Текст книги "Волшебная эволюция"
Автор книги: Ханна Нюборг Стестад
Жанр:
Биология
сообщить о нарушении
Текущая страница: 3 (всего у книги 12 страниц)
Глава 4
Новые открытия, новые виды

Никогда не знаешь, что именно в ходе эволюции окажется полезным. Развитие жизни на Земле связано с процессами проб и ошибок за счет случайных мутаций и комбинаций генов. И зачастую появления нужной комбинации приходится ждать довольно долго. Если попытка оказывается успешной и неожиданно появляется выгодный признак, могут возникнуть условия для возникновения нового образа жизни и использования неизведанных ресурсов. Только представьте, какое количество новых профессий появилось с открытием электричества! Подобные важные «открытия» происходят и в природе.
Токийский залив, 1944 год. Поверхность воды спокойна, но в темных глубинах моря разворачивается драма. Американская подводная лодка вторглась в японские воды с целью атаки на японские военные корабли и танкеры. Перед командой подлодки стоит непростая задача: двигаться достаточно стремительно, чтобы нанести удар, но при этом оставаться незамеченными. Американцы знают, что японские гидрофоны (приемники подводных звуков) могут обнаружить их в любой момент. Подлодка берет курс на коралловый риф, у которого можно укрыться и выждать наиболее удачный момент для атаки. Между тем японцы делают все возможное, чтобы разыскать американскую подлодку, ведь им известно, что враги уже проникли в залив. Чтобы защитить большой танкер, направляющийся из залива в открытое море, японцы должны корректно толковать сигналы гидрофона, однако аппарат выдает только шум. Единственное, что они слышат, – это треск, который то усиливается, то ослабевает в зависимости от места. Японцы пытаются отправить в залив аквалангистов, но из-за американских мин разведка оказывается практически невозможной. И вот подлодка выходит из своего укрытия у рифа и наносит торпедный удар по танкеру. Огромный танкер – гордость и надежда японцев – уходит на дно.
Вы тоже можете услышать этот таинственный треск, если опустите голову под воду. Особенно отчетливо он слышен в тропических водах. Этот звук напоминает отдаленный шум мотора или шипение масла на сковороде, однако его издает не моторная лодка и не человек. Японские гидрофоны оказались сбитыми с толку небольшими ракообразными.
Этот загадочный звук издают раки-щелкуны. На самом деле это не треск, а серия многочисленных резких ударов, которые наносят раки во время охоты. Рак-щелкун выглядит как маленький бледный омар, его длина составляет всего несколько сантиметров. Как и десятиногие ракообразные, он вооружен двумя клешнями, по одной с каждой стороны. Однако в отличие от остальных раков, одна из его клешней – обыкновенная, а другая, гораздо большего размера, напоминает пистолет. На обеих клешнях имеются два «пальца», которые могут смыкаться и размыкаться, подобно большому и указательному пальцам на руке человека. Малая клешня используется только для еды, а вот большая наделена суперспособностью: она защелкивается с чудовищной силой и производит звук громкостью свыше двухсот децибел! Для сравнения: громкость выстрела пистолета составляет примерно сто пятьдесят децибел. Таким образом, раки-щелкуны относятся к самым громким жителям океана.
Если вы хоть раз пробовали хлопнуть в ладоши под водой, то вас наверняка удивляет, как крошечное существо может издавать столь громкий звук. Когда рак защелкивает клешню, вода между ее «пальцами», называемыми дактилями, выстреливает вперед мощной струей. В вакууме, образовавшемся позади струи, то есть между дактилями, давление резко падает, и формируются пузырьки воздуха. Пузырьки стремительно разрастаются и заполняют то пространство, которое мгновение назад занимала вода. Когда же разница давления внутри пузырьков воздуха и в воде достигает критического предела, пузырьки схлопываются с оглушительным треском. Вдобавок к звуку в момент схлопывания пузырьков выбрасывается колоссальная энергия: температура внутри пузырьков за миллисекунды достигает пяти тысяч градусов по Цельсию (что примерно соответствует температуре на поверхности Солнца), и происходит микровспышка света. Рак-щелкун – один из двух известных нам видов животных, способных вызывать световую вспышку с помощью звука (похожей техникой щелканья клешнями владеет рак-богомол, но по силе он уступает щелкуну).
