355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Генрих Бурмин » Штурм абсолютного нуля » Текст книги (страница 9)
Штурм абсолютного нуля
  • Текст добавлен: 26 сентября 2016, 20:54

Текст книги "Штурм абсолютного нуля"


Автор книги: Генрих Бурмин



сообщить о нарушении

Текущая страница: 9 (всего у книги 10 страниц)

Недаром один видный советский физик сказал, что керамический сверхпроводник может быть изготовлен даже… на кухне.

…В четвертой главе книги описан эксперимент, демонстрирующий эффект Мейснера в сверхпроводниках, получивший шуточное название «гроб Магомета».

Не менее наглядный опыт сегодня может быть осуществлен с помощью более простых средств, доступных даже школьному физическому кабинету.

Погрузив подвешенное на ниточке колечко из иттрий – бариевой керамики в сосуд с жидким азотом, а затем удалив охлаждающую среду, вы подносите к колечку постоянный магнит.

Что должно при этом произойти со сверхпроводником, вы, наверное, твердо усвоили, если внимательно прочли четвертую главу книги.

Магнитное поле постоянного магнита индуцирует незатухающий ток на поверхности колечка, который в свою очередь возбуждает магнитное поле.

Колечко иттрий – бариевой керамики, предварительно охлажденное в жидком азоте, отталкивается магнитом.

В результате взаимодействия этих полей возникает сила, которая по закону Ленца стремится от – толкнуть колечко от магнита. И колечко отскакивает от магнита, словно бабочка от огня.

Заметьте, на протяжении демонстрации колечко ничем не охлаждается.

В чем секрет этого «фокуса»?

Время отогревания при комнатной температуре колечка, охлажденного в жидком азоте до критической температуры иттрий – бариевой керамики (то есть от 77К до 94—98К), равно примерно 30 секундам. Этого времени вполне достаточно, чтобы уверить неискушенного зрителя, будто бы он наблюдал сверхпроводимость при комнатной температуре.

А в самом деле, возможна ли сверхпроводимость при комнатной температуре и какие для этого требуются условия?

Однозначный ответ на этот вопрос наука дать еще не может. К единому мнению о природе высокотемпературной сверхпроводимости керамики ученые не пришли, хотя гипотез, выдвигаемых теоретиками, очень много.

Надежных экспериментальных данных, