412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Хайно Фальке » Свет во тьме. Черные дыры, Вселенная и мы » Текст книги (страница 7)
Свет во тьме. Черные дыры, Вселенная и мы
  • Текст добавлен: 1 июля 2025, 11:35

Текст книги "Свет во тьме. Черные дыры, Вселенная и мы"


Автор книги: Хайно Фальке



сообщить о нарушении

Текущая страница: 7 (всего у книги 22 страниц) [доступный отрывок для чтения: 9 страниц]

Сегодня мы все еще можем наблюдать остатки яркой сверхновой 1054 года. Она оставила после себя эффектную Крабовидную туманность, расположенную в Рукаве Персея нашего Млечного Пути. Эта туманность выглядит как разноцветное облако дыма и доказывает, что древние хроники не были сказками.

За тысячелетие исследователи насчитали в нашем Млечном Пути всего около двадцати сверхновых. 11 ноября 1572 года одна из них стала настоящим сюрпризом для Тихо Браге и его сестры Софии. Поскольку они приняли это событие за рождение новой звезды, то и нарекли “младенца” соответствующе: Stella nova, что означает – “новая звезда”. В 1604 году Иоганн Кеплер также описал сверхновую. Отсутствие какого‐либо параллакса показало, что этим источником света была не наша атмосфера, а какая‐то звезда, находящаяся по крайней мере за Луной. Сверхновая “вбила очередной гвоздь” в аристотелевскую модель Вселенной, в которой предполагалось, что небесные сферы, в том числе и сфера неподвижных звезд, должны быть неизменными.

Сегодня астрономы постоянно открывают новые сверхновые, но – в других галактиках. Однако со дня на день в небе может появиться и новая сверхновая в нашем Млечном Пути, и мы сумеем увидеть ее невооруженным глазом. Вообще‐то, время появиться следующей сверхновой уже пришло, хотя от этого события нас вполне может отделять целых сто лет.

Даже очень близкие сверхновые опасности для человечества не представляют. По большому счету мы должны быть благодарны этим звездным взрывам за образование наших планет и зарождение жизни на Земле, так как в последней фазе своего существования во время все более коротких циклов умирающая звезда производит важные элементы. Затем, при взрыве сверхновой, они выбрасываются в космос, где собираются в массивные пылевые облака, из которых могут образовываться новые поколения звезд и планет. Такое происхождение имеют все важные элементы на Земле. Мы должны понимать, что без смерти звезд никогда не возникла бы и земная жизнь. Даже красивой красной краски, которой покрашен мост Золотые Ворота в Сан-Франциско, не могло бы быть, поскольку она содержит оксид железа, а железо в конечном счете образовалось в результате взрыва сверхновой. Так что у нас есть немало того, за что можно поблагодарить умирающие звезды.

Образование черной дыры

Существуют звезды, которые слишком массивны даже для того, чтобы стать нейтронными звездами. Представьте себе суперустойчивый стул в гостиной, который предназначен для вашего чрезвычайно тучного дяди Альфреда. С тех пор как его усадили на дешевый пластиковый складной стул и тот сломался, ему всегда подставляли этот массивный деревянный стул (как говорится, от греха подальше). Но даже самый устойчивый стул имеет свой предел прочности. Если дядя Альфред приведет с собой слона из цирка и усадит его на деревянный стул, тот тоже сломается.

В астрофизике белые карлики – это дешевые пластиковые стулья, а нейтронные звезды – устойчивые деревянные. Нейтронные звезды могут выдержать многое, но не все, потому что среди звезд есть настоящие “слоны”. Этим открытием мы обязаны не кому иному, как отцу американской атомной бомбы Роберту Оппенгеймеру, а также его коллегам и ученикам. Незадолго до Второй мировой войны они доказали, что как масса белых карликов ограничена неким пределом – так называемым пределом Чандрасекара[72]72
  J. R. Oppenheimer and G. M. Volko. On Massive Neutron Cores. // Physical Review 55, no. 374 (1939): 374; однако впервые нейтронные звезды были предсказаны В. Бааде и Ф. Цвикки: W. Baade and F. Zwicky. Remarks on Super-Novae and Cosmic Rays. // Physical Review 46 (1934): 76–77. https://ui.adsabs.harvard.edu/abs /1934PhRv…46…76B.


[Закрыть]
, так и масса нейтронных звезд имеет верхний предел массы. Согласно современным расчетам максимальная масса нейтронной звезды чуть больше двух-трех масс Солнца.

