоростью света по криволинейным траекториям в космических магнитных полях. Астрономы знали, что аналогичные процессы излучения электромагнитных волн происходят на Земле в ускорителях частиц, называемых синхротронами, и поэтому это излучение было названо синхротронным излучением.

Одни источники были вытянуты в длину и имели вид гантели, другие казались маленькими точками – как звезды. И действительно: начав изучать объект 3C 48, исследователи выяснили, что при переходе на другой диапазон длин волн света – видимый – на месте этого объекта находится нечто, напоминавшее звезду. Но спектральный анализ этого звездоподобного объекта поставил больше вопросов, чем дал ответов: в спектре излучения объекта 3C 48 были спектральные линии с необычными длинами волн, которые не получалось соотнести ни с одним известным элементом. Не обнаружили ли астрономы в космосе новый элемент?

Джон Болтон и его соавтор Джесси Гринштейн задумались – а не может ли это быть линией водорода, смещенной в красную область за счет эффекта Доплера? Но такая гипотеза показалась им слишком смелой, поскольку при подобном сильном красном смещении этот объект должен был бы находиться в космосе примерно в 4,5 миллиарда световых лет от нас. “У меня была репутация радикала, и я боялся подтвердить ее, рискнув выступить с такой экстремальной идеей”, – сказал позже Гринштейн.

Самым серьезным аргументом против гипотезы о невероятно большом расстоянии до этого источника был тот, что его светимость могла резко меняться в течение всего нескольких месяцев. Он не мог быть галактикой! Как удалось бы миллиардам звезд, расположенным на расстоянии сотен тысяч световых лет друг от друга, одновременно поменять свои периоды пульсаций так, чтобы их суммарный свет изменился от яркого к более тусклому в течение месяца?

Представьте, что все восемь миллиардов человек в мире одновременно хлопнули в ладоши. Вы бы услышали не один короткий хлопок, а продолжительный гул, потому что звук, естественно, приходил бы к вам из разных точек, разбросанных по всей Земле, не одновременно.

Зато, зная скорость звука, можно во всяком случае оценить размер источника звука по длительности гула. Чем меньше он длится, тем меньше протяженность пространства, из которого он исходит. Если я услышу звук хлопков, который длится секунду, то скорее всего подумаю, что аплодируют люди, сидящие на стадионе, так как размер стадиона примерно равен “звуковой секунде”, то есть расстоянию, которое звук проходит за одну секунду. (Конечно, это может быть и какое‐нибудь меньшее пространство.) То же самое и с переменными источниками света: если изменение происходит в пределах месяца, источник не может быть больше светового месяца. Это намного меньше, чем расстояние между нами и ближайшей звездой. Следовательно, объект 3C 48 должен быть звездой, верно?

Затем ученые обратились к следующему по яркости радиоисточнику в каталоге – 3C 273. Чтобы определить его точное положение, радиоастрономы из обсерватории Паркса в Австралии применили хитрость: они попросили о помощи Луну. Случайно вышло так, что ее орбита пересекала направление на радиоисточник. Когда Луна оказалась перед ним, сигнал от него на короткое время исчез из зоны приема большой антенны. Это было похоже на солнечное затмение, только здесь Луна закрывала не Солнце, а таинственный радиообъект.


    Ваша оценка произведения:

Популярные книги за неделю