355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Георгий Горшков » Строение земного шара » Текст книги (страница 1)
Строение земного шара
  • Текст добавлен: 9 октября 2016, 14:21

Текст книги "Строение земного шара"


Автор книги: Георгий Горшков



сообщить о нарушении

Текущая страница: 1 (всего у книги 4 страниц)

Георгий Петрович Горшков
Строение земного шара


Введение


Предположим, что Вы получили многотомное собрание сочинений неизвестного вам писателя. Вы имели возможность прочесть лишь последнюю страницу последнего тома, а перед вами ставится задача рассказать о содержании остальных страниц всех томов. Задача неразрешимая!

Казалось бы, также невозможно судить о том, что находится в глубине Земли, в ее недоступных, невидимых недрах. Ведь шахты, с помощью которых добываются полезные ископаемые, проникают в глубь Земли недалеко – лишь очень редко глубина их превышает километр. Буровые скважины достигают бóльших глубин, но и они лишь в единичных случаях превышают по длине 3–4 километра. Следовательно, непосредственному нашему наблюдению доступна, и то в редких случаях, – всего лишь 1/2000 часть радиуса Земли, т. е. лишь последняя страница из сочинения, в котором 2000 страниц.

Да, в глубь земного шара мы проникаем пока недалеко. Но уже сейчас есть другие, косвенные методы исследования: геофизические наблюдения, геохимические расчеты, астрономические вычисления, физические эксперименты. Изобретая все новые и новые, все более совершенные способы исследования, человек проникает в ранее недоступные области природы и учится читать их историю. Проходит время, и мы видим, как успешно разрешаются самые сложные задачи, которые человек ставил перед собой.

Опираясь на достижения советской науки, мы попытаемся в этой книге в самых кратких чертах рассказать о том, что известно о строении нашей планеты.

1. О происхождении Земли

Естествоиспытатели давно стремятся узнать, как возникла Земля. Те или иные представления о происхождении Земли – это не только вопрос мировоззрения. Это вопрос также и практического значения, так как состав Земли, строение и физическое состояние ее недр непосредственно зависят от того, как она возникла и как развивалась. Чтобы понять все особенности нынешнего строения Земли, нужно знать, каково ее происхождение.

Наука о происхождении Земли, Солнца и звезд называется космогонией. Изучая историю науки, можно видеть, что вопросы космогонии интересовали ученых Древней Греции, Египта, Вавилонии, Китая и других стран еще много веков назад. Однако прежние космогонические представления, по понятным причинам, были мало обоснованными, а порою и просто наивными.

В течение длительного времени наиболее вероятным считалось (впрочем, многими считается еще и сейчас) так называемое «горячее» происхождение Земли (а также и всех других планет солнечной системы и самого Солнца). К числу гипотез, говорящих о «горячем» происхождении Земли, относится широко распространенная в прошлом гипотеза немецкого философа Иммануила Канта, известная под названием «небулярной». Она была опубликована в середине XVIII столетия. Автор ее полагал, что солнечная система, а вместе с ней и наша планета, возникли из раскаленной газовой туманности, вращавшейся вокруг своей оси. Под действием силы тяготения в центре туманности образовалось сгущение, из которого с течением времени образовалось Солнце. Под действием того же тяготения туманность сжималась и размеры ее уменьшались. В результате сжатия скорость вращения туманности росла и, наконец, наступил такой момент, когда центробежная сила на «экваторе» туманности превысила силу притяжения. Тогда от края туманности начали отделяться газовые кольца. Из таких колец образовались планеты, а в их числе и Земля.

Гипотеза Канта для своего времени была значительным шагом вперед по сравнению с религиозными представлениями о происхождении Земли. «Приведя мир в состояние простейшего хаоса, писал Кант, а для развития великого порядка природы не применял никаких других сил, кроме силы притяжения и силы отталкивания, двух сил, одинаково несомненных, одинаково простых и в то же время одинаково начальных и общих. Обе заимствованы из Ньютоновой философии… Мне кажется, здесь можно было бы, рассуждая здраво, сказать без всякой дерзости: дайте мне материю, я построю из нее мир». Гипотеза Канта была материалистической по своему духу, и в том заключалась ее особая ценность: «…в открытии Канта, – говорил Ф. Энгельс, – заключалась отправная точка всего дальнейшего движения вперед»[1]1
  Ф. Энгельс, Диалектика природы, Госполитиздат, 1952, стр. 8.


[Закрыть]
).

В дальнейшем выяснилось, что гипотеза Канта (а также и близкая к ней гипотеза Лапласа) не может объяснить многих важных особенностей солнечной системы. Возьмите, например, такой факт: Солнце вращается очень медленно; один оборот оно совершает приблизительно за 26 земных суток. Если бы первоначальная туманность вращалась так же медленно, то центробежная сила на краю туманности была бы слишком мала, чтобы начали отделяться кольца. Расчеты показывают, что отделение колец может осуществиться лишь в том случае, если скорость вращения туманности будет в сотни раз превышать нынешнюю скорость вращения Солнца. Не может небулярная гипотеза достаточно удовлетворительно объяснить и того, как из раскаленных газовых колец получаются сгустки – «зародыши» будущих планет.

В течение некоторого времени большой популярностью пользовалась также гипотеза Джинса. Этот британский астрофизик полагал, что когда-то, очень давно, когда Солнце, простая обычная звезда, было одиноким и еще не обладало планетами, оно встретилось с другой звездой. Пройдя близко от Солнца, встречная звезда «вырвала» из него, силою своего притяжения, струю материи, далеко выплеснувшуюся наружу. Звезда ушла, а всплеск с поверхности Солнца, рожденный встречей, распался на ряд отдельных сгустков, из которых в дальнейшем образовались планеты.

Гипотеза Джинса также оказалась несостоятельной. Расчеты показывают, что большая часть «струи» должна упасть обратно на Солнце или же улететь в мировое пространство, а оставшиеся сгустки будут обращаться вокруг Солнца по очень вытянутым орбитам вблизи от Солнца. На самом же деле планеты обладают почти круговыми орбитами и находятся на далеких расстояниях от Солнца.

Заметим, что встреча звезд в мировом пространстве – событие исключительно редкое; следовательно, если принять предложение Джинса, то и планетная система должна считаться исключительным явлением в мире. Неудивительно, что гипотеза Джинса устраивала сторонников религиозных взглядов, которые увидели в ней подтверждение церковных догм об исключительности и даже единственности Земли во вселенной, что совершенно не отвечает действительности.

Но существуют и другие гипотезы, которые говорят не о «горячем», а о «холодном» происхождении Земли. К ним относятся, например, гипотезы американского астронома Уиппла, немецкого астронома Вайцзекера и советского ученого О. Ю. Шмидта.

Согласно гипотезе О. Ю. Шмидта, Солнце в своем движении по путям вселенной когда-то встретило огромное облако темной, холодной, несветящейся газово-пылевой материи; подобные облака рассеянной материи действительно известны в нашей звездной системе – Галактике. Часть газово-пылевой массы в результате притяжения была поглощена Солнцем. Другая часть постепенно собиралась в сгущения – «зародыши» будущих планет; «зародыши» поглощали пыль и газ, рассеянные вокруг Солнца, и увеличивались в размерах. Как частицы пыли, так и маленькие «зародыши», двигавшиеся в различных направлениях и с различными скоростями, сталкиваясь, приобретали некоторую общую скорость и в конечном итоге стали вращаться вокруг Солнца приблизительно в одной плоскости, близкой к плоскости экватора самого Солнца. Наиболее крупные и быстро растущие «зародыши» превратились в планеты. Пыль и мелкие тела, которые не вошли в состав планет, сохранились в солнечной системе и мы можем наблюдать их в форме метеоров («падающих звезд») и выпадающих на Землю из межпланетного пространства железных и каменных масс – метеоритов.

Многие геологи и геофизики поддерживают идею о «холодном» происхождении Земли. Еще В. И. Вернадский, авторитетнейший геолог и геохимик нашей страны, писал (в 1900 г.): «Все представления о некогда существовавшем огненно-жидком состоянии планет…, внесены в науку в связи с чуждыми ей, по существу, теологическими, философскими и космогоническими представлениями о мире, не поддерживаемыми известными сейчас научными фактами»[2]2
  В. И. Вернадский, Избранные сочинения, т. I, 1941 г., стр. 94.


[Закрыть]
).

Трудно сказать, какая из этих двух групп гипотез окажется в конечном итоге справедливой. Окончательного решения этой труднейшей проблемы естествознания еще нет. Но современная космогония развивается быстрыми темпами. Много важных наблюдений и расчетов выполнено в Советском Союзе. Интересные идеи предложены советскими астрономами – В. Г. Фесенковым, В. А. Амбарцумяном и многими другими. Нет сомнения в том, что вскоре мы приблизимся к разрешению задачи о происхождении Земли.

2. Возраст Земли

С вопросом о происхождении Земли связан и другой вопрос. Сколько лет Земле? Попытаемся подойти к ответу на этот вопрос различными путями, используя данные геологии, палеонтологии, геохимии.

Геологи отвечают на этот вопрос, изучая процессы накопления осадков, процессы образования осадочных пород.

Представьте себе, что мы стоим у подножия крутого обрыва и рассматриваем породы, открывшиеся нашему взгляду в стенке обрыва. Мы видим песок, глину, известняк, которые залегают в форме горизонтальных слоев различной толщины. Исследуя эти породы, можно выяснить их происхождение, установить, где и как они образовались – в море или на суше, и сколько приблизительно лет потребовалось, чтобы данный слой накопился. Осадочные породы чрезвычайно разнообразны по своему составу, по условиям образования и т. д., но одно будет бесспорным всегда: нижние слои старше, верхние – моложе. Если составить сводную колонку отложений на всю их глубину, то можно судить об относительном возрасте пород. Подчеркнем, именно относительном возрасте, ибо точных сведений о длительности времени, в течение которого слои накапливались, из таких наблюдений мы не извлечем.

Чтобы значительно уточнить выводы, следует обратиться к палеонтологии, науке об ископаемых остатках организмов. Давно установлено, что каждому периоду в истории Земли соответствует свой комплекс животных и растительных организмов. Остатки этих организмов дошли до нас в виде окаменелостей, переполняющих нередко соответствующие пласты горных пород. Так, примитивные кишечнополостные, так называемые граптолиты, существовали на Земле лишь короткое время, которое носит наименование силурийской период, и ни раньше того, ни позже не встречаются. Другой вид организмов, так называемые нуммулиты, известен только для времени, называемого эоценом; в другие моменты истории Земли они не существовали. Следовательно, изучение ископаемой фауны и флоры позволяет сопоставлять между собою породы различных мест земного шара и с достоверностью восстанавливать историю Земли, историю жизни на Земле.

Палеонтологи, так же как и геологи, не могут определить возраст осадочных пород в абсолютных цифрах, т. е. в годах. Конечно, можно попытаться подсчитать, сколько лет требуется для того, чтобы образовался слой осадка определенной толщины, вычислить промежутки времени, необходимые для того, чтобы одна фауна сменила другую. Но точных цифр мы все же не получим, и приходится опираться лишь на сведения об относительном возрасте пород. В этом отношении сделано очень много и геологи с успехом пользуются своей относительной шкалой геологического времени.

Вся история Земли делится на эры, эры делятся на периоды, а периоды – на эпохи и века[3]3
  Более подробно об этом см. в брошюре: В. И. Громов, Из прошлого Земли, «Научно-популярная библиотека».


[Закрыть]
). Эта схема относительного геологического возраста необходима для проведения работ по геологической съемке и поискам полезных ископаемых. Приведем таблицу деления истории Земли на эры и периоды (без подразделения на эпохи и века):


Рассмотрим в качестве иллюстрации к этой схеме колонку отложений Подмосковья (рис. 1).

В основании холмов и долин Подмосковья залегают прочные светлые известняки. Кое-где по долинам рек эти известняки выходят на поверхность, например, в с. Мячкове на Москве-реке, или вскрываются при разработке карьеров, например у г. Подольска. По заключенным в них остаткам организмов нетрудно определить, что эти известняки, представлявшие первоначально скопление известкового ила и ракушек, отлагались в море и относятся по возрасту к каменноугольному периоду. Заметим, что осадки, соответствующие какому-либо периоду, называются системой (см. рис. 1).


Рис. 1. Геологический профиль в окрестностях Москвы.

Над известняками залегают черные, вязкие глины с окаменевшими стволами деревьев, с многочисленными, хорошо сохранившимися раковинами морских моллюсков – белемнитов и аммонитов. Эти глины также отлагались в море, но уже позже – в юрский период. Заглянув на таблицу, мы можем видеть, что между каменно-угольным и юрским периодом заключены еще пермский и триасовый, но отложений, относящихся к пермскому и триасовому периодам, под Москвой не обнаружено. Следовательно, в то время на месте Москвы моря не было, никаких осадков не отлагалось, а наоборот, была суша и она размывалась древними пермскими и триасовыми реками.

Отложения следующего периода, мелового, широко известны в окрестностях Москвы: это светлые, кварцевые пески, залегающие, например, в основании Ленинских гор или Татаровских высот. Осадков третичного периода под Москвой нет.

Отложения антропогенового периода, самые молодые, в Подмосковье встречаются повсеместно: это пески и галечники современных рек, пески и глины с валунами, оставленными древними ледниками и т. п.

Так схема относительного геологического возраста помогает исследовать отложения осадочных пород далекого прошлого. Но в некоторых случаях, например, при рассмотрении многих проблем теоретической геологии, все же важно знать абсолютный возраст пород, абсолютную длительность геологического времени. Способы определения абсолютного возраста горных пород были предложены физиками и геохимиками.

В горных породах всегда содержится хотя бы самое ничтожное количество радиоактивных элементов, т. е. таких элементов, которые с течением времени самопроизвольно распадаются, превращаясь в другие элементы. Например, радиоактивные элементы уран и торий превращаются в конечном итоге в свинец и гелий. Процесс распада идет самопроизвольно и на него не влияют никакие внешние условия (в естественной обстановке). Длительность процесса распада обычно очень велика. Например, половина всех бывших в какой-то начальный момент атомов тория распадается в течение 13 миллиардов 860 миллионов лет, а половина всех атомов урана распадается за 700 миллионов лет. Другими словами, если в какой-то начальный момент этих элементов было по одному килограмму, то через соответствующее указанное выше количество лет их останется только по 0,5 кг.

При тщательном и весьма тонком анализе состава горной породы можно установить, сколько в ней, уже после момента ее образования, появилось атомов свинца или гелия и сколько осталось еще неразложившегося радиоактивного элемента. По этим данным вычисляется возраст исследуемой горной породы.

Подобные расчеты позволили построить абсолютную шкалу геологической хронологии. Можно считать установленным довольно достоверно, что от начала археозойской эры до наших дней прошло около 2 миллиардов лет, от начала протерозойской эры – около 900 миллионов лет, от начала кембрийского периода – 500, от начала триасового периода – 185, от начала третичного периода – 70, от начала антропогенового периода – 1 миллион лет и т. д.

Таким образом, древнейшие горные породы, относящиеся к археозойской эре, существуют на Земле около 2 миллиардов лет. Однако Земля как планета должна быть еще древнее. Вычисления, в основу которых положен тот же радиоактивный метод, показывают, что Земля возникла 3–6 миллиардов лет назад. Заметим здесь, кстати, что возраст Солнца определяется в 50 биллионов лет, а общее время существования и эволюции средней звезды, в том числе и Солнца, более 2 тысяч биллионов лет.

Такие длительные периоды времени представить себе с достаточной ясностью человек не может. Можно лишь обратиться к некоторым сравнениям.

Допустим, что срок существования Земли как планеты, т. е. 6 миллиардов лет, выражается отрезком в 250 метров, что соответствует высоте нового здания Московского университета на Ленинских горах. Тогда палеозойская эра выразится отрезком длиною около 20 м, а антропогеновый период, т. е. период, в начале которого появился на Земле человек, будет равен всего четырем сантиметрам. Историческое время займет тогда не более 0,1 мм: это чуть больше толщины человеческого волоса (рис. 2).


Рис. 2. Сколько лет Земле.

Как видите, кое-что зная о последних 0,1 мм нашей шкалы, геологи и геофизики решаются судить об остальном отрезке длиною до 1/4 километра. Да, и уверены в своих заключениях, ибо такова сила науки!

3. Форма и размеры Земли

Вряд ли нужно много писать о форме Земли. Всем ясно, что Земля представляет собой шар, слегка сплюснутый у полюсов, т. е. так называемый эллипсоид. Однако правильное, современное представление о форме и размерах Земли было достигнуто далеко не сразу и достигалось порою в тяжелой борьбе науки с религией.