“Звездные слоны” во Вселенной – это звезды, вес которых более чем в двадцать пять раз превышает вес Солнца. Когда эти звезды взрываются, большая часть их массы выбрасывается в космос, а из ядра сначала образуется белый карлик, а затем нейтронная звезда. Внутри нее все больше и больше материи начинает стремительно продвигаться к центру, так что в какой‐то момент и нейтронная звезда начинает коллапсировать. Как только этот процесс пойдет, всякое сопротивление исчезнет. Мы не знаем никакой силы, способной выдержать давление такой тяжелой звезды, – ее коллапс неизбежен. Звезда будет постоянно сжиматься и становиться все меньше и меньше, пока в какой‐то момент вся масса не сосредоточится в одной точке с бесконечной плотностью. И таким способом формируется один из самых замечательных объектов во Вселенной – черная дыра. (Естественно, во времена Оппенгеймера она еще так не называлась.)

Даже самого Альберта Эйнштейна испугала мысль о таком объекте. Всего через несколько месяцев после того, как Эйнштейн опубликовал свою общую теорию относительности, немецкий астроном Карл Шварцшильд рассчитал структуру пространства-времени для массы, сосредоточенной в одной точке, и свойства такой системы оказались экстремальными.

Шварцшильд – это пионер современной астрофизики. Когда в 1914 году разразилась Первая мировая война, он был директором Потсдамской астрофизической обсерватории. В отличие от Артура Эддингтона, пацифиста и поклонника Эйнштейна, Шварцшильд, происходивший из еврейской семьи, принадлежавшей к высшему среднему классу, считал своим долгом послужить стране и потому пошел добровольцем в немецкую артиллерию. Это было фатальное решение. После двух лет, проведенных на фронте, он заболел и умер.

Но даже в боевых условиях Шварцшильд умудрился написать две научные статьи мирового уровня[73]73
  Шварцшильд, возможно, занимался поиском решения не на Восточном, а на Западном фронте, в Южных Вогезах. Это следует из его письма Арнольду Зоммерфельду: https://leibnizsozietaet.de/wp-content/uploads/2017/02/Kant.pdf.


[Закрыть]
. В одной из них он вычислил кривизну пространства-времени вокруг точечной массы. При этом Шварцшильд стал первым, кто нашел точное решение уравнений общей теории относительности в конкретном случае[74]74
  Спустя несколько месяцев голландский ученый Йоханнес Дросте независимо нашел даже более элегантное решение, которое, однако, полностью проигнорировали, поскольку Дросте опубликовал эту работу на голландском языке. В то время было еще важно уметь общаться по‐немецки.


[Закрыть]
. Этот свой результат он изложил в статье и с гордостью отправил ее Эйнштейну. Изящество идеи поразило великого физика, и он, ответив: “Я был ошеломлен тем, что истинное решение этой проблемы можно выразить столь легко”, представил результаты Шварцшильда на ближайшем заседании Прусской академии наук[75]75
  Hanoch Gutfreund and Jurgen Renn. The Road to Relativity: The History and Meaning of Einstein’s “The Foundation of General Relativity”. // Princeton: Princeton University Press. (2015).


[Закрыть]
.

В решении Шварцшильда[76]76
  Lexikon Der Astronomie: Schwarzschild-Lösung. https://spektrum.de /lexikon/astronomie/schwarzschild-loesung/431.


[Закрыть]
вся масса была сосредоточена в точке; однако в этой точке само пространство кажется бесконечно протяженным, растянутым в одном направлении, и степень его искривления становится бесконечно большой. Внезапно в этой ограниченной части пространства оказывается бесконечное количество места. В уравнениях появляется сингулярность – одна из тех точек, где уравнения теряют смысл, физические величины устремляются в бесконечность и все останавливается. Мы, физики, знаем, что сингулярности не имеют отношения к реальности, но они сигнализируют, что в уравнениях все еще чего‐то не хватает. Эйнштейн понимал это так, что точечных масс не существует и что это чисто математический трюк, хотя и любопытный.

Однако как Эйнштейна, так и других ученых беспокоило то, что и вдали от центральной сингулярности – а именно на расстоянии

Rs =2GM/ c 2

– в уравнениях происходило что‐то странное.

Это расстояние носит сегодня название “радиус Шварцшильда”. Здесь M означает массу объекта, а c = 299 792,458 км/с и G = 6,6743 × 10 11 м 3/кг/с 2 – скорость света и гравитационную постоянную соответственно.

