355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Георгий Войткевич » Возникновение и развитие жизни на Земле » Текст книги (страница 3)
Возникновение и развитие жизни на Земле
  • Текст добавлен: 9 октября 2016, 01:58

Текст книги "Возникновение и развитие жизни на Земле"


Автор книги: Георгий Войткевич


Жанры:

   

Биология

,

сообщить о нарушении

Текущая страница: 3 (всего у книги 9 страниц)

Органические соединения в космосе

Я удивляюсь только, что этот невероятно сложный механизм еще вообще работает. Когда думаешь о Жизни, становится ясно, как жалка и примитивна наша наука. Очевидно, что свойства живого существа предопределяются оплодотворенной клеткой, так и жизнь предопределена существованием атома, и таинство всего сущего заключается в самой низшей ступени,

А. Эйнштейн

Взаимоотношение зародышей жизни и ее предшественников – сложных соединений углерода – представляет собой первостепенную научную задачу. Первые опыты Л. Пастера, поставленные во второй половине XIX в., показали невозможность в современных условиях Земли зарождения жизни – простейших живых организмов. Это в какой-то мере привело к возникновению идей панспермии[1]1
  Панспермия (от греч. «пан» – весь, всеобщий, «сперма» – семя) – древнее учение о повсеместном распространении во Вселенной вечных и неизменных зародышей жизни. Впервые встречается у древнегреческого философа Анаксагора (500-428 до и. э.).


[Закрыть]
, согласно которым жизнь на Земле вообще никогда не зарождалась, а была занесена из космического пространства, где она существовала в виде зародышей. Наиболее характерными сторонниками этих представлений выступили Г. Гельмгольц и С. Аррениус, хотя ранее подобные идеи высказывались Ю. Либихом. По С. Аррениусу, частицы живого вещества – споры или бактерии, осевшие на микрочастицах космической пыли, силой светового давления переносятся с одной планеты на другую, сохраняя свою жизнеспособность. При попадании спор на планету с подходящими условиями для жизни они прорастают и дают начало биологической эволюции.

В несколько иных формах эти представления возрождаются в наше время. Например, Ф. Хойл выдвинул идею о возможности существования микроорганизмов в межзвездном пространстве. Согласно его представлениям, облака космической пыли сложены преимущественно бактериями и спорами. Предполагается, что в промежутке времени 4,6-3,8 млрд лет назад на Земле были возможны два события – или зарождение жизни на самой планете, или привнес микроорганизмов из космического пространства. Ф. Хойл и С. Викрамасинг в 1981 г. допустили, что последнее более вероятно. Согласно их расчетам, ежегодно в верхнюю атмосферу Земли поступает 1018 космических спор, как остаток твердого материала, рассеянного в Солнечной системе. Таким образом, кометы являются переносчиками зародышей жизни, которые образовались ранее в межзвездном пространстве и лишь затем попали в облако Оорта.

Следует отметить крайнюю фантастичность высказанных представлений, которые не согласуются с известными экспериментальными данными. Однако несомненно, что жизнь связана с космосом по атомному составу и в энергетическом отношении. Это можно видеть из табл. 6, в которой даны величины относительного распространения элементов в космосе, в летучей фракции комет, в бактериях и млекопитающих. Обращает на себя внимание большая близость, а в отдельных случаях и тождественность космического вещества и живого вещества Земли. Главные элементы живого вещества – это широко распространенные элементы космоса. При этом Н, С, N, О – типичные биофильные элементы – наиболее широко распространены в природе.

Нетрудно сделать вывод, что живые организмы в первую очередь используют наиболее доступные атомы, которые, кроме того, способны образовывать устойчивые и кратные химические связи. Известно, что углерод может формировать длинные цепи, что приводит в возникновению бесчисленных полимеров. Сера и фосфор также могут образовывать кратные связи. Сера входит в состав белков, а фосфор – в состав нуклеиновых кислот.

В соответствующих условиях наиболее распространенные атомы соединяются друг с другом, образуя молекулы, которые обнаружены в космических облаках методами современной радиоастрономии. Большая часть известных космических молекул относится к органическим, включая наиболее сложные 8– и 11-атомные. Таким образом, в отношении состава космохимия Вселенной создает обширные возможности для различных комбинаций углерода с другими элементами по законам химической связи.