Однако для самого рака-щелкуна важны вовсе не температура и не свет, а сам звук. Ударная звуковая волна оглушает и даже убивает плавающую вокруг мелкую рыбу, которую рак затем преспокойно подбирает и поедает при помощи своих разновеликих клешней, орудуя ими словно ножом и вилкой. Таким образом, раки-щелкуны владеют собственным незаурядным способом охоты.
Максимально близко подобраться к ракам-щелкунам мне довелось в гостях у одного знакомого, у которого дома стоял аквариум с морской водой. Населявшие его мелкие рыбки вдруг начали умирать одна за другой. Мой приятель ума не мог приложить, что случилось. Он тщетно проверял температуру воды, уровень pH и солености. И вот его внимание привлекло небольшое существо, которое, видимо, все это время жило и росло в аквариуме. Им оказался рак-щелкун! Скорее всего, рак попал в аквариум вместе с песком и начал убивать самых мелких рыбешек своей клешней-пистолетом. Мой приятель выловил хищника сачком и тем самым спас от гибели оставшихся рыбок. Вдобавок он наконец избавился от надоедливого звука, который то и дело беспокоил его в спальне.
И все же клешня-пистолет для рака-щелкуна – не только орудие убийства. Это и приспособление для рытья нор в морском дне, и инструмент коммуникации с сородичами. Щелкуны обыкновенно живут колониями (как, например, на коралловом рифе в Токийском заливе), что позволяет им совместными усилиями отпугивать врагов. Получается, что клешня-пистолет дает множество преимуществ и практически не имеет недостатков. Разве что ракам приходится затрачивать довольно много энергии на активный рост после вылупления из икры, а затем – на само щелканье.
Существуют сотни видов раков-щелкунов, ведь эта удивительная способность щелкать клешнями распространилась по всему миру. Исследователи Томонари Кадзи и Ричард Палмер совместно с другими коллегами изучали щелканье при помощи сверхвысокоскоростной камеры и другого инновационного оборудования. Сравнив свыше сотни видов раков-щелкунов между собой, они пришли к выводу, что изначально у этого вида была простая клешня, напоминающая наш большой и указательный пальцы. Примерно сто шестьдесят миллионов лет назад клешня начала развиваться таким образом, что верхний дактиль («указательный палец») несколько отделился от сустава и теперь мог скользить вдоль внешнего края верхней части сустава, фиксируясь в открытом положении. При закрытии сустава задействуется двухчастная мышца. Одна часть мышцы тянет верхний дактиль к нижнему и заставляет его напряженно дрожать у самого края, готовясь захлопнуться в любой момент. Когда же вторая часть мышцы подталкивает дактиль вперед, он оказывается вытолкнутым через край. В этот момент, буквально за миллисекунду, накопившееся напряжение высвобождается с чудовищной силой. Бах! Дактили захлопываются, давление резко падает, температура поднимается, происходит вспышка света и удар звуковой волны.
Рак-щелкун – яркий пример того, как новое приспособление благоприятствует стремительному возникновению новых видов. Способность фиксировать клешню в открытом положении и тем самым наращивать напряжение – очень ценная способность, дающая массу преимуществ и практически не имеющая недостатков, поэтому неудивительно, что она передается по наследству от поколения к поколению у многих видов раков. Когда же раки-щелкуны расплодились в огромных количествах, возникли условия для дальнейшей адаптации и стали появляться новые виды. Одни раки-щелкуны обитают на коралловых рифах, другие – в пещерах, третьи – в тропических районах Индии, четвертые – в более прохладных водах Средиземного моря.
Один из моих преподавателей, британский исследователь Питер Мэйхью, участвовал в изучении стремительного видообразования среди насекомых. Что помогло насекомым распространиться по всему миру и привело к возникновению невероятного количества их видов? Мэйхью с коллегами пришли к выводу, что за этим стоит способность к полному превращению[4]4
Полное превращение – когда в жизненном цикле присутствует стадия куколки, позволяющая полностью перестроить тело насекомого в ходе превращения из личинки в имаго (взрослая стадия развития насекомого). – Прим. науч. ред.
[Закрыть] (голометаморфозу). Это означает, что насекомые проходят через несколько абсолютно непохожих стадий развития (например, гусеница превращается в бабочку). Благодаря этому насекомые могут использовать несколько разных ресурсов в течение жизни и питаться, к примеру, листьями в состоянии гусеницы и нектаром в состоянии бабочки. Они также могут концентрироваться на разных задачах: гусеница – это машина по переработке пищи, цель которой – быстро расти, тогда как бабочка расходует большую часть своей энергии на полеты в поисках партнера. Способность к полному превращению лежит в основе того грандиозного всплеска видообразования насекомых, результаты которого мы наблюдаем. Считается, что от 45 до 60 % всех видов насекомых, населяющих планету сегодня, обладают способностью к голометаморфозу.
