Текст книги "Строение земного шара"
Автор книги: Георгий Горшков
сообщить о нарушении
Текущая страница: 3 (всего у книги 4 страниц)
6. Движения земной коры
Всюду на поверхности Земли, в толще земной коры мы видим признаки и следы разнообразных и могучих движений, которые испытывало вещество земной коры. Эти движения, развиваясь медленно и постепенно, захватывают огромные толщи пород, распространяются на огромные территории и приводят к возникновению высоких горных цепей и глубоководных впадин, поднятий и опусканий, к возникновению бесчисленных складок и разрывов в пластах осадочных пород. Вся геологическая история есть история движений земной коры, движений крайне разнообразных по форме проявления, по ориентировке, по масштабу, но движений постоянных и повсеместных; достаточно ярким выражением таких движений могут служить современные горные цепи, представляющие нагромождение складок, созданных в прошлом и продолжающих формироваться и теперь.
Как же согласовать наше прежнее утверждение о твердости Земли с фактом подвижности земной коры, с наличием повсеместных, порою самых фантастичных по масштабу движений в толще Земли?
Движения в верхних частях коры связаны с движениями более глубоких частей коры и с движениями в веществе подкоровой оболочки. Подобные движения (они называются «тектоническими») захватывают толщу Земли на многие сотни километров вглубь и одним из доказательств их реальности служат глубокофокусные землетрясения, т. е. землетрясения с очагами, лежащими на глубинах порядка 300–600–700 километров.
Одной из отличительных черт тектонических движений служит их крайне малая скорость: 1 сантиметр в год – это для большинства мест уже много. Правда, геология располагает, как мы видели, такими запасами времени, что даже самые скромные по своему темпу движения успевают произвести грандиозный эффект.
Другим свойством тектонических движений служит их «дифференцированность», т. е. пестрота в их направлении и скорости. Именно эта дробность движений, разнообразие, различия в каждом данном пункте, приводят к чрезвычайному усложнению геологического строения. Любая геологическая карта складчатой области отражает на себе подобную «дифференцированность» тектонических движений.
Что же в конце концов получается: с одной стороны, вещество наружных оболочек – твердое, а с другой, – оно способно к перемещениям? Да, именно так, и противоречия тут нет.
Твердость, даже твердость тел кристаллического строения, отнюдь не исключает способности к перемещениям вещества внутри данного твердого тела. Кристаллы способны к деформациям без разрыва, к изгибам, измятиям, способны, в конце концов, течь – и все это в твердом состоянии, не меняя и не нарушая своей кристаллической природы, формы кристаллической решетки, даже ориентировки элементов этой решетки. Сущность этого процесса сводится к так называемым «пластическим» деформациям: в каждом кристалле можно найти такие плоскости, такие направления, смещение по которым не сопровождается разрушением кристалла, не ведет к разрыву, к появлению трещин. Можно сослаться на такие минералы, как гипс, каменная соль, слюда, турмалин, свинцовый блеск, кальцит, которые часто встречаются в изогнутом виде или с изогнутыми гранями или вообще деформированы, но, подчеркиваем, без трещин разрыва и без дробления.
Лабораторные исследования, а также наблюдения в поле показывают, что природа не знает здесь преград и как самые прочные, так и самые хрупкие кристаллы, такие, скажем, как кварц, не говоря уже о мягких, податливых минералах, дают отличные примеры пластических деформаций, порою выраженных чрезвычайно ярко (рис. 12). Можно сказать, что все кристаллы (тем самым и минералы, а следовательно, и горные породы) пластичны, т. е. обладают, в большей или меньшей степени, способностью к пластическим деформациям, и степень этой способности зависит не только от внутренних, присущих данному веществу, свойств, но и от внешних условий.
Рис. 12. Кусок горной породы (железистый кварцит) из окрестностей г. Старого Оскола с мелкими складками, дающими пример ярко выраженных пластических нарушений.
Здесь мы несколько приближаемся к решению того вопроса, который был поставлен вначале: в каком состоянии находится вещество Земли в глубине. Оказывается, высокое давление и высокая температура благоприятствуют развитию пластических деформаций. Многие кристаллы становятся пластичными только в условиях всестороннего давления, превышающего по своей величине прочность этих кристаллов; таков, например, кварц. Притом давление, именно всестороннее, играет ведущую роль, более существенную, чем температура.
Можно считать, что уже начиная с глубины в 15–20 км все породы становятся пластичными, а многие из них достигают этой способности и гораздо раньше. Подчеркнем: они становятся пластичными, но остаются твердыми. И тектонические напряжения, развивающиеся в недрах Земли, разрешаются в форме пластических смещений, повсеместных, но крайне медленных, именно тех, которые геологами и названы тектоническими.
Здесь можно несколько уточнить наши представления в отношении физических свойств вещества глубоких оболочек. Тектонические движения представляют собою пример, как мы видели, движений очень медленных, движений «длинного периода». Удары землетрясений, распространяющиеся по толще Земли с огромной скоростью и быстро затухающие, наоборот, дают пример движений резких и кратковременных, движений «короткого периода». Так вот, на воздействия короткого периода недра Земли реагируют как твердое тело; на воздействия длинного периода – как жидкое. Это можно пояснить таким примером. Возьмите лед: если бросить льдину на пол или ударить по ней молотком, то она расколется, ибо лед хрупок. Но хрупкость эта не мешает тому же льду в форме горного ледника, спускающегося с гор, спокойно и безостановочно течь, следуя всем изгибам долины, со скоростью до 2–3 метров в сутки. Ясно, что наши понятия «твердое» и «жидкое» довольно относительны.
Нам остается рассмотреть вопрос о ядре Земли. Здесь обстановка иная. Каковы бы ни были наши гипотезы о плотности вещества в ядре, температуре, давлении и т. п., один факт остается неизменным: поперечные сейсмические волны через ядро не проходят. У нас нет пока иного объяснения этому факту, кроме того, что вещество ядра находится в жидком состоянии, в жидком как по отношению к воздействиям длинного периода, так и короткого. Ведь только жидкости (и газы) не пропускают сквозь себя поперечные сейсмические волны. Правда, здесь возникает много нерешенных и неясных вопросов; не исключена возможность того, что со временем будут обнаружены признаки прохождения поперечных волн через ядро; кроме того, может оказаться, что при том колоссальном давлении и той высокой температуре, которые господствуют в ядре, наши обычные рассуждения теряют силу и нужно искать какие-то иные закономерности. Мы не будем затрагивать эти сложные и нерешенные проблемы.
7. Химический состав Земли
Мы уже коснулись немного этого вопроса. Мы видели, что земная кора состоит в основном из магматических горных пород кислого или основного состава и что ее подстилает перидотитовая оболочка ультраосновного состава. Рассмотрим этот вопрос несколько подробнее.
Среди коренных пород, выходящих на поверхность Земли, преобладают осадочные (рис. 13).
Рис. 13. Обнажение осадочных горных пород близ г. Подольска, Моск. обл.
Но по мере увеличения глубины быстро возрастает роль изверженных, или магматических, пород; можно считать, что последние составляют процентов 95 от всей массы пород, заполняющих наружные 10–15 километров толщи земной коры. Поскольку химический состав горных пород известен, тем самым известен и химический состав внешних частей земной коры. Далее положение становится менее ясным. Если наши прежние рассуждения относительно состава и глубины залегания различных слоев в земной коре – гранитного, базальтового – правильны, то можно дать цифры, характеризующие химический состав земной коры («сиаль») в целом. Результаты получаются такими: кислород – около 50 %; кремний – около 25 %; алюминий – около 7 %; железо – около 4 %; далее следуют кальций, натрий, калий, магний, а все остальные элементы – в количествах менее 1 % каждый.
Ниже, в толще «перидотитовой», а затем и «промежуточной» оболочек, как обычно считалось, роль кислорода, кремния и алюминия снижается и на первое место выступает железо. Для всего земного шара, включая и ядро, приводились такие цифры (В. И. Вернадский, А. Е. Ферсман, Г. Вашингтон): железо – около 40 %; кислород – около 28 %, кремний – около 15 %; магний – около 9 %, далее никель, кальций, алюминий, а остальные элементы в количествах менее 1 % каждый.
Какие соображения положены в основу этих расчетов?
Прежде всего, как о том говорилось, данные о распределении плотностей внутри Земли. Сведения о законе изменения плотностей в глубинах Земли могут считаться достоверными. Увеличение плотности с глубиной несомненно, и средняя плотность Земли в целом – 5,52 – вычислена с большой точностью.
Другое обстоятельство – проблема метеоритов. Метеориты, блуждающие в мировом пространстве, выпадают на Землю в довольно больших количествах. В течение года Земля получает в виде метеоритов несколько тысяч тонн вещества. До последнего времени считалось, что метеориты, так же как и астероиды («малые планеты»), представляют собой осколки когда-то распавшейся планеты, орбита которой находилась между Землей и Марсом. Недавно высказана другая мысль, о которой мы уже говорили в начале статьи, касаясь гипотезы О. Ю. Шмидта: планеты суть скопление метеоритов. Так или иначе, в обоих случаях между планетами (в том числе и Землей) и метеоритами имеется, очевидно, некоторая родственная связь, и состав метеоритов не должен сильно отличаться от состава планет, в том числе и Земли.
