Текст книги "Учебник логики"
Автор книги: Георгий Челпанов
сообщить о нарушении
Текущая страница: 2 (всего у книги 12 страниц) [доступный отрывок для чтения: 5 страниц]
Глава III
Содержание и объём понятий
Признаки понятий. Понятия в психологии получаются из сравнений сходных представлений. Представления в свою очередь складываются из отдельных элементов. Составные элементы представления или понятия принято называть признаками. Признаки есть то, чем одно представление или понятие отличается от другого. Например, признаками золота мы считаем «металл», «драгоценный», «имеющий определённый удельный вес» и т.п. Это всё то, чем золото отличается от других вещей, от не-металлов, от недрагоценных металлов и т.п.
Не все признаки нужно считать равноценными. Каждое понятие имеет множество различных признаков, но при мышлении о нём мы прежде всего по преимуществу мыслим только известные признаки. Эти признаки являются как бы основными, около которых группируются другие признаки. Первые признаки называются существенными, или основными, а остальные – второстепенными. Основные признаки – это такие признаки, без которых мы не можем мыслить известного понятия и которые излагают природу предмета. Например, для ромба существенным является тот признак, что он есть четырёхугольник с параллельными и равными сторонами и т.п.; несущественным для понятия ромба является тот признак, что он имеет ту или другую величину сторон, ту или другую величину углов.
Признаки понятий со времени Аристотеля принято делить на следующие 5 классов:
1. Родовой признак. Если мы скажем, что химия есть наука, то наука будет родовым признаком для понятия «химия»; в числе других признаков, присущих понятию «химия», есть и признак «наука»; этот признак отличает химию от всего, что не есть наука. Род (genus) или родовой признак есть понятие класса, в который мы вводим другое рассматриваемое нами понятие.
2. Видовое различие. Если мы скажем, что химия есть наука, занимающаяся изучением строения вещества, то прибавление признака – «занимающаяся изучением строения вещества» будет служить для обозначения того, чем эта наука отличается от других наук. Такой признак, который служит для того, чтобы выделять понятие из ряда ему подобных понятий, называется видовым различием (differentia specifica). Возьмём понятия «моряк русский», «моряк французский», «моряк английский». В этом случае «русский», «французский», «английский» есть видовое различие; оно служит для того, чтобы выделить моряка одной нации от моряков всех прочих наций.
3. Вид (species). Если к родовому признаку присоединить видовое различие, то получится вид. Например, «здание для склада оружия» – арсенал; «здание для склада хлеба» – амбар. В этом случае «здание» есть род, «для хранения оружия» есть видовое различие; присоединение к роду видового различия даёт вид «арсенал». Присоединение к понятию «здание» видового признака «служащее для хранения хлеба» даёт вид «амбар». Вид может быть признаком, потому что его можно приписать понятию. Например, «эта наука есть химия».
4. Собственный признак (proprium). Собственный признак – это такой признак, который присущ всем вещам данного класса, который не содержится в числе существенных признаков, но который может быть выведен из них. Например, существенным признаком человека является его «разумность». Из этого свойства вытекает его способность владеть речью. Этот последний признак есть собственный признак. Основной признак треугольника – это прямолинейная плоская фигура с тремя сторонами. Что же касается того признака треугольника, что сумма углов его равняется двум прямым, то это есть его собственный признак, потому что вытекает или выводится из основных признаков. Мы этого признака не мыслим, когда думаем о треугольнике, поэтому он является выводным.
5. Несобственный признак (accidens). Несобственный признак – это такой признак, который не может быть выведен из существенного признака, хотя и может быть присущ всем вещам данного класса. Например, чёрный цвет ворона есть accidens. Если бы чёрный цвет ворона был выводим из основных свойств его, то он мог бы быть назван proprium, но он не выводим, так как мы не знаем, по какой причине вороны имеют чёрный цвет перьев. Он есть, следовательно, accidens.
Несобственные признаки делятся на две группы: на неотделимые несобственные признаки (accidens inseparabile) и отделимые несобственные признаки (accidens separabile). Последние суть те признаки, которые присущи только некоторым вещам того или другого класса, но не всем, а первые присущи всем вещам данного класса. Например, чёрный цвет ворона есть accidens inseparabile. Чёрный цвет волос для человека есть accidens separabile, потому что есть люди, которые не имеют чёрного цвета волос. По отношению к отдельным индивидуумам несобственный признак также может быть отделимым и неотделимым. Отделимые – это такие признаки, которые одно время имеются налицо, а в другое время не имеются. Например, Бальфур – первый министр Англии. Через некоторое время он может не быть первым министром. Это есть признак отделимый. «Лев Толстой родился в Ясной Поляне». В этом предложении признак «родился в Ясной Поляне» есть неотделимый признак.
Содержание и объём понятий. Понятия могут быть рассматриваемы с точки зрения содержания и объёма.
Содержание понятия – это то, что мыслится в понятии. Например, в понятии «сахар» мыслятся признаки: сладкий, белый, шероховатый, имеющий тяжесть и т.д.; эти признаки в совокупности и составляют содержание понятия «сахар». Содержание понятия, другими словами, есть сумма признаков его; поэтому каждое понятие можно разложить на ряд присущих ему признаков. Содержание понятия может быть весьма изменчивым в зависимости от принятой точки зрения, от размера знания и т.п. Например, в понятии «сахар» химик мыслит одно содержание, а нехимик – другое.
Объём понятия есть то, что мыслится посредством понятия, т.е. объём понятия есть сумма тех классов, групп, родов, видов и т.п., к которым данное понятие может быть приложено. Например, объём понятия «животное»: птица, рыба, насекомое, человек и т.д.; объём понятия «элемент»: кислород, водород, углерод, азот и т.д.; объём понятия «четырёхугольник»: квадрат, прямоугольник, ромб, трапеция.
Таким образом, различие между объёмом понятия и содержанием понятия сводится к следующему: объём понятия означает ту совокупность предметов, к которым должно прилагаться данное понятие, а содержание обозначает те признаки, которые приписываются тому или другому понятию.
Для более ясного представления объёма понятий и отношения объёмов существует особый приём, называемый «логической символикой».
На рис. 1 большой круг символизирует собой понятие «элемент», а меньшие круги, в нём находящиеся, символизируют понятия, входящие в его объём. Если мы изображаем какой-нибудь круг внутри другого круга, то мы этим символизируем, что объём одного понятия входит в объём другого.
Из рис. 2 видно, что понятие «дерево» содержит в своём объёме понятия «дуб», «ель» и т.п. Отдельные точки в круге «ель» символизируют индивидуальные, или единичные, ели.
Понятие с большим объёмом называется родом по отношению к тому понятию с меньшим объёмом, которое входит в его объём. Понятие с меньшим объёмом в этом случае называется видом. Понятия с большим объёмом можно назвать также понятиями более широкими или более общими.
Любой вид может сделаться родом. Например, понятие «пальма» относится к понятию «дерево», как вид к роду, но в свою очередь оно относится уже как род к своим видам – «пальма кокосовая», «пальма фиговая» и т.д. Вообще более общее понятие есть род для менее общего понятия; более общее понятие представляет собой родовое понятие для менее общего, менее общее само становится родом для ещё менее общего и т.д., пока мы не придём к такому понятию, которое уже не может в своём объёме содержать какие-либо другие виды, а может подразделяться только на отдельные индивидуумы.
Следует упомянуть о попытке греческого философа Порфирия (233-304) при помощи схемы облегчить понимание отношения между охватывающими друг друга понятиями, т.е. понятиями, из которых одно входит в объём другого. Эта схема называется «деревом Порфирия». В понятие «бытия» (т.е. того, что вообще существует) входит понятие «телесного бытия» и «бестелесного бытия». Тело содержит в своём объёме одушевлённое тело, или организм, и неодушевлённое тело. Понятие «организм» содержит в своём объёме чувствующие и нечувствующие организмы (растения). Чувствующие организмы содержат в своём объёме разумные и неразумные существа и т.д. (рис. 3).
Бытие есть высший род, который уже не может быть видом для другого рода. Такой род называется summum genus; человек – это низший вид. В его объём уже не входят понятия с меньшим объёмом, а входят только отдельные индивидуумы. Такое понятие называется infima species (самый низший вид). Ближайший высший класс (или род) того или другого вида называется proximum genus (ближайший род). Отношение между более широкими и узкими понятиями можно изобразить и иначе, именно, поместив круги, служащие для обозначения понятий с меньшим объёмом, внутри кругов, служащих для обозначения понятий с большим объёмом (рис. 3а).
Ограничение и обобщение. Процесс образования менее общих понятий из более общих называется ограничением (determinatio). Для образования менее общего понятия мы должны к более общему прибавить несколько признаков, благодаря чему понятие уясняется (determinatur). Например, чтобы из понятия «дерево» получить менее общее понятие «пальма», надо к признакам дерева прибавить специальные признаки пальмы: вид её листьев, прямизну ствола и т.д. Обратный процесс образования более общего понятия из менее общего, при котором, наоборот, некоторое количество признаков от данного понятия отнимается, называется обобщением (generalisatio).