Быстрое возникновение многочисленных новых видов также возможно в связи с «открытием» новых географических зон. Примерно два миллиона лет назад небольшая стая вьюрков, подгоняемая сильным ветром, летела над океаном. В какой-то момент стая достигла группы пустынных островов – Галапагос. Этот вулканический архипелаг возник посреди Тихого океана по меркам общей геологической шкалы сравнительно недавно. В то время острова были практически не заселены, на них обитали немногочисленные виды животных. Тем не менее на островах произрастало довольно много разнообразных растений, пригодных в пищу для вновь прибывших птиц. У некоторых вьюрков сформировался мощный толстый клюв, которым удобно раскалывать большие и твердые семена, тогда как у других клюв стал тонким и острым, чтобы было удобнее прокалывать кактусы и выклевывать мякоть. За довольно короткий период времени появились виды, приспособившиеся к разным видам пищи. Эта группа птиц называется галапагосскими вьюрками, или вьюрками Дарвина, поскольку молодой Чарльз Дарвин уделял большое внимание изучению этих птиц в ходе разработки своей теории естественного отбора. Сегодня, в зависимости от классификации, насчитывается порядка пятнадцати подвидов галапагосских вьюрков.
Вьюрки Дарвина – классический пример быстрого видообразования. Зачастую это бурное развитие объясняют отсутствием конкурирующих птиц, способных использовать разнообразные ресурсы острова. Однако это не всегда верно. За несколько тысяч лет до появления на архипелаге вьюрков здесь поселился другой вид птиц, а именно галапагосский пересмешник. Сегодня на Галапагосских островах проживает четыре вида пересмешника, однако все они очень похожи между собой и имеют одинаковое строение клюва. Биологи попытались объяснить, почему у вьюрков появилось так много различных видов, а у пересмешников нет. Создается впечатление, что все дело в различии генов, которые отвечают за синтез белка кальмодулина, количеством которого определяется длина клюва птенца внутри яйца. Кальмодулин присутствует у всех птиц и имеет много функций, в частности, от его количества зависит длина их клюва (за толщину отвечает другой белок). Механизм, регулирующий выработку кальмодулина у вьюрков, более сложный, включающий множество генов, в то время как у пересмешников нет такого механизма, который бы влиял на количество белка. Иными словами, пересмешники отличаются менее гибкой генетикой. Поэтому когда пересмешники прилетели на Галапагос, они были ограничены имеющимся клювом, а для изменения его строения им потребовалась бы радикальная генетическая перестройка. Вьюрки, напротив, были сразу наделены способностью формировать новые типы клюва при незначительных изменениях в генах, что обеспечило появление многочисленных новых видов.
Вьюрки открыли для себя новый ареал, а насекомые и раки-щелкуны развили у себя новые качества, что обеспечило им массу преимуществ, что, в свою очередь, вызвало бурный рост видообразования. По меркам эволюции эти вспышки видообразования протекали стремительно, но тем не менее постепенно. Тому же раку-щелкуну пришлось пройти долгий путь, прежде чем у него сформировалась клешня-пистолет. Сначала появился промежуточный вариант клешни. Эта наполовину развитая щелкающая клешня была удобнее, чем простая, «примитивная» клешня, но она по-прежнему уступала по силе будущей клешне-пистолету. Формирование клешни-пистолета, которую мы наблюдаем сегодня, завершилось всего восемнадцать миллионов лет назад, то есть спустя целых сто сорок миллионов лет с момента начала ее развития. С каждым витком эволюции клешня становилась чуть лучше и удобнее, ведь если бы промежуточные варианты оказывались негодными, их обладатели не могли бы выживать и развиваться дальше.
Эволюция пользуется лишь тем, что имеется в наличии. Как мы увидели на примере галапагосских пересмешников, вероятность появления новых вариантов образа жизни при отсутствии должных генетических предпосылок довольно низка. В следующей главе мы постараемся ответить на вопрос: каким образом способность к сложной адаптации появилась из ниоткуда?