К настоящему моменту хорошо изучено около 600 выпавших на Землю в разные времена и в разных местах метеоритов. Из них около 50 оказалось железными, остальные – каменные. Железные метеориты содержат 91 % самородного железа, остальное приходится на никель (8 %), фосфор и кобальт (1 %). Каменные метеориты по своему составу очень близки к ультраосновным породам типа перидотитов и содержат преимущественно такие минералы, как оливин, и близкие к нему.
В целом средний химический состав метеоритов, по А. Е. Ферсману, определяется такими цифрами: кислород – около 53 %; кремний – около 15 %; магний – около 13 %; железо – около 12 %; сера – около 2 %; алюминий – около 1 %; остальные элементы – меньше 1 % каждый[4]4
Отметим, что недавно были предложены новые цифры, заметно отличающиеся от принятых ранее (работа Б. Ю. Левина).
[Закрыть]).
Какие же выводы можно сделать на основании этих сведений?
Прежде всего надо отметить химическое родство тел солнечной системы, химическое тождество их (мы сказали бы химическое единство) – вывод, имеющий большое методологическое значение. Ни одного элемента, ни одного минерала не обнаружено в метеоритах такого, которого бы не было на Земле.
Далее, обращает на себя внимание тот факт, что метеориты по своему химическому составу близки к земной коре, если судить о составе последней по приведенным выше цифрам, основанным на химических анализах горных пород.
Наконец, третье обстоятельство: существование железных метеоритов указывает на возможность значительной дифференциации (разделения) вещества, что, вероятно, относится и к Земле, в условиях которой одним из ведущих факторов в этом отношении могут явиться гравитационные силы (т. е. сила тяжести). Под воздействием силы тяжести минералы тяжелые должны стремиться к центру Земли, минералы легкие – к поверхности. Земля будет расслаиваться, что облегчается пластическим состоянием вещества в глубине земного шара. Такое расслоение называется «гравитационной дифференциацией». В последние годы «гравитационная дифференциация» привлекает большое внимание геологов и геофизиков. В. В. Белоусов предложил гипотезу о причинах тектонических движений, в основу которой положена идея о гравитационной дифференциации; эта идея в свою очередь связана с космогонической теорией О. Ю. Шмидта.
Все изложенное, казалось бы, приближает нас к решению вопроса о составе земного шара, в том числе и его ядра, если бы не одно обстоятельство: опять все то же высокое давление! Дело в том, что при очень высоком всестороннем давлении силикаты, т. е. минералы, из которых состоят ультраосновные породы, могут настолько сильно уплотняться, что переходят в новую, так называемую металлическую фазу, приобретая свойства металлов, в частности железа. Еще в 1939 г. В. Н. Лодочников, профессор Ленинградского горного института, предлагал объяснить поведение сейсмических волн в глубине Земли «уплотнением пронизываемых тел от нагрузки вышележащих пород без всякого изменения вещественного состава этих тел». Позже эту мысль подтвердил английский ученый В. X. Рамсей, показавший с помощью расчетов, что такой процесс возможен и что прежняя гипотеза о железном ядре отнюдь не является обязательной.
Что же в итоге? Изменяется ли состав земных оболочек с глубиной так, что в ядре остается почти одно лишь железо? Или состав не изменяется, но вещество залегающих в глубине минералов переходит в новую фазу и меняются лишь его свойства? Известный советский геофизик В. А. Магницкий пишет по этому поводу так: «…в настоящее время мы должны считать обе гипотезы о строении ядра равноправными рабочими гипотезами». Вероятно, это так; но в последние годы, нужно заметить, накапливается все больше фактов, которые говорят не в пользу гипотезы о железном ядре, а, скорее, в пользу упомянутых выше идей В. Н. Лодочникова.
8. Строение и развитие земной коры
До сих пор мы занимались в основном Землею в целом. Следовало бы теперь несколько ближе заняться вопросом о земной коре.
Как уже говорилось, «земная кора» обычно отождествляется с сиалической оболочкой; другими словами, к земной коре относятся «слои» гранитный и базальтовый. В таком случае мощность, т. е. толщина земной коры в пределах обширных равнинных пространств материков, будет определяться цифрой порядка 40–50 км, под горными хребтами – до 80 км, а под океаном сходит на нет.