Что‐то с этим радиусом было не так. Уравнения вели себя ненормально. Как только вы достигали радиуса Шварцшильда, время, казалось, останавливалось. А когда вы пересекали эту границу и оказывались ближе к центру, вы уже в некотором смысле путешествовали не в пространстве, а во времени.

Если в обычной жизни я могу спокойно сидеть на скамейке в парке – в фиксированной точке пространства, – но время продолжает идти, то внутри радиуса Шварцшильда я застреваю во времени, а пространство непреодолимо тянет меня внутрь, к центральной сингулярности. При каждой попытке двинуться наружу я только приближаюсь к центру.

Очень странно! По-видимому, нет никакой возможности покинуть это пространство, то есть пересечь радиус Шварцшильда изнутри. Стоит только чему‐то оказаться внутри сферы с радиусом Шварцшильда, как выхода вовне ни для чего уже нет – ни для материи, ни для света, а значит, и для информации и энергии. Прошло много времени, прежде чем хотя бы кто‐нибудь понял, что на самом деле там происходит. Сам того не подозревая, Шварцшильд, решавший уравнение, сидя в грязном окопе в разгар Первой мировой войны, описал черную дыру.

Но на самом деле и раньше было уже ясно, что когда вы приближаетесь к точечной массе, должно случиться нечто необычное. Разве это не следует из простой теории движения планет Кеплера и Ньютона? Чем ближе вы к Солнцу, тем быстрее вы двигаетесь вокруг него. Если бы Солнце стало бесконечно маленьким, планета, обращающаяся вокруг него по орбите радиусом всего в три километра, должна была бы двигаться со скоростью света, а по еще меньшей орбите – даже быстрее света. Но, конечно же, это невозможно!

Сила гравитации также становится слишком большой. Чем большая масса сосредоточивается в одной области пространства, тем сильнее ее гравитационное притяжение и, следовательно, тем труднее освободиться от этого притяжения. Если вы хотите избавиться от притяжения Земли, вам нужно отправиться на ракете в космос со скоростью 11,2 километра в секунду. С поверхности более тяжелого Солнца вам нужно будет стартовать со скоростью 617 километров в секунду. Если бы вы стали сжимать Солнце еще больше, то чтобы взлететь с него, пришлось бы увеличивать вторую космическую скорость до тех пор, пока в какой‐то момент она не превысила бы скорость света. Но тогда, по теории Ньютона, даже свет не смог бы сбежать с поверхности Солнца – он неизбежно вернулся бы обратно. А в теории Эйнштейна, если вы находитесь на краю черной дыры и летите со скоростью света, вы не сможете даже двинуться вперед!

Еще в 1783 году преподобному Джону Мичеллу, не имевшему никакого представления о теории относительности, пришло в голову, что в природе должно было бы происходить нечто подобное, если бы звезда обладала огромной гравитацией, а вторая космическая скорость для нее превышала бы скорость света. Такая “темная звезда”, как назвал ее Мичелл, даже если бы она существовала и находилась в определенной точке пространства, должна быть невидимой, потому что свет из нее не может выскользнуть.

В теории Эйнштейна пространство вокруг черной дыры подобно стремительной реке[77]77
  Я полагал, что придумал нечто действительно оригинальное, использовав для описания черной дыры аналогию с рекой, но, как оказалось, об этом уже была написана целая научная статья: Andrew J. S. Hamilton and Jason P. Lisle. The River Model of Black Holes. // American Journal of Physics 76 (2008): 519–32. https://ui.adsabs.harvard.edu/abs/2008Amjph..76..519H.


[Закрыть]
, которая заканчивается водопадом на радиусе Шварцшильда, а свет подобен пловцу в этой космической реке. Далеко от края обрыва он еще может плыть против течения, но ближе к водопаду течение усиливается и плыть приходится все быстрее и быстрее, так что в какой‐то момент даже чемпион мира по плаванию не сможет справиться со стремительным течением, которое несет его к водопаду. А подняться вверх по водопаду не под силу ни одному пловцу. То же самое происходит на радиусе Шварцшильда. Это точка невозврата. Здесь даже крик не вырвется наружу. Даже свет вместе с пространством затягивается в глубину.

В 1956 году физик Вольфганг Риндлер ввел для обозначения этой “страшной границы” термин “горизонт событий”. Его нельзя ни потрогать, ни ощутить, это всего лишь некая граница в пустом пространстве, математическая характеристика – и вместе с тем разделительная линия. Если вычислить радиус Шварцшильда для Солнца, то он будет равен трем километрам, для Земли – 0,9 сантиметра, а для человека вроде меня – одной стомиллиардной радиуса атомного ядра.