Глава 5
Истоки поведения

Когда мы отправляем смс-сообщение или покупаем билет на поезд через мобильное приложение, мы задействуем различные отделы мозга. Мы анализируем полученную с экрана визуальную информацию, понимаем смысл текста в инструкции, держим в уме пункт назначения. Тем не менее наш мозг не развился специально для использования смартфона. Смартфон был изобретен совсем недавно и не успел повлиять на нас в ходе эволюции. И все же мы так быстро осваиваем гаджеты и интернет, словно прошли специальную подготовку.
Мозг человека прошел развитие, позволившее ему создать для себя новые технологии, которые имеют функции, приблизительно схожие с работой самого же мозга. Человек обладает мозгом, который позволяет ему анализировать новую информацию и решать сложнейшие проблемы. Скорее всего, эта способность понадобилась нашим давним предкам, когда они начали жить социальными группами: нужно было подстраиваться под социальные нормы и считаться с жизнью в коллективе, иначе любой мог оказаться изгоем. К тому же развитый мозг был необходим при выполнении дел первостепенной важности, например для понимания, где больше всего шансов добыть еду, и для того, чтобы произвести впечатление на потенциального партнера. Таким образом, за миллионы лет у человека развились интеллектуальные способности, позволяющие ему справляться с совершенно новыми задачами. Например, теперь мы можем отправлять коллегам смешных котиков, пока едем в автобусе домой.
Процесс, когда некая способность, получившая развитие в ходе эволюции, чтобы выполнять одну функцию, обслуживает другие функции, называется экзаптацией. Ее следует отличать от адаптации, в ходе которой способности используются именно для того, для чего они развились. Раки-щелкуны всегда использовали свои клешни для охоты (адаптация), однако теперь они также научились коммуницировать и рыть норы с помощью этих же клешней (экзаптация). В научной среде в последние десятилетия уделяется все большее внимание экзаптации как важнейшей движущей силе эволюции.
Некоторое время назад я принимала участие в конференции во французском городе Монпелье. Среди участников был и Ричард Блоб, американский ученый из Университета Клемсона, изучающий различные проявления экзаптации. Он рассказал историю о маленькой рыбке, которая смогла поднять простую форму поведения на новую высоту – в прямом смысле слова.
Эта маленькая рыбка называется бычком Стимсона, или бычком-скалолазом; водится она на Гавайях. Она может поместиться на ладони взрослого человека (длина взрослой особи всего четырнадцать сантиметров), и она умеет менять окраску, чтобы прятаться от врагов и привлекать партнеров. Мальки живут в море, питаются всевозможными водорослями и мелкой живностью, а по достижении половой зрелости рыбы отправляются в пресноводные ручьи Гавайских островов. Они плывут против течения, добираясь до абсолютно новых для себя источников пищи, например до пресноводных водорослей.
В ручьях рыбы сталкиваются с серьезной проблемой. Гавайские острова имеют вулканическое происхождение; многочисленные извержения привели к сильной эрозии вулканических скал и к формированию пересеченного рельефа с множеством водопадов, некоторые высотой более ста метров. В верхней части этих водопадов нет хищных рыб, что привлекает туда бычков, ищущих безопасные места для того, чтобы отложить икру. Чтобы забраться наверх, бычкам приходится форсировать сто метров отвесной скалы.
К счастью, эта маленькая рыбка умеет взбираться по скалам. Бычки-скалолазы с помощью рта и дополнительной присоски на брюхе проползают по мокрой поверхности утеса за бурлящим потоком воды. Они приклеиваются к камню то одной, то другой присоской и таким образом медленно, но верно преодолевают примерно три миллиметра в секунду. Час за часом они забираются все выше, рискуя быть сбитыми срывающейся сверху водой. Высота все увеличивается, и потенциальное падение становится все опаснее, стоит рыбе ослабить хватку. Спустя восемь часов изнурительного подъема бычки оказываются на вершине водопада, а затем и в безопасном горном ручье, где можно не бояться хищников. Восстановив силы, бычки готовы метать икру. Спустя некоторое время вылупляются мальки, которых ручей и водопад выносят обратно в море.
Если бы нам вздумалось покорить скалу, высота которой пропорциональна росту человека в том же соотношении, как стометровый утес для крохотной рыбки, нам пришлось бы преодолеть целых сорок два километра. К слову, далеко не все бычки выдерживают испытание: до безопасного ручья наверху добираются только самые ловкие. Однако риск того, что внизу икринки достанутся на обед хищникам, настолько высок, что опасное путешествие оказывается оправданным, и многочисленные взрослые особи жертвуют своей жизнью в надежде вывести потомство.