Род образуется из видов при помощи процесса обобщения, и, наоборот, виды образуются из родов при помощи процесса ограничения. Эти процессы мы можем изобразить при помощи следующей схемы:
Предположим, что у нас есть понятие A (наука). Из него при помощи видового различия a мы можем образовать вид Aa (математика); прибавив к понятию Aa видовое различие b (определение пространственных отношений), получим геометрию Aab. Прибавив к этому виду признак c (определение пространственных отношений на плоскости), получим планиметрию Aabc.
Обратный процесс – получение более общих понятий путём отбрасывания отдельных признаков – будет называться обобщением. И тот и другой процесс можно изобразить при помощи следующей схемы, в которой стрелки показывают или нисхождение от более общих понятий к менее общим или, наоборот, восхождение от менее общих к более общим понятиям.
Отношение между объёмом и содержанием понятия. Для того чтобы ответить на вопрос, какое существует отношение между объёмом и содержанием понятия, возьмём какой-нибудь пример. Объём понятия «человек» обширнее, чем, например, объём понятия «негр». Употребляя понятие «человек», мы думаем обо всех людях, мы думаем о людях, живущих во всех пяти частях света, между прочим и в Африке. Употребляя понятие «негр», мы думаем только о тех людях, которые живут в Африке. Но о содержании этих двух понятий следует сказать как раз наоборот: содержание понятия «негр» будет обширнее содержания понятия «человек». Когда мы говорим о негре, то мы можем найти в нём все признаки понятия «человек» плюс ещё некоторые особенные признаки, как-то: чёрный цвет кожи, курчавые волосы, приплюснутый нос, толстые губы и т.п.
Итак, по мере увеличения содержания понятия уменьшается его объём, и наоборот.
Вопросы для повторения
Что такое признаки понятий? Какие признаки понятий мы отличаем? Что такое родовой признак? Что такое видовое различие? Что такое вид? Что такое собственный признак? Что такое несобственный признак? Что такое содержание понятия? Что такое объём понятия? Что такое summum genus? Что такое infima species? Что такое обобщение? Что такое ограничение? Какое существует отношение между объёмом и содержанием понятия?
Глава IV
Логические категории и отношения между понятиями
Категории. Ни один предмет не представляет собой чего-либо совершенно отличного от всех других предметов. Он похож на них в каком-либо отношении: его всегда можно отнести в какой-либо общий класс с другими предметами; все вообще предметы могут быть относимы в общие с другими предметами классы. Есть классы, которые обнимают небольшое количество предметов, но есть классы, которые обнимают большое количество предметов, и именно потому, что это суть предметы с самыми общими сходствами. Эти классы вещей в нашем мышлении получают выражение в виде известных понятий. Такие понятия, которые служат для обозначения самых общих сходств между предметам и Аристотель назвал категориями. Слово «категория» происходит от греческого слова kategoria что значит высказывать, быть сказуемым. Категории для Аристотеля суть возможные предикаты какого-либо единичного предмета, т.е. такие понятия, которые можно высказать относительно того или иного единичного предмета или класса предметов.
Вот эти категории:
1. Субстанция (substantia).
2. Количество (quantitas).
3. Качество (qualitas).
4. Отношение (relatio).
5. Место (ubi).
6. Время (quando).
7. Положение (situs).
8. Обладание (habitus).
9. Действие (actio).
10. Страдание (passio).
Под эти десять категорий, по мнению Аристотеля, подходит всё то, что можно мыслить. Если мы желаем высказать о тех или других вещах что-либо самое общее, то мы не можем о них высказать ничего другого, кроме того, что они суть или субстанции, или что они обозначают качество, отношение, место и т.п. Других точек зрения, кроме тех, которые содержатся в категориях, не существует. Таким образом, можно сказать, что категории представляют собой наиболее общие классы всего мыслимого.
В новейшей философии в качестве наиболее общих классов мыслимого философы различают вещь, свойство, отношение. Всё, о чём мы можем мыслить, есть или вещь (субстанция), или это есть свойство (атрибут), или, наконец, это есть отношение.
Под вещами мы понимаем то, что обладает большим или меньшим постоянством формы. Например, таким постоянством обладают камень, дерево, жидкость в сосуде и т.п. Кусок камня сегодня обладает той же формой, какой он обладал вчера: нам представляется, что такое постоянство будет ему присуще и впоследствии.