Эйнштейн был убежден, что область внутри радиуса Шварцшильда нефизична: это область чистой фантазии, математическая абстракция, и природа, несомненно, помешала бы таким объектам вообще сформироваться. В 1939 году он опубликовал трактат, в котором с помощью своей теории относительности пытался доказать, что таких “темных звезд” не существует. Эйнштейн триумфально завершил трактат словами: “Основным результатом этого исследования является ясное понимание того, почему «шварцшильдовские сингулярности» не существуют в физической реальности”. В переводе с научного языка это означало: “черных дыр не бывает”[78]78
  Jeremy Bernstein. Albert Einstein und die Schwarzen Löcher. // Spektrum der Wissenschaft, August 1, 1996. https://www.spektrum.de/magazin/albert-einstein-und-die-schwarze-loecher/823187.


[Закрыть]
.

Но утверждение Эйнштейна оказалось ошибочным. Почти в то же время Оппенгеймер и его коллеги доказали, что звезды могут коллапсировать в точку[79]79
  В данном случае точка не означает точку пространства в том смысле, в котором она понимается в общей теории относительности. Центральная сингулярность – это граница пространства-времени бесконечной кривизны.


[Закрыть]
. Если они достаточно массивны, ничто не может предотвратить их коллапс.

Однако здесь вновь проявляются замечательные свойства теории относительности. То, что человек увидит во время коллапса звезды, в максимальной степени будет зависеть от его местонахождения. Наблюдатель, внимательно следивший за коллапсом в телескоп, увидит, как звезда взорвется и исчезнет в черной дыре. Появится горизонт событий, и все, что приближается к нему, этот наблюдатель будет видеть все менее отчетливым и замедленным. Каждая световая волна станет бесконечно растягиваться, и ее будет невозможно измерить, если она попытается выйти за край. Время сделается вязким, как сироп, и в конце концов словно бы остановится. Если уподобить световые волны маятнику, то они станут, как и пространство, растягиваться все больше и больше… часы будут тикать все реже и реже, пока совсем не остановятся.

Между тем для легкомысленного наблюдателя, который останется сидеть на поверхности коллапсирующей звезды, не произойдет ничего особенного – за исключением, конечно, того, что он провалится туда, где его ждет верная смерть. Он упадет в ядро звезды вместе со всеми остальными частицами. Пересекая горизонт событий, он не заметит ничего необычного – даже того, что пересек эту черту. Он всегда будет видеть черную дыру как большое черное пятно – даже внутри этой черной дыры. Его время также продолжит течь нормально, пока в конце концов он за долю миллисекунды не сколлапсирует в одну точку в ядре звезды. Свет провалится в ядро вместе с ним. Впрочем, в случае со звездной черной дырой это приключение не сулит ничего приятного. Поскольку ноги нашего безрассудного наблюдателя находятся ближе к центру массы звезды, чем его голова, то и притягиваться они будут сильнее, так что несчастного растянет, как макаронину, и в конце концов разорвет.

Хотя такие сценарии далеко не всем кажутся забавными, физики развлекаются, когда их придумывают! Долгое время эти объекты называли “застывшими звездами”, поскольку на краях их дисков время останавливается. Но это не совсем так. Строго говоря, время останавливается только на краю абсолютно статичной черной дыры. А если она растет за счет пожирания материи, то ее горизонт событий тоже увеличивается и как бы проталкивает эту “застывшую” материю внутрь.

Термин “черная дыра” впервые появился в 1964 году в статье журналистки Энн Юинг[80]80
  Ann Ewing. ‘Black Holes’ in Space. // The Science News-Letter 85, no. 3 (January 18, 1964): 39. https://jstor.org/stable/3947428? seq=1.


[Закрыть]
и окончательно утвердился после того, как был использован Джоном Арчибальдом Уилером в выступлении на конференции. С тех пор бренд “черные дыры” неизменно приковывает внимание как непрофессионалов, так и экспертов. Бренды важны даже в физике, а американцы кое‐что понимают в маркетинге. Никто ведь не купит книгу о получении первого изображения с таким, к примеру, названием: “Изображение объекта, полностью сколлапсировавшего под действием гравитации”.