По мнению Блоба, метод подъема на присосках развился в ходе эволюции совсем для иных целей, нежели преодоление отвесных скал. На самом деле взрослые бычки питаются, всасывая водоросли с камней на дне ручья. Вероятно, в какой-то момент один бычок так увлекся поеданием водорослей, что не заметил, как начал взбираться на камень за небольшим водопадом и таким образом оказался в безопасном месте. Со временем на брюхе бычков-скалолазов сформировалась дополнительная присоска, облегчающая передвижение вверх.
Блобу с коллегами удалось запечатлеть на видео многочисленных бычков во время трапезы и подъема. Сравнив паттерны движения, исследователи пришли к выводу, что эти действия настолько похожи, что с большой долей вероятности одно развилось из другого. Невозможно точно определить, что же первично – метод питания или метод движения, однако представляется более логичным, что рыбы, умевшие есть таким образом, позже научились покорять скалы, нежели наоборот. Как бы там ни было, бычок-скалолаз – отличный пример того, что в природе любая способность развивается ради решения текущих задач.
Крылья у птиц тоже изначально служили иной цели. Птичье крыло состоит из множества асимметричных перьев и имеет сложную структуру: от основного «ствола» – стержня отходят многочисленные волоски (их называют бородки), от которых, в свою очередь, отходят бородки второго порядка, обладает большей подъемной силой и позволяет птицам легко маневрировать во время полета. В формировании маховых перьев (определении их формы, структуры, размера и цвета) задействовано множество различных генов. Невозможно представить, что не имеющее перьев животное вдруг произведет на свет покрытого перьями и способного подниматься в воздух детеныша. Шанс, что произойдет случайная мутация, благодаря которой образуется правильная комбинация из всех необходимых генов, стремится к нулю. Куда более вероятно то, что крылья и перья прошли поступательное развитие.
От коротких крыльев с маленькими, простыми и симметрично расположенными перьями для полета мало толку, поэтому представляется нелогичным, что птицы в течение миллионов лет довольствовались такими недоразвитыми крыльями, не пытаясь их применить для чего-то более подходящего, чем полет. В таком случае крылья как особенность постепенно бы исчезли, а птицы никогда бы не полетели. И все же находки археологов свидетельствуют о том, что у древних предков птиц были простые, симметричные перья. А общим предком всех птиц был не кто иной, как динозавр. На самом деле птицы и есть динозавры, поскольку они их единственные ныне живущие потомки. Примерно сто двадцать миллионов лет назад, то есть еще до появления тираннозавра, на Земле проживал синозавроптерикс, динозавр размером с небольшую собаку. Он был покрыт вовсе не чешуей, подобно рептилии, как можно было бы предположить: многие из найденных археологами окаменелых останков синозавроптерикса имеют четкие контуры короткого, похожего на пух, оперения.
Для чего же перья тому, кто не умеет летать? Если вам хоть раз доводилось спать под пуховым одеялом или носить пуховик, вам известно, что слой перьев отлично сохраняет тепло. «Половинчатое» оперение не способно поднять птицу в воздух, однако оно способно согреть. Вероятно, тонкий слой легких пушистых перьев позволял предкам современных птиц поддерживать стабильную температуру тела и тратить меньше энергии на терморегуляцию, и с течением времени перья становились все более длинными и плотными, что обеспечивало еще лучшее сохранение тепла. Спустя какое-то время перья стали настолько длинными, что их обладатели могли понемногу парить, например, чтобы избежать травмы во время падения с дерева, на которое они забрались с земли, или чтобы, подобно современной белке-летяге, спланировать с одной ветки на другую. В ходе эволюции перья и крылья постепенно становились сильнее, их структура усложнялась, и спустя много миллионов лет птицы научились взмахивать крыльями и взлетать. А там и до полноценного полета уже недалеко.
Этот важный этап развития вдруг открыл перед птицами массу возможностей: подобно ракам-щелкунам, пополнившим свой арсенал усовершенствованной клешней, птицы вдруг получили в свое распоряжение никем не занятое небо. Таким образом, освоение навыков полета дало толчок резкому росту разнообразия видов птиц, каждый из которых мог специализироваться на своем уникальном типе питания и способе охоты. Появились самые разные птицы: от питающихся насекомыми стайных скворцов до охотящихся на мышей орлов-одиночек.