Греческий поэт Гомер (IX–VIII в. до н. э.) изображал Землю в виде круга, схваченного со всех сторон рекой Океаном, «которая катит свои могучие воды по ободу богатого щита»; такое изображение Земли было выгравировано, якобы, на щите мифического героя Ахиллеса. Философ Фалес (VI в. до н. э.) полагал, что Земля – шар, а его ученик Анаксимандр изображал Землю в виде цилиндра. Другие философы и ученые Древней Греции представляли Землю то в виде куба, то в виде лодки и т. д.; ученики Ксенофонта и Анаксимена считали, что Земля – очень высокая гора. Греческая мифология содержит легенду о том, как Зевс, желая определить размеры Земли, выпустил одновременно двух орлов, одного на запад, другого на восток: они встретились в городе Дельфах; это называлось «обнаружение Земли путем слета двух орлов».

На протяжении ряда веков, через дебри схоластики и религии средневековья, пробивала себе путь истина.

Еще совсем недавно, в 1862 г., немецкий ученый П. Иоселиани, определяя «глубину толстоты земного шара», получил 4536,8 км, что в 11/2 раза меньше действительной величины. Трудно поверить, но еще в 1876 г. в Петербурге была издана брошюра под названием: «Земля неподвижна, популярная лекция, доказывающая, что земной шар не вращается ни около оси, ни около Солнца. Читана в Берлине, доктором Шепфером. Перевод с немецкого Н. Соловьева. Издание 2-е, исправленное». Мы не будем останавливаться на подобных заблуждениях, и не будем касаться истории вопроса. Рассмотрим сведения, более существенные для нас в данном случае.

В 1841 г. немецкий астроном Ф. Бессель, используя градусные измерения, вычислил радиус Земли и ее сжатие у полюсов, т. е. получил цифры, характеризующие основные элементы земного эллипсоида. Результат был настолько точным, что эти цифры использовались при различных геодезических исследованиях, в картографии и т. п. в течение 100 лет.

Однако за последние десятилетия накопился огромный материал; появилась возможность уточнить прежние данные о форме и размерах Земли. К тридцатым годам была выполнена работа по пересмотру всех новых данных, и в 1936 г. советский ученый Ф. Н. Красовский опубликовал новые цифры, характеризующие размеры земного эллипсоида еще точнее.

Эллипсоид Ф. Н. Красовского имеет следующие размеры (рис. 3): большая полуось, т. е. расстояние от центра Земли до экватора, равна 6 378 254 метрам; малая полуось, т. е расстояние от центра Земли до одного из полюсов равна 6 356 863 метрам. Таким образом полярный радиус (от центра к полюсу) короче экваториального радиуса (от центра к экватору) приблизительно на 21 км. Отсюда следует, что Земля действительно эллипсоид вращения, т. е. шар, сплюснутый, хотя и очень незначительно, у полюсов. Величина сжатия, вызванного вращением Земли вокруг своей оси, равна 1 : 298,3. На школьном глобусе разница в длине экваториального и полярного диаметров равна всего лишь 0,5 мм, т. е. практически незаметна.

Итак, в первом, и достаточно хорошем, приближении Земля должна быть принята за эллипсоид вращения, элементы которого опубликованы в 1936 г. и которые приняты в Советском Союзе в качестве официальных, т. е. обязательных для использования во всех специальных работах.


Рис. 3. Земля – эллипсоид вращения;

а – большая полуось; с – малая полуось.

Однако геодезисты нередко нуждаются в измерениях еще большей точности, и тогда для изображения формы Земли они пользуются не эллипсоидом, а другой фигурой, так называемым геоидом. Геоид несколько ближе к истинной фигуре Земли, со всеми ее возвышенностями и впадинами, чем эллипсоид, и представляет фигуру, весьма сложную по виду. Наконец, теперь выяснено, что и экватор Земли не является окружностью; скорее это эллипс, т. е. окружность, слегка сжатая. Приходится считать также, что северное и южное полушария, как показал русский ученый А. А. Иванов, не вполне симметричны относительно плоскости экватора.

В заключение приведем некоторые цифры, характеризующие размеры земного шара:

Экваториальный диаметр = 12 756,5 километра

Полярный диаметр = 12 713,7 километра

Длина окружности меридиана = 40 008,6 километра

Длина окружности экватора = 40 075,7 километра

Поверхность Земли = 510 миллионам квадратных километров

Объем Земли = 1080 миллиардам кубических километров


    Ваша оценка произведения:

Популярные книги за неделю