Можно предложить другой вариант: считать, что земная кора – это наружная кристаллическая твердая оболочка земного шара, в пределах которой температура меняется от 0° на поверхности до 1300–1500° на глубине (т. е. возрастает до температуры плавления горных пород). В таком случае толщина земной коры всюду будет равна 100–130 км, независимо от состава слагающих ее пород и независимо от того, где мы ее рассматриваем – на материке или в океане.
Какое бы значение термину «земная кора» ни придавать, нас, обитающих на поверхности Земли, особенно интересует строение самых поверхностных частей ее, сложенных по преимуществу осадочными породами.
Изучая состав, расположение и прочие особенности и свойства осадочных пород, мы обнаруживаем следующее важное обстоятельство.
Обширные пространства равнин – таких, как Русская или Сибирская – с поверхности сложены разнообразными осадочными породами, образующими слои малой мощности и горизонтального залегания. Действительно, в любом обрыве, в овраге, на склоне подмытого рекою берега или в искусственном карьере вы можете увидеть подобные породы – пески или песчаники, глины или известняки, залегающие в форме ясно выраженных горизонтальных слоев, далеко распространяющихся в стороны, но быстро сменяющих Друг друга в вертикальном направлении. По своему происхождению эти породы чаще всего оказываются морскими, о чем говорят заключенные в них окаменевшие остатки морских животных, например белемниты, аммониты и т. п.; нередко встречаются породы и континентального, наземного происхождения, о чем говорят заключенные в них остатки растений прежних времен; таковы, скажем, каменный уголь и торф.
Подобные породы очень мало изменены временем. Конечно, они уплотнены; по сравнению с тем первоначальным рыхлым осадком, из которого образовались, они приобрели новые черты, но все же процесс уплотнения не нарушил их структуры, не изменил условий залегания, не повредил ископаемых. В некоторых случаях породы сохраняют свою свежесть в такой степени, что кажутся отложившимися только сейчас; таковы, скажем, кембрийские глины под Ленинградом. Этим глинам не менее 500 миллионов лет, а они так свежи и податливы, будто образовались совсем недавно.
Среди подобных спокойно залегающих пластов мало измененных осадочных пород изверженные породы почти не встречаются; здесь, среди равнин, как правило, не бывает ни вулканов, ни гейзеров, ни горячих источников, ни других проявлений вулканической жизни; здесь не возникают и землетрясения.
Все описанные выше свойства присущи тем участкам земной коры, которые именуются «платформами». В пределах платформ тектонические движения проявляются очень слабо. Они выражаются лишь в том, что платформа вся в целом или отдельные ее части испытывают очень медленные, едва заметные подъемы или погружения, сменяющие друг друга со временем, что приводит то к наступлению моря на сушу, то к отступлению. Отсюда – изменение в составе осадков, накапливающихся на платформах. В этом выражаются так называемые колебательные движения. Следовательно, под платформами следует понимать сравнительно устойчивые, малоподвижные участки земной коры, в пределах которых накапливаются осадки малой мощности, слои залегают в ненарушенном положении, проявлений вулканизма нет, землетрясений нет, горных кряжей нет.
Полную противоположность платформам составляют так называемые «складчатые зоны», примером которых могут служить такие горные системы, как Карпаты или Кавказ. Прежде всего, здесь нас удивляет огромная мощность осадочных пород: если на платформах мощность осадочных толщ измеряется десятками или, реже, сотнями метров, то в пределах складчатых зон – многими тысячами метров. Как могли накопиться такие огромные массы осадков, и притом, как правило, морских? У нас нет другого объяснения, как только предположить, что параллельно с накоплением осадков дно соответствующего бассейна прогибалось, давая тем самым место новым порциям осадка. Отсюда следует, что в истории развития складчатой зоны нужно выделять некоторый ранний этап, характеризующийся преобладанием погружений над поднятиями. Погружения были достаточно крупными по масштабу и весьма длительными по времени. Подобный ранний этап в развитии складчатой зоны именуется «геосинклинальным», а участок коры, находящийся в таком состоянии, «геосинклиналью». Геосинклинальный режим сохраняется обычно на протяжении нескольких периодов (например, для Урала – в течение всего палеозоя, для Кавказа – еще дольше) и приводит к накоплению тех огромных по мощности толщ осадков, о которых говорилось выше.