Вещи мы представляем или имеющими известные свойства или качества, или совершающими известные действия, или находящимися в известном состоянии. Например, то, что кусок железа имеет известную тяжесть, есть его свойство, или качество. Если кусок железа накалён, то это есть его состояние: если кусок железа плавится или движется, то это есть известный процесс, состояние. Свойства, действия, состояния мы представляем принадлежащими известной вещи как известной носительнице их. Но в то же время мы их мыслим как элементы, из которых состоит вещь: мы мыслим железо как нечто, имеющее известную тяжесть, твёрдость, способность накаляться, приходить в движение и т.п. Качество, действие, состояние мы будем называть одним общим именем – свойства вещи.
Одна вещь может мыслиться нами находящейся в различных отношениях к другой вещи. Одна вещь может быть больше, чем другая (пространственное отношение); одна вещь может быть причиной другой вещи (причинное отношение); одна вещь может возникнуть раньше, чем другая (временное отношение), и т.п.
Всё, что мы можем мыслить, мы должны мыслить под одной из этих категорий, т.е. всё, что мы мыслим, мы должны мыслить или как вещь, или как свойство вещи, или как отношение. Эти три наиболее общих понятия мы и считаем категориями.
Этим исчерпывается вопрос о категориях.
Отношения между понятиями. Рассмотрим логические отношения, существующие между понятиями.
1. Подчинение понятий (subordinatio notionurn) мы имеем в том случае, когда одно понятие относится к другому, как вид к своему роду, когда одно понятие входит в объём другого как часть его объёма. Для примера возьмём понятие «дерево» A и понятие «берёза» B. Последнее понятие входит в объём первого. (Символ подчинения понятий см. на рис. 4.) Другие примеры: «духовная деятельность», «ощущение вкуса», «человек», «математик».
2. Соподчинение понятий (coordinatio notionum) мы имеем в том случае, если а объём одного и того же более широкого понятия входят два или несколько одинаково подчинённых ему низших понятий. Эти низшие понятия называются соподчинёнными (координированными). Например, «мужество» B, «умеренность» C, «добродетель» A. Оба первых понятия входят в объём последнего (рис. 5).
3. Понятия равнозначащие (notiones aequipollentes). Для разъяснения этого отношения возьмём два понятия: «английский народ» и «первые мореплаватели в мире». Когда мы произносим слова «английский народ» и при этом имеем в уме понятие «английский народ», мы думаем об англичанах. Когда мы произносим слова «первые мореплаватели», мы также думаем об англичанах; следовательно, объём этих двух понятий один и тот же. Раскроем теперь содержание этих понятий. В понятии «английский народ» мы мыслим известное политическое устройство, известную территорию, известную культуру и т.д., в понятии же «первые мореплаватели» – известное искусство в постройке кораблей и управлении ими, известное развитие морской торговли, многочисленность флота и т.д.; следовательно, содержание этих понятий различно. Если у нас есть два понятия с различным содержанием, но одинаковым объёмом, то такие понятия называются равнозначащими. Другие примеры: «христианин»–«крещёный», «органический»–«смертный», «величайший писатель»–«автор „Войны и мира“». Равнозначащие понятия можно символизировать при помощи двух кругов, сливающихся в один, подобно тому как сливаются объёмы указанных понятий; различие же содержания символизируется двумя различными буквами, стоящими в этом круге (рис. 6).
4. Противные и противоречащие понятия. На эти два различных класса понятий, очень сходных по своим внешним свойствам, но в то же время совершенно различных по существу, следует обратить особенное внимание и хорошенько продумать их различие, так как при оперировании с ними легко впасть в ошибку.
Если мы возьмём объём какого-нибудь понятия и будем распределять по степени сходства виды, входящие в него, таким образом, что после каждого вида мы будем брать следующий, наименее от него отличный, то в конце концов из этих понятий-видов получится ряд, в котором первый и последний члены очень сильно отличаются друг от друга. Эти-то два понятия, первое и последнее, во взятом нами ряде видов находятся в отношении противности или противоположности. Будем, например, указанным способом распределять виды понятия «цвет». В его объём входят различные оттенки всевозможных цветов: красного, зелёного, чёрного, белого, серого и т.п. Если мы указанным выше способом будем размещать виды в ряд по мере сходства их, то можем получить приблизительно следующий ряд: белый, беловатый, светло-серый, серый, тёмно-серый, черноватый, чёрный.
Как видно из этого, наибольшее различие здесь между понятиями «белый» и «чёрный»; они-то и суть противоположные или противные понятия. Итак, понятия, входящие в один и тот же объём, но очень отличающиеся друг от друга, называются противными (contrariae). Схема: в круге, символизирующем объём какого-нибудь понятия, двумя линиями отделены два крайних отрезка, один против другого (рис. 7). Другие примеры: «добрый», «злой»; «высокий», «низкий»; «красивый», «уродливый»; «громкий», «тихий»; «глубокий», «мелкий». Надо заметить, что не все понятия имеют противные им понятия. Например, понятие «голубой» не имеет противного ему понятия.
Если мы имеем какое-нибудь понятие A и другое понятие B, относительно которого известно только то, что оно не есть A, то такие понятия называются противоречащими (contradictoriae). Например, понятия «белый» и «небелый» суть понятия противоречащие. Итак, два термина, из которых один получен путём прибавления отрицательной частицы «не» к другому, относятся между собой, как противоречащие. Символически отношение между противоречащими понятиями выражается следующим образом (рис. 8).
Кругом символизируется какое-нибудь одно понятие A, и вне его ставится другое понятие B, которое есть не-A, причём это понятие B может быть поставлено где угодно, лишь бы не внутри круга, не в его объёме; это второе понятие по своим свойствам называется понятием отрицательным или неопределённым (notio negativa seu indefinita).
Если мы возьмём для сравнения два понятия противоположные и два противоречащие: «белый» – «чёрный» (противоположные), «белый» – «небелый» (противоречащие), то мы можем наглядно убедиться, что разница между этими двумя логическими отношениями огромная: тогда как второй член первой пары (чёрный) имеет вполне определённое содержание, которое можно представить, второй член второй пары (небелый) такого определённого содержания не имеет. Его содержание отличается неопределённостью, т.е., употребляя слово «небелый», мы можем под ним понимать и красный, и зелёный, и синий, и даже большой, красивый, добрый и т.п.
5. Скрещивающиеся понятия (notiones inter se convenientes). Если мы имеем два понятия, содержание которых различно, но объёмы некоторыми своими частями совпадают, то такие два понятия называются скрещивающимися. Возьмём два понятия, например A – «писатели» и B – «учёные». В объёме понятия «писатели» заключается часть объёма понятия «учёные», ибо некоторые писатели суть учёные, и, с другой стороны, в объёме понятия «учёные» заключается некоторая часть объёма понятия «писатели», ибо некоторые из учёных суть писатели. Это мы могли бы изобразить при помощи схемы на рис. 9.
Так как та часть объёма понятия «писатели», которая состоит из учёных, и та часть объёма понятия «учёные», которая состоит из писателей, логически между собой равны, то символически их можно представить равными частями двух кругов, которые при наложении могли бы совпасть. Поэтому схемой скрещивающихся понятий могут служить два скрещивающихся круга, причём круги символизируют объёмы данных понятий, а место их скрещивания – совпадающие, логически равные части этих объёмов. Другой пример – прямоугольные фигуры и параллелограммы, ибо некоторые прямоугольные фигуры суть параллелограммы и некоторые параллелограммы суть прямоугольные фигуры.
6. Понятия несравнимые (notiones disparatae). Возьмём два понятия: «душа» и «треугольник». Для этих двух понятий нет общего ближайшего родового понятия, в объём которого они могли бы оба войти как координированные. Между ними нет ничего такого общего, что могло бы для них явиться посредствующим, связывающим элементом, на основании которого их можно было бы сравнить. Такие два понятия находятся в логическом отношении несравнимости. Для того чтобы можно было сравнить два понятия, необходимо нечто третье, что объединяло бы эти понятия, – это именно ближайшее общее понятие, в объём которого они входили бы. Это третье понятие называется tertium comparationis.
Сюда же относятся понятия, которые вообще получены неотрицательным путём, например «бесконечный», «бесспорный» и т.п., если эти понятия могут быть символизированы только что указанным способом.
Следует заметить, что речь идёт об отсутствии ближайшего родового понятия. Если мы возьмём, например, два таких понятия, как «корабль» и «чернильница», то при всём различии их они имеют нечто общее (и то и другое есть вещь), но нет ближайшего родового понятия, в объём которого они входили бы.
Вопросы для повторения
Что такое категория? Какие категории признавал Аристотель? Какие следует признавать категории? Что такое вещь, свойство, отношение? Что такое подчинение понятий? Приведите примеры. Что такое соподчинение понятий? Приведите примеры. Какие понятия называются равнозначащими? Приведите примеры. Какие понятия называются противными или противоположными? Приведите примеры. Какие понятия называются противоречащими? Приведите примеры. Что такое скрещивающиеся понятия? Приведите примеры. Какие понятия несравнимые? Что необходимо для того, чтобы понятая можно было сравнивать?