Но черные дыры могут еще и вращаться. Математик Рой Керр из Новой Зеландии в 1963 году нашел такое математическое решение для вращающейся черной дыры, которое описывает пространство-время вокруг нее[81]81
  Roy P. Kerr. Gravitational Field of a Spinning Massasan Example of Algebraically Special Metrics. // Physical Review Letters 11 (1963): 237–38. https://ui.adsabs.harvard.edu/abs/1963PhRvL..11..237K.


[Закрыть]
. Если вращающееся вещество падает в черную дыру, угловой момент системы сохраняется. Черная дыра заставляет окружающее ее пространство вращаться вместе с ней, подобно тому, как водоворот вовлекает во вращение окружающую его воду. И как лодку затягивает в глубину подхвативший ее водоворот, так и вращающееся пространство заставляет материю и даже свет в определенной области пространства возле черной дыры вращаться вместе с ним. И наоборот – теоретически возможно извлечь энергию вращения черной дыры с помощью имеющихся в области водоворота магнитных полей[82]82
  Этот эффект играет значительную роль в формировании плазменных струй в черных дырах (хотя и не является абсолютно необходимым). Он называется процессом Блэндфорда-Знаека и является вариантом процесса Пенроуза, который описывает механизм извлечения энергии из вращающейся черный дыры с помощью света или частиц.


[Закрыть]
. Сингулярность в центре вращающихся черных дыр представляет собой уже не точку, а кольцо с невероятными свойствами: математически его можно представить как замкнутую линию, следуя по которой, вы возвращаетесь в ту же точку, из которой отправились в какой‐то момент времени, точно в тот же момент времени.

Черные дыры образуются только из очень больших звезд, которые живут недолго, может быть, всего несколько миллионов лет. Вскоре после своего образования гигантская звезда взрывается. Там, где образуются молодые звезды, вскоре возникают и звездные черные дыры. На настоящий момент в нашем Млечном Пути их количество оценивается примерно в сто миллионов. Они находятся в тысячах световых лет от нас и слишком малы, чтобы мы могли их зарегистрировать. Иногда – если вы застанете какую‐нибудь из них за высасыванием вещества из соседней звезды, обращающейся вокруг нее, – ее можно увидеть в небе в виде ярко сияющего в рентгеновском диапазоне источника. Такие пары называются рентгеновскими двойными звездными системами. На самом деле это обращающиеся друг относительно друга звезда и “звездный труп”. Черная дыра-зомби поедает своего партнера кусочек за кусочком.

В сердце Млечного Пути

Сейчас июнь 2016 года, и я сижу на плоской вершине горы Гамсберг в Намибии, где мы хотим построить новый радиотелескоп[83]83
  Информацию об этом африканском телескопе миллиметровых длин волн можно найти по ссылке: https://www.ru.nl/astrophysics/black-hole/africa-millimetre-telescope; M. Backes, et al. The Africa Millimetre Telescope. // Proceedings of the 4th Annual Conference on High Energy Astrophysics in Southern Africa (Heasa 2016): 29. https://ui.adsabs.harvard.edu/abs/2016heas.confE..29B.


[Закрыть]
, на который не нашли пока денег. Я смотрю вдаль на потрясающий ландшафт. Вокруг разбросаны редкие хижины, подо мной во всех направлениях до самого горизонта простирается каменистая разноцветная пустыня, а надо мной заходящее Солнце окрашивает почти безоблачное небо в темно-красный цвет. Я заворожен переливами красок на песке в свете медленно заходящего за горизонт Солнца. Есть ли более чудесный момент, чем этот? Я никогда не смотрю на небо глазами объективного наблюдателя, оно для меня всегда окутано волшебством.

Ясными и сухими южноафриканскими ночами, вдали от городов, звездное небо раскрылось надо мной, подобно огромному расписному куполу. На темном бархате небосвода сияет во всем своем великолепии яркая полоса Млечного Пути протяженностью 100 000 световых лет, и всю ее можно охватить одним взглядом. Бесчисленные звезды сплетаются в светящуюся вуаль, которая тянется через все небо. Темные пятна придают ей непривычную для меня рельефность, поскольку обычно я смотрю на нее из Северного полушария Земли. Эти пятна – межзвездные пылевые облака – питомники по выращиванию новых звезд, планет и черных дыр – я могу здесь рассмотреть невооруженным глазом. Вверху, почти прямо надо мной, находится галактическое ядро Млечного Пути. Где‐то в его центре спрятана “моя” черная дыра. Звездное небо ясно, и потому она кажется настолько близкой, что ее вроде бы даже можно коснуться. Правда, где именно она прячется, я могу только догадываться, потому что темные пылевые облака нашей родной Галактики загораживают ее от меня. Каким бы прекрасным ни был Млечный Путь, нам трудно до конца осознать его красоту – в основном потому, что мы являемся его частью. Мы не просто наблюдатели, мы – обитатели этого островка в космосе.

Наряду с Луной Млечный Путь – самое заметное образование на ночном небе. Он сияет так ярко и отчетливо, что, согласно легенде, привел апостола Иакова Великого в Сантьяго‐де-Компостела. Но сегодня, когда я иду туда же по паломническому пути Эль Камино, я использую GPS. А вот навозные жуки, катящие прочь от навозной кучи слепленные из навоза шарики, для ориентировки все еще используют Млечный Путь[84]84
  Mistkäfer orientieren sich an der Milchstraße. // Spiegel Online, January 24, 2013. https://www.spiegel.de/wissenschaft/natur/mistkaefer-orientieren-sich-an-der-milchstrasse-a-879525.html.


[Закрыть]
. Без сомнения, эта светящаяся полоса в небе не могла не пробуждать мысли и чувства самых первых охотников-собирателей.

Млечный Путь получил свое название еще в древности. Согласно греческому мифу Зевс приложил к груди своей жены Геры, когда та спала, их сына Геракла. Но ребенок сильно толкнул богиню, разбудив ее, и та отстранила Геракла; при этом небольшое количество грудного молока разлилось по небесному своду: так родился Млечный Путь, или по‐гречески – Galaxias (откуда и происходит знакомое нам слово “галактика”). Наш Млечный Путь состоит из сотен миллиардов звезд. Все другие “млечные пути” в космосе называются галактиками. Естествоиспытатель и исследователь Александр фон Гумбольдт именовал их Welteninseln – буквально: “острова миров”. Обычно это немецкое название галактик переводится как “островные вселенные”, и такой вариант мне нравится больше.

Демокрит, греческий философ, в V веке до нашей эры утверждал, что свет Млечного Пути может быть не чем иным, как суммой свечений отдельных звезд. Почти 2 000 лет спустя Галилей, наблюдая в свой телескоп звездное многообразие нашего Млечного Пути, подтвердил, что Демокрит был прав. Иммануил Кант в XVIII веке написал, что Млечный Путь должен представлять собой диск и что звезды в нем должны располагаться примерно в одной плоскости.

Приблизительно в то же время французский астроном Шарль Мессье, находясь в Отеле Клюни в центре Парижа (где сегодня помещается Национальный музей Средних веков), начал охоту за кометами. Попутно он обнаружил на небе множество странных облачных пятен, которые явно не были кометами и не двигались. Что это были за облака, Мессье сказать не мог, но он задокументировал и пронумеровал их. В общей сложности 110 таких размытых образований попало в каталог, который теперь носит его имя.

Сегодня астрономы-любители по‐прежнему с удовольствием наблюдают за этими объектами Мессье. Они обозначаются буквой М от имени Мессье, за которой следует каталожный номер. M1 – это Крабовидная туманность, образовавшаяся из сверхновой в 1054 году. Шаровое скопление Геркулеса M13 – самое яркое шаровое скопление в Северном полушарии, находящееся на расстоянии 22 000 световых лет от нас, содержит сотни тысяч старых звезд, обращающихся друг относительно друга по орбите диаметром 150 световых лет. M42 – туманность Ориона, в которой рождаются новые звезды.

Все эти объекты являются частью нашего Млечного Пути. Он полон удивительных структур и скоплений. Но не все объекты в каталоге Мессье являются частью нашей островной вселенной. Например, M31 – галактика Андромеды, которая раньше называлась Туманностью Андромеды, – это галактика-близнец нашего Млечного Пути. Она располагается по соседству с нами на расстоянии 2,5 миллиона световых лет. А галактика M87, также называемая Девой А и находящаяся в созвездии Дева, – это галактика-монстр с несколькими триллионами звезд и огромной черной дырой в центре, изображение которой мы как раз и получили. В свое время Мессье ничего этого не знал. Для него было просто важно составить удобный список, чтобы никто по ошибке не спутал эти облака с кометами.

Уильям Гершель довольно точно оценил истинные размеры Млечного Пути еще в конце XVIII века. Гершель был астрономом-любителем, который зарабатывал на жизнь музыкой, сочиняя симфонии и фуги[85]85
  После открытия Гершелем в 1781 г. Урана британский король Георг III назначил исследователю пожизненное жалование, и тот перестал профессионально заниматься музыкой и полностью посвятил себя астрономии и телескопостроению. – Прим. науч. ред.