Однако проблема образования молекул в космических условиях относится к труднейшим проблемам космохимии. Собственно в межзвездной среде, даже в наиболее плотных ее участках, элементы находятся в условиях, далеких от термодинамического равновесия. В силу низкой концентрации вещества химические реакции в межзвездном пространстве крайне маловероятны. Поэтому было высказано предположение, что в построении межзвездных молекул принимают участие частицы космической пыли. В наиболее простом случае могут возникать молекулы водорода при контакте его атомов с твердыми частицами, Наиболее распространенные молекулы космоса СО, вероятно, способны зарождаться в условиях звездных атмосфер при достаточной плотности вещества и затем выбрасываться в космическое пространство.

В настоящее время все более четко вырисовывается роль твердой фазы в формировании молекул органических веществ в космическом пространстве. Наиболее вероятные модели этого процесса разработаны Дж. Гринбергом [1984]. По мнению ученого, частицы космической пыли имеют сложное строение и состоят из ядра преимущественно силикатного состава, окруженного оболочкой из органических веществ. В оболочке, по-видимому, происходят различные химические процессы, ведущие к усложнению строения первоначального вещества. Структура подобных пылевых частиц после первой стадии аккреции подтверждается путем экспериментального моделирования на смеси воды, метана, аммиака и других простых молекул, облученных ультрафиолетовой радиацией при температуре примерно 10 К. Каждая пылинка ведет свое начало от силикатного ядра, возникшего в атмосфере холодной звезды-гиганта. Вокруг ядра формируется ледяная оболочка. Под действием ультрафиолетового излучения некоторые молекулы оболочки (H2O СН4, NH3) диссоциируют с образованием радикалов – реакционноспособных фрагментов молекул. Эти радикалы могут рекомбинировать с образованием других молекул. В результате длительного облучения может появиться более сложная смесь молекул и радикалов (HN2HCO, HOCO, СН3ОН, СН3С и др.). При разрушении пылинок под влиянием космических факторов возникшие на их поверхности соединения образуют молекулярные облака.

Если судить по огромным массам молекулярных облаков, то именно они – главные резервуары органического вещества в космосе. Однако найденные в них органические соединения оказываются относительно простыми и еще далекими от тех молекулярных систем, которые смогли бы обеспечить начало жизни на любом благоприятном планетном теле.

Особого внимания заслуживает нахождение органических веществ в метеоритах. Это очень важно для понимания процессов зарождения высокомолекулярных систем как предшественников жизни. Следует отметить, что метеориты совместно со своими родительскими телами – астероидами принадлежат к Солнечной системе. Далее возраст метеоритов, по данным ядерной геохронологии, 4,6-4,5 млрд лет, что в основном совпадает с возрастом Земли и Луны. Следовательно, метеориты, несомненно, являются свидетелями формирования различных химических соединений, в том числе и органических, на самых ранних этапах развития Солнечной системы.

В метеоритах найдены углеводороды, углеводы, пурины, пиримидины, аминокислоты, т.е. те химические соединения, которые входят в состав живого вещества, составляя его основу. Они встречены в углистых хондритах и астероидах определенных структуры и состава. Больше всего астероидов движется в поясе между Марсом и Юпитером. Если исходить из данных по космохимии комет, то Можно полагать, что область формирования органических соединений охватывала обширное пространство в пределах большей части объема первичной солнечной туманности. Естественно, что в освещении общей проблемы происхождения жизни мы не имеем права игнорировать данные о составе метеоритов. Это обстоятельство в различной степени учитывалось разными авторами гипотез о происхождении жизни. Таким образом, мы вправе сейчас рассматривать известные метеориты в качестве исторических документов – подлинных свидетелей ранней истории Солнечной системы, охватывающей также процессы формирования органических веществ.