Тем не менее ученым доподлинно неизвестно, как именно происходило развитие перьев, крыльев и навыков полета. Исследователи делают выводы, изучая ископаемые останки древних животных, и хотя за последние десятилетия было найдено множество окаменелостей, во многом объясняющих эволюцию птиц, зачастую подобные находки оказываются фрагментарными и представляют нам далеко не все этапы эволюции. Археологи то и дело обнаруживают все новые окаменелости со следами перьев и перьеобразных структур, так что не исключено, что в какой-то момент наука изменит свой взгляд на теорию происхождения перьев. К тому же ученые не всегда одинаково истолковывают одни и те же находки. Иногда в качестве дополнительного инструмента используется анализ ДНК и строения тела современных птиц. Работа ученого подобна сборке пазла: складывая кусочки головоломки, мы пытаемся на основе имеющихся данных предположить, какой из сценариев наиболее вероятен. Сейчас все больше исследователей сходятся во мнении, что оперение возникло вовсе не для того, чтобы птицы могли летать, но и далеко не все ученые связывают его появление с терморегуляцией. Существует как минимум одно альтернативное объяснение, имеющее достаточное количество сторонников в науке. И птицы, и люди используют перья для другой цели, а именно для украшения себя. Можно предположить, что и предки современных птиц использовали свои короткие яркие перья для привлечения самок.
В 2010 году группа исследователей объявила об обнаружении следов меланосом в одной из найденных окаменелостей синозавроптерикса. Меланосомы – это крошечные пузырьки, которые содержатся в клетках и вырабатывают меланин, то есть цветовые пигменты. Исследователи проанализировали меланосомы в окаменелости и пришли к заключению, что синозавроптерикс имел оранжевый окрас в белую полоску. Что это, камуфляж или наряд для привлечения внимания «дам»?
Отпечаток перьев был обнаружен и у окаменелости «древней птицы», археоптерикса. Археоптерикс настолько похож и на птицу и на динозавра, что эта находка убедила многих ученых в том, что птицы произошли именно от динозавров. У археоптерикса были асимметричные перья наподобие перьев современных птиц, и, судя по всему, он умел летать, хотя, наверное, не слишком хорошо. Перья археоптерикса имели сложное строение и, следовательно, структурную окраску. Такой эффект часто встречается у современных птиц: при преломлении света на оперении возникает металлический отблеск. Получается, что сложная структура перьев возникла не ради полета и утепления, а ради украшения: самые красивые самцы завоевывали лучших самок. Со временем роскошные «наряды» встречались все чаще, и в какой-то момент они стали вполне годными для парения, а затем и полета. Видимо, доля истины есть в обеих точках зрения, ведь на разных этапах эволюции на передний план выходили разные факторы.
История крыльев не заканчивается освоением полета. Научившись летать, многие птицы начали использовать крылья для новых целей. Крылья пингвинов отлично подходят для подводного плавания. Черная цапля, элегантная болотная птица, охотится на рыбу, стоя по колено в мелкой воде. Заметить рыбу из-за отблесков на поверхности воды бывает непросто, поэтому цапля раскрывает крылья, как зонт, и создает тень над головой[5]5
Норвежское название вида переводится как «теневая цапля» (skyggehegre). – Прим. перев.
[Закрыть], чтобы лучше разглядеть добычу под водой. Перед нами – пример очередной экзаптации.
Способность летать у насекомых развивалась совсем иначе, чем у птиц. Согласно одной из наиболее популярных версий, часть тела древних насекомых представляла собой мембрану для улавливания солнечного света, своего рода солнечную панель, которая позволяла озябшему за ночь насекомому быстрее пробуждаться. Постепенно эти мембраны увеличивались в размере, улавливая все больше солнечной энергии, и в итоге стали достаточно крупными, чтобы обеспечить парение и полет.
Эволюция – это не реализация некоего грандиозного замысла создания летающих животных. Сложный образ жизни обычно возникает как побочный эффект более простых признаков, развивающихся с течением времени. И человеческий мозг не был создан специально для того, чтобы «сидеть» в социальных сетях в интернете. Или чтобы заводить знакомства через специальные приложения. Хотя поиск партнера, судя по всему, и служил стимулом развития как оперения, так и способностей мозга на протяжении миллионов лет. С точки зрения эволюции одного факта выживания мало, если особь недостаточно привлекательна, чтобы спариться с партнером и дать жизнь потомству. К тому же еще предстоит позаботиться о потомстве и, таким образом, о выживании вида. В следующей части книги мы поговорим о конкуренции за продолжение рода и о ее роли в формировании целого калейдоскопа вариантов приспособления к среде и удивительного поведения, ценой которого нередко может стать жизнь.