[Закрыть]
. Однако его настоящей страстью были звезды, которые он наблюдал вместе со своей сестрой Каролиной. Каролина была певицей и, как и ее брат, – одаренным астрономом.

Хотя уроженец Германии Гершель являлся самоучкой, он имел репутацию одного из лучших изготовителей телескопов-рефлекторов. Гершель сам отливал из металла зеркала, достигавшие иногда метра – а то и больше – в диаметре. Он поставлял телескопы ученым и дворянам по всей Европе, а один инструмент даже отправил в Китай. Более всего ему нравилось рассматривать и изучать звездное небо, используя сконструированную им самим установку – самый большой 1,2‐метровый телескоп, который опирался на гигантскую деревянную раму и перемещался с помощью системы шкивов и подъемных механизмов.

Гершель, родившийся в Ганновере, был сыном военного музыканта и в молодости вместе со всей семьей перебрался в Англию, куда направили его отца. Здесь брат и сестра Гершели занялись подсчетом звезд и расширили каталог, составленный Шарлем Мессье. Гершель обнаружил, что некоторые облака, описанные Мессье, на самом деле состоят из отдельных звезд. В 1785 году Гершели опубликовали рисунок Млечного Пути, состоящего из 50 000 звезд. Правда, изображение, приблизительно овальной формы, плохо соотносилось с реальностью, но это объяснялось скорее ошибкой метода, использованного братом и сестрой, чем данными. В модели Гершеля наше Солнце все еще находилось примерно в центре Млечного Пути. Как нам сегодня известно, это было заблуждением.

К ХХ веку у исследователей уже сложилась на удивление точная картина нашей Галактики. Астрономы считали, что она имеет форму диска диаметром около 100 000 световых лет. Ее протяженность по вертикали составляла около 4 000 световых лет. Тем не менее большинство ученых тогда по‐прежнему полагало, что Солнце находится в центре Галактики.

Следующий шаг был сделан в начале ХХ века голландцем Якобусом Каптейном, который в свои двадцать семь лет уже являлся профессором астрономии в Гронингене. Он понял, что все звезды движутся вокруг общего центра. В 1922 году Каптейн опубликовал свою динамическую модель Млечного Пути, но тоже ошибся в ключевом вопросе о положении Солнца (зная то, что мы знаем сейчас, – к счастью: в его модели наша Солнечная система все еще находилась очень близко к центру, так что, будь он прав, мы бы оказались в непосредственной близости от гигантской черной дыры).

Эту ошибку исправил американский астроном Харлоу Шепли. Свои исследования он проводил в обсерватории Маунт-Вилсон, где работал с гигантским телескопом. Шепли определил размер Млечного Пути с помощью шаровых скоплений, вычислив их расстояния до Земли.

Это стало возможным только потому, что его соотечественница Генриетта Свон Ливитт в 1912 году открыла способ, с помощью которого можно вычислить расстояние до звезд определенного типа (в ее случае – до переменных цефеид), воспользовавшись регулярными периодическими колебаниями их светимости. Ливитт, как и Энни Джамп Кэннон, принадлежала к поколению увлеченных и неутомимых женщин-астрономов, чьи достижения в те годы не всегда получали должное признание. Но, к счастью, справедливость в конце концов восторжествовала, их заслуги оценили по достоинству, и некоторое время назад в честь Кэннон и Ливитт были названы лунные кратеры.

Определив положения этих шаровых скоплений, Шепли понял, что они не группируются вокруг Солнца. Это означало, что спиральные рукава Галактики не могут вращаться вокруг нашей планетной системы. А из этого, в свою очередь, следовало, что центр Млечного Пути должен был находиться намного дальше от нас, чем предполагал Каптейн. Шепли оценил расстояние от нашей Солнечной системы до центра примерно в 65 000 световых лет. Позже он скорректировал его и уменьшил до примерно 35 000 световых лет. Это открытие сделало Шепли Коперником нашей домашней Галактики. Прусско-польский каноник когда‐то перенес Землю из центра нашей планетной системы на удаленную от Солнца орбиту, а теперь Шепли изгнал Солнце с его планетами из центра нашего Млечного Пути на его периферию.

Шепли полагал, что размеры Млечного Пути значительно больше, чем считалось до сих пор. По его оценкам, диаметр Млечного Пути составляет 300 000 световых лет. Ученый думал, что существует лишь одна галактика – наша, что все туманности – это ее части, а вся Вселенная состоит только из нашего Млечного Пути.