Любой метеорит представляет собой твердое тело, состоящее из ряда минеральных фаз. Главными являются силикатная (каменная), металлическая (железоникелевая) и сульфидная (троилитовая). Встречаются также и другие фазы, но они имеют второстепенное значение по своему распространению. В метеоритах встречены различные минералы, число которых превышает 100, но главными породообразующими являются немногие (оливин, пироксен, полевые шпаты, никелистое железо, троилит и др.). Кроме того, в метеоритах встречено 20 минералов, которых нет в земной коре. К ним относятся карбиды, сульфиды и др., образование которых связано с резко восстановительными условиями. Наиболее существенны концентрации углерода, связанные с органическим веществом, в углистых хондритах.

Принципиально важные сведения об органическом веществе в метеоритах изложены в работах Г. П. Вдовыкина, Э. Авдерса, Р, Хаятсу, М. Штудира. Впервые органическое вещество в составе метеоритов выделил знаменитый химик И. Берцелиус при анализе углистого хондрита Алаис в 1834 г. Результаты его анализа были настолько впечатляющими, что сам он считал это вещество биологического происхождения. В течение XIX столетия химическими анализами было обнаружено присутствие в метеоритах твердых углеводородов, сложных соединений органики с серой и фосфором. Наиболее тщательно и обстоятельно изучались углистые хондриты, значительная часть углерода которых находится в виде органических соединений. Общее содержание углерода и некоторых других летучих веществ в углистых хондритах характеризуется следующими величинами (в вес. %):

Отсюда видно, что содержание углерода (а также серы и воды) максимально в углистых хондритах типа C1, a минимально в хондритах С3. Таким образом, в настоящее время не подлежит сомнению то обстоятельство что в родоначальных телах углистых хондритов в результате самих процессов их формирования возникли сложные органические соединения как закономерный итог химической эволюции ранней Солнечной системы.

Элементарный химический состав углистых хондритов за вычетом летучих веществ очень близок к составу обычных хондритов. Главные особенности различных типов углистых хондритов заключаются в следующем.

Тип C1 представлен непрочными черными камнями, при растирании пальцами рассыпающимися в пыль. Мелкозернистая масса составляет в них примерно 95%. В нее вкраплены хондры (микрохондры), состоящие из оливина и магнетита (размером 1-50 мкм). Минеральный состав метеорита этого типа представлен на рис. 9. Углистые хондриты типа C1 наиболее богаты органическими веществами абиогенного происхождения.

Тип С2 – это серовато-черные камни, значительно более плотные, чем C1. В основную мелкозернистую массу, составляющую 60% объема, вкраплены значительно более крупные хондры, чем у типа C1. Наблюдаются срастания первичных микрохондр в единый кристалл.

Тип С3 представляет собой твердые камни темно-серого, зеленовато-серого или серого цвета. Мелкозернистая масса занимает 35%. Хондры довольно крупные и хорошо выражены.

Распространенность многих химических элементов в углистых хондритах типа C1 обнаруживает ряд характерных отношений, сближающих их с веществом Солнца. Иначе говоря, эти углистые хондриты представляют собой застывшее солнечное вещество, лишенное легких газов.

Органические вещества, найденные в метеоритах, перечислены в табл. 7. Как видно, их список довольно внушительный. Большинство из этих соединений в той или иной степени соответствует универсальным звеньям обмена веществ, известных в живых организмах: аминокислот, белковоподобных полимеров, моно– и полинуклеотидов, порфиринов и других соединений. Близость к составу органических комплексов биологического происхождения оказалась настолько большой, что некоторые авторы стали даже допускать, что в прошлом живые организмы встречались непосредственно в самих метеоритах. По данному вопросу возникла оживленная дискуссия в 60-х годах. Однако тщательные исследования органических соединений из метеоритов не подтвердили наличия оптической активности, что свидетельствует о их абиогенном происхождении.

Сравнение органических веществ метеоритного происхождения с продуктами искусственных реакций типа Фишера-Тропша и ископаемыми органическими веществами биологического происхождения показывает их большую близость, в частности в отношении содержания некоторых углеводородов. Например, в метеоритах преобладают углеводороды с 16 атомами в молекуле, что также наблюдается в земных объектах и продуктах лабораторных экспериментов.

Метеориты являются осколками более крупных тел – астероидов, большая часть которых находится в астероидном поясе на расстоянии 2,3-3,3 а. е. от Солнца. За последние 10 лет в результате астрофизических наблюдений астероидов в области видимой части спектра и инфракрасных волн получены данные, имеющие первостепенное значение для установления генетических взаимоотношений между астероидами и метеоритами. Путем сравнения отражательной способности метеоритов и астероидов удалось установить, что почти все известные классы метеоритов имеют своих аналогов среди изученных астероидов.

В зависимости от отражательной способности астероиды подразделяются на две основные большие группы – темные, или С-астероиды, и относительно светлые, или S-астероиды. Для первых характерно низкое альбедо – менее 0,05, для вторых – свыше 0,1. По спектральным отражательным способностям группа С близка к углистым хондритам, a S – к железокаменным метеоритам и обычным хондритам. Последние фотометрические измерения в общем подтверждают единство материала метеоритов и астероидов. Поэтому все минеральные, химические и структурные особенности метеоритов, полученные и изученные в земных лабораториях, могут быть перенесены на астероиды.

В результате проведенных исследований удалось установить, что в разных областях астероидного пояса состав астероидов разный. В пределах Солнечной системы выявлена принципиально важная космохимическая закономерность: состав астероидов зависит от гелиоцентрического расстояния. Во внутренней части пояса астероидов находятся тела, близкие к обычным хондритам, но по мере увеличения расстояния от Солнца, в пределах 2,5-3,3 а. е., их становится меньше, а число астероидов типа углистых хондритов, которые занимают господствующее положение в середине и краевых частях астероидного пояса, увеличивается. В целом, по данным современных наблюдений, в астероидном поясе даже преобладают углисто-хондритовые тела.

Если действительно большинство астероидов имеет состав углистых хондритов, то вполне естественно, что они содержат много органического вещества, которое определяет их темную окраску и низкую отражательную способность. Так, самую низкую отражательную способность имеет астероид Бамберга (альбедо 0,03). Это темный и довольно крупный объект в астероидном поясе, имеющий поперечник около 250 км.

За последнее время большой интерес вызывают кометы. Были высказаны предположения, что они участвовали в возникновении жизни на Земле или во всяком случае могли внести определенный вклад в состав ее ранней атмосферы. Они могли и доставить на поверхность зарождавшейся планеты первые органические молекулы. Установилось мнение, что кометы лучше всего отражают первичные условия в Солнечной системе.

Большинство комет располагается на самой периферии Солнечной системы, в так называемом облаке Оорта. Они имеют чрезвычайно вытянутые орбиты и находятся в сотни и тысячи раз дальше от Солнца, чем Плутон. Из далекой области к Солнцу приближаются долгопериодические кометы. В целом комета представляет собой ком грязного снега. «Снег» в комете сложен обычным водяным льдом с примесью углекислого газа и других замерзших газов неизвестного состава. «Грязь» представляет собой частицы силикатных пород разного размера, вкрапленные в кометный лед. Можно полагать, что в связи с отсутствием химических взаимодействий кометы являются нетронутыми образцами первоначального вещества, из которого образовалась Солнечная система.

По мере приближения к Солнцу летучее вещество комет испаряется и отбрасывается световым давлением, образуя гигантский хвост. Все наблюдаемые кометные явления определяются процессами, связанными с выделением газов и пыли. Входящие в состав кометных хвостов ионы H+, OH, O и H2O+ происходят в основном от молекул воды, хотя, по всей вероятности, присутствуют и другие соединения водорода. Атомы, радикалы, молекулы и ионы представляются в следующем виде: в кометах – C, C2, C3, CH, CN, CS, CH3CN, HCN, NH, NH2, O, OH, H2, O2, Na, S, Si; вблизи Солнца – Ca, CO, Cr, Cu, Fe, V; в хвосте – CH+, CO+, CO2+, CN+, N2+.

Всюду в кометах обнаруживаются биофильные элементы, в основном С, О, N и Н. В настоящее время о большой долей вероятности установлено, что кометные молекулы близки к тем, которые необходимы для пред-биологической эволюции. Они могут быть представлены молекулами аминокислот, пуринов, пиримидинов. Как отмечает А. Дельсемм [Delsemme, 1981], существует несколько групп данных, указывающих на то, что кометная пыль имеет природу хондритовых метеоритов. Во-первых, она состоит преимущественно из силикатов и соединений углерода. Во-вторых, соотношения металлов, испарившихся из комет при прохождении вблизи Солнца, соответствуют типичным для хондритов соотношениям. В-третьих, пылевые частицы космического происхождения, отражающие, вероятно, вещество комет, очень близки к составу материала углистых хондритов. И в самом деле, анализ образцов космической пыли указывает на то, что 80% или более пылевых частиц размером меньше 1 мм состоит из вещества, подобного углистым хондритам. Некоторые ученые сравнили содержание углерода в кометах и углистых хондритах и пришли к заключению, что не менее 10% вещества комет представляет собой органические соединения. Природа обнаруженных в кометах химических соединении указывает на большую вероятность того, что порождающие их молекулы по своей сложности сравнимы по крайней мере с молекулами межзвездного пространства.

Таким образом, все данные по космохимии метеоритов, астероидов и комет свидетельствуют о том, что образование органических соединений в Солнечной системе на ранних стадиях ее развития было типичным и массовым явлением. Наиболее интенсивно оно проявилось в пространстве будущего кольца астероидов, но охватывало в разной степени и другие области протопланетной солнечной туманности, включая, вероятно, ту область, из которой возникла Земля. Однако химическая эволюция вещества протосолнечной туманности, дойдя до определенного этапа формирования сложных органических соединений, оказалась как бы замороженной в большинстве тел Солнечной системы, и лишь на Земле она продолжалась, достигнув невероятной сложности в виде живого вещества.

Космическая история углеродных молекул

Любая обоснованная теория происхождения жизни должна объяснить существование соединения, встречающихся в современных организмах, и соединений углерода, обнаруживаемых в метеоритах и в изверженных горных породах.

Дж. Бернал

В течение долгого времени ученые полагали, что синтез органических соединений как предшественников жизни происходил в условиях ранней Земли и что безжизненная атмосфера планеты состояла преимущественно из Н2, СН4, NH3 c парами Н2О. В этой смеси могли происходить химические реакции синтеза с образованием органических соединений, о чем косвенно свидетельствовали экспериментальные исследования. Первые опыты по получению органических веществ из водород-аммиак-метановой смеси при пропускании через нее электрических разрядов были поставлены в 1953 г. по инициативе американского физикохимика Г. Юри его учеником С. Миллером. Позднее аналогичные результаты были получены советскими исследователями Т. Е. Павловской и А. Г. Пасынским при воздействии на ту же газовую смесь ультрафиолетовых лучей. Реакции этого типа в газовой среде под действием ионизирующей радиации были названы реакциями Миллера-Юри.

Вообще в данной области были проведены многочисленные экспериментальные исследования. Результаты их обычно рассматривались в качестве подтверждения идеи о том, что ультрафиолетовое излучение Солнца и грозовые явления в первичной атмосфере Земли при определенных температурах и давлениях должны были приводить к массовому образованию сложных углеродных соединений, в том числе белков (рис. 10). Однако в свете современных данных подобные представления следует отбросить. Земля принадлежит к внутренним планетам Солнечной системы и образовалась в термодинамических условиях, отличающихся от тех, в которых сформировались гигантские внешние планеты Юпитер и Сатурн. В своих водород-гелиевых атмосферах они действительно содержат СН4, NH3 и другие углеводороды. Наиболее близкой, хотя и не тождественной первичной атмосфере Земли является атмосфера безжизненной Венеры, состоящая преимущественно из CO2. Глубинные газы первичной мантии Земли, выделившиеся при вулканических извержениях и давшие начало первичной атмосфере планеты, содержат главным образом Н2О, CO2, SO2, Н2S, N2. Газы аналогичного состава обнаружены в метеоритах. Таким образом, данные современной геохимии и космохимии не дают никаких указаний на присутствие водорода, аммиака и метана в ранних планетах земной группы.

Наиболее обильный газ первичной атмосферы Земли был представлен СО2. Однако он спонтанно не может превращаться в органические соединения термодинамически менее устойчивые. Скудность водорода или же его быстрая потеря в условиях ранней Земли также резко снижала возможность синтеза органических веществ в атмосфере. На основании изучения физико-химических равновесии в космических условиях Г. Юри пришел к заключению, что при формировании Земли из прото-планетной туманности значительная часть первичного метана газопылевого облака улетучилась, так как повысились температуры в районе образования планет земной группы.

Отмеченное свидетельствует в пользу вывода о том, что основная масса органических соединений возникла за пределами Земли в период, предшествующий ее рождению. В таком выводе нет ничего необычного или парадоксального – ведь в ходе эволюции вещества Солнечной системы сформировались главные породообразующие минералы нашей планета и органические вещества вплоть до самых высокомолекулярных, давших начало первичным жизненным формам.

Таким образом, проблема происхождения органических веществ, как и проблема происхождения самой жизни, имеет прямое отношение к космохимии самой Солнечной системы. В настоящее время благодаря существенному расширению информации о составе различных тел Солнечной системы мы можем значительно глубже заглянуть в химическую историю вещества. Эти данные позволяют прийти к некоторым эмпирическим обобщениям, необходимым для понимания процесса образования органических веществ в протопланетной материи.

1. Земля, планеты и метеориты возникли из вещества Солнца. В пользу этого свидетельствует близость изотопного состава химических элементов, их слагающих. Различие химического состава планет и метеоритов – результат позднейших процессов, связанных с дифференциацией и фракционированием первичной более или менее однородной материи солнечного состава.

2. Возраст Земли, Луны, метеоритов и, вероятно, других планет, по данным ядерной геохронологии, 4,6-4,5 млрд лет. Метеориты, как осколки астероидов, являются древнейшими каменными телами Солнечной системы.

3. Родоначальные тела хондритов – продукты окислительно-восстановительных процессов в протопланетной туманности. У них различная степень окисления. Энстатитовые хондриты наиболее восстановлены, поскольку все железо в них находится в металлическом состоянии, кальций представлен ольдгамитом (CaS), фосфор – шрейберзитом (Fe, Ni, Cr)3P, хром входит в состав добреелита (FeCr2S4), a небольшая часть кремния частично растворена в металлическом железе. Материал обычных хондритов более окислен, и перечисленные минералы встречаются в небольших количествах. Углистые хондриты наиболее окисленные из метеоритов. В них все железо химически связано с кислородом в силикатах и магнетите. Сера присутствует в составе сульфатов.

4. Планеты земной группы и астероиды отличаются химическим составом, что отражает условия дифференциации и физико-химических процессов в период их образования. В близких к Солнцу планетах содержится больше металлического железа, чем в более отдаленных. Меркурий на 3/4 состоит из металлической фазы, Венера и Земля – на 1/3, отдаленный Марс – на 1/4. В поясе астероидов находятся тела преимущественно типа углистых хондритов, т.е. максимально окисленные. В зависимости от гелиоцентрического расстояния планеты земной группы и астероиды представляются телами различной степени окисления. Во время образования Солнечной системы ближе к Солнцу процессы окисления железа (и других веществ) протекали слабо, а по мере удаления от него интенсивность их возрастала.

5. Образование тяжелых радиоактивных и других элементов завершилось непосредственно перед формированием Солнечной системы. В метеоритах и отдельных их минеральных фракциях обнаружены следы вымерших радиоактивных изотопов: 26Al, 129I, 146Sm, 236U, 244Pu, 247Cm. Происхождение Солнечной системы связано с происхождением химических элементов. Период времени между окончанием естественного ядерного синтеза и возникновением твердых тел в Солнечной системе оценивается примерно в 50-100 млн лет. Именно в этом промежутке при охлаждении солнечного газа образовались мелкие частицы и капельки как продукты конденсации, которые в дальнейшем послужили строительным материалом для планет земной группы и метеоритных тел.

6. Вся Солнечная система химически дифференцирована. Ее тела изменяют свой состав в зависимости от гелиоцентрического расстояния, что является отражением установившейся определенной химической зональности протопланетной туманности в период ее образования. Так, если мы учтем главные планетные компоненты в виде следующего ряда: Fe-(0, Si, Mg)-H20-CH4, то по мере возрастания расстояния от Солнца в соответствующих телах увеличивается содержание компонентов слева направо. Ближайший к Солнцу Меркурий содержит преимущественно два первых компонента, в углистых хондритах – астероидах все железо окислено и уже содержится заметное количество H2О. Большая часть спутников гигантских планет покрыта льдом (Н2О), а далекий Плутон состоит из верхней оболочки, сложенной метаном (СН4).

Указанные положения, основанные на современном космохимическом материале, позволяют прийти к общему заключению о том, что происхождение Солнечной системы в первую очередь было связано с физико-химическими процессами в широком смысле слова. Эти процессы зависели от гелиоцентрического расстояния и степени охлаждения вещества в определенной зоне туманности.

В результате усилий довольно широкого круга исследователей на смену космогоническим гипотезам приходит новая теория, опирающаяся главным образом на данные космохимии и учитывающая физико-химические процессы при охлаждении первичной солнечной туманности, которые привели к химической неоднородности различных тел Солнечной системы,

Формирование химического состава Земли и планет определялось последовательной конденсацией элементов и их соединений в порядке, обратном их летучести, – из газовой системы приближенно солнечного состава: сперва тугоплавких, затем труднолетучих и наконец наиболее летучих элементов и их соединений. Температуры конденсации элементов и их соединений из газа солнечного состава при охлаждении ниже 2000 К были вычислены по уравнениям химической термодинамики Э. Андерсом, Дж. Ларимером, Л. Гроссманом, Дж. Льюисом и другими авторами. В широких пределах возможных давлений первыми выделяются капли железа при температуре 1500 К и ниже, затем силикаты магния (Mg2SiO4, MgSiO3), сульфиды (FeS). В конце, ниже 200 К, конденсируются такие вещества, как вода (лед) и ртуть. Результаты этих расчетов следует принимать как первое приближение к решению химической эволюции протопланетной туманности. В действительности в ней происходили сложные процессы взаимодействия между всеми химическими элементами таблицы Менделеева, а также между ранее выделившимися конденсатами и окружающей средой газовой фазы.

В самом общем виде можно себе представить, что образование планет совершалось в два этапа. Первый этап знаменовался охлаждением и конденсацией вещества газовой туманности. В связи с разной скоростью остывания в зависимости от гелиоцентрического расстояния туманность в отдельных зонах приобрела различный химический состав. Эта неоднородность увеличивалась под влиянием солнечных лучей, которые отбрасывали легкие газы в периферическую часть Солнечной системы, в область формирования гигантских планет. Второй этап – это процесс аккумуляции конденсированных частиц в протопланеты. Можно допустить, что оба этапа не были разделены сколько-нибудь значительным промежутком времени. Аккумуляция в определенных участках протопланетной туманности началась тогда, когда конденсация еще не завершилась.

Неясным еще остается вопрос о последовательности аккумуляции протопланетных частиц. Ряд геохимических и физических данных указывает скорее в пользу гетерогенной аккумуляции планеты, когда последовательность аккумуляции повторяла последовательность конденсации. В этом случае верхние горизонты первичной Земли оказались сложенными самыми последними конденсатами солнечной туманности. Центральная часть ядра Земли образовалась при аккумуляции металлического железа, которое покрылось затем конденсатами в виде смеси металла, силикатов и троилита. Позже всех на поверхность растущей Земли поступил материал, близкий по составу к углистым хондритам, обогащенный летучими и органическими веществами.

На последних стадиях остывания солнечной туманности происходило массовое образование органических соединений в области формирования планет земной группы, астероидного пояса и, вероятно, очень обширного пространства в целом, включая область формирования комет.

В связи с повышенной распространенностью водорода в первичной туманности возникали простейшие его соединения с углеродом и азотом. Поскольку наиболее стабильной формой углерода был СО, то по мере охлаждения солнечной туманности происходили следующие реакции:

В отдельных областях протопланетной туманности, очевидно в области формирования гигантских планет, куда давлением солнечной радиации были перенесены легкие молекулы, появлялись H2, CH4 NH3, Н2О. При сочетании этих компонентов могли совершаться реакции типа Миллера-Юри под влиянием ионизирующей радиации, что приводило к образованию многочисленных органических соединений. Однако роль солнечной радиации как ионизирующего фактора, по всей вероятности, была ничтожной. Зараженная пылью протопланетная туманность была непрозрачной для ультрафиолетового света.


    Ваша оценка произведения:

Популярные книги за неделю