Затем наступает второй этап в развитии геосинклинали. В ее пределах начинают проявляться разнообразные и в высшей степени интенсивные процессы движения. В первую очередь это собственно тектонические движения, которые сминают пласты, приводят к образованию складок, порою грандиозных и очень сложных, к разрывам и перемещениям одних участков относительно других. Достаточно взглянуть на разрезы коренных пород, которые во множестве предстают перед нами в любой горной стране, чтобы убедиться в том, что здесь почти невозможно найти ненарушенный участок: всюду пласты измяты (рис. 14) и изогнуты или стоят вертикально, а порою и опрокинуты и разорваны. Подобные тектонические нарушения – один из главных объектов изучения той отрасли геологии, которая именуется «тектоникой».
Рис. 14. Обнажение горных пород в современной складчатой зоне (Памир). Хорошо видны складки, в которые собраны пласты.
Но не только тектонические нарушения в пластах отличают складчатую зону. Сами породы здесь изменены настолько, что порою трудно представить себе, какими они были прежде. Вместо известняка возникает мрамор, вместо песчаника – кварцит, вместо плотной глины – кристаллический сланец и т. д. В этом сказываются так называемые процессы «метаморфизма» (изменения). Они состоят в воздействии на породы высокой температуры и высокого давления – как от веса пород, лежащих над данной точкой, так и от тектонических сил. В итоге породы перекристаллизовываются, приобретают иную структуру, в них появляются новые минералы, и от прежнего облика не остается почти ничего. Таковы породы, которые именуются метаморфическими; они широко распространены в пределах складчатых зон.
Еще одна особенность складчатых зон – обилие изверженных пород. Вулканические явления здесь крайне разнообразны. Обширные внедрения кислой или основной магмы в толщу осадочных пород, которые после застывания магмы превращаются в огромные погребенные кристаллические тела – «батолиты»; внедрения, застывающие ближе к поверхности и дающие грибообразные формы – «лакколиты»; разнообразные жилы, межпластовые внедрения магмы, небольшие по размерам «штоки» и т. д., вплоть до обыкновенных вулканов и подводных извержений – таковы бесчисленные по разнообразию и масштабам формы проявления вулканических сил, приводящие к накоплению в толще коры массивов изверженных пород. Взаимодействие между изверженными породами и осадочными представляет объект геологических исследований, так как в контакте между теми и другими нередко появляются важные полезные ископаемые.
Характеристика складчатой зоны должна быть дополнена тем, что период оживления тектонических движений заканчивается, как правило, общим осушением данного участка геосинклинали, поднятием его и образованием высоких гор. Параллельно с этим в области развивающейся складчатой зоны проявляется множество землетрясений.
Итак, после длительного этапа геосинклинального развития начинают проявляться тектонические движения большой интенсивности как колебательные, так и складкообразовательные; возникают многочисленные складки и разрывы в толще накопившихся ранее пород, отмечается интенсивная вулканическая и сейсмическая деятельность; повсеместно проявляются процессы метаморфизма, и, наконец, формируются горы. Геосинклиналь, таким образом, превращается в складчатую зону.
В дальнейшем все описанные выше процессы затухают, и горы, подвергаясь длительному воздействию различных внешних агентов – рек, ветра, солнечных лучей, мороза и т. п., – разрушаются, сглаживаются и постепенно исчезают, уступая место плоской равнине. Следовательно, на месте прежней геосинклинали возникает платформа. Геосинклиналь через стадию складчатой зоны переходит в платформу.
Разумеется, геосинклинали, складчатые зоны и платформы могут быть разного возраста. Так, в Норвегии геосинклинальный режим прекратился еще в начале палеозойской эры (в силурийском периоде). Урал в течение всего палеозоя представлял собой геосинклиналь; в конце палеозойской эры здесь с большой интенсивностью проявлялись тектонические движения, и, наконец, с середины мезозойской эры на месте Урала образовалась устойчивая малоподвижная платформа. На Кавказе геосинклинальный режим сохранялся дольше, до конца мезозойской эры; сейчас Кавказ – типичная складчатая зона, находящаяся в процессе интенсивного развития. Пройдет несколько миллионов лет, процессы внутреннего происхождения затихнут, и Кавказ начнет превращаться в платформу. Русская платформа тоже когда-то (очень давно, еще до палеозоя) переживала эпоху чрезвычайно сильных движений, с обильными внедрениями изверженных пород и сильнейшей метаморфизацией всех толщ, а к началу палеозойской эры здесь почти всюду оформился уже платформенный режим. Следы бурных революций прошлого мы видим в тех породах – метаморфических и изверженных, которые вскрываются под палеозойским осадочным покровом в тех или иных местах на Русской платформе – в Карелии, на Украине и т. д.