Опубликовав свою точку зрения, Шепли втянулся в легендарный диспут, который состоялся 26 апреля 1920 года в Национальном музее естественной истории в Вашингтоне, округ Колумбия. Эту жаркую дискуссию позже окрестили “Великими дебатами”. На них сошлись две астрономические школы: в одном углу воображаемого ринга стоял Шепли, отстаивающий свою идею гигантской галактики с далеким от центра Солнцем, а в другом – его критик Гебер Кёртис, представивший теорию островных вселенных. Кёртис считал, что Млечный Путь был лишь одной из многих галактик и что каждая спиральная туманность составляла свою собственную независимую звездную систему. Но вместе с тем в его модели наша Солнечная система занимала центральное положение внутри Млечного Пути.

Утром того дня оба ученых прочитали лекции с изложением своих теорий. Схватка произошла вечером в формате открытой дискуссии. Ни один не уступил другому ни дюйма. Кёртис, который на протяжении своей карьеры руководил несколькими обсерваториями и организовал около дюжины экспедиций по наблюдению солнечных затмений, был уверен, что Шепли проделал свои измерения небрежно. Оба яростно отстаивали собственные позиции, и в тот вечер явный победитель так и не определился. Возможно, впрочем, что к концу выступления Шепли удалось перетянуть на свою сторону некоторых слушателей. А вообще‐то, как мы сейчас понимаем, оба ученых были отчасти правы.

В аудитории сидел человек, который с большим интересом слушал аргументы и Шепли, и Кёртиса. Его звали Эдвин Хаббл. Вскоре именно он – бывший юрист – вынесет свое решение по результатам этих Великих дебатов. Как ни странно, собственные ключевые исследования он провел в той же обсерватории Маунт-Вилсон, что и Шепли.

Благодаря Хабблу мы можем относительно точно ответить на вопрос, как далеко человек способен видеть невооруженным глазом. Ответ: на расстояние, чуть меньшее трех миллионов световых лет. Наш глаз видит расположенную на этом расстоянии ничем не примечательную точку на небе – соседнюю галактику Туманность Андромеды – M31, – единственную галактику, которую мы можем увидеть на ночном небе без телескопа. Все остальные видимые нам звезды входят в галактику Млечный Путь. Туманность Андромеды, кроме того, является ключом к разгадке разногласий Шепли и Кёртиса. И даже более того – к разгадке всей структуры Вселенной.

Спустя три года после легендарных дебатов Хаббл обнаружил, что Туманность Андромеды – это нечто большее, чем простое газовое облако, внутри которого рождаются новые звезды[86]86
  Dirk Lorenzen. Die Beobachtung der Andromeda-Galaxie. // Deutschlandfunk, October 5, 2018. https://www.deutschlandfunk.de/vor-95‐jahren-die-beobachtung-der-andromeda-galaxie.732.de.html?dram: article_id=429694.


[Закрыть]
. В так называемой туманности он нашел звезду, которую смог использовать для измерения расстояния от этой туманности до Земли. Это был пульсирующий, периодически мигающий свет переменной цефеиды, такой же, как те, что описала Генриетта Свон Ливитт. По кривой блеска этой звезды удалось определить ее светимость и, следовательно, ее расстояние от Солнца.

Полученный результат – большое расстояние – мог означать только одно: вся эта структура должна была находиться вне Млечного Пути. Как только Хаббл добавил результаты других наблюдений, он понял, что туманность на самом деле является самостоятельной галактикой. Шепли ошибался: наш Млечный Путь – лишь одна из многих галактик во Вселенной. Прежде чем опубликовать свои выводы, Хаббл в письме сообщил Шепли о проделанной работе. Остается открытым вопрос, поступил ли он так из злорадства или из джентльменского чувства долга. До этого Шепли резко критиковал Хаббла и ясно давал понять, что не слишком серьезно относится к его идеям, однако теперь он вынужден был признать свою ошибку. Прочитав письмо, он показал его своей студентке и сказал: “Вот письмо, которое разрушило мою вселенную”[87]87
  Trimble, V. The 1920 Shapley-Curtis Discussion: Background, Issues, and Aftermath. // Publications of the Astronomical Society of the Pacific 107, no. 718 (1995): 1133. https://ui.adsabs.harvard.edu/abs/1995Pasp..107.1133T.


[Закрыть]
.


    Ваша оценка произведения:

Популярные книги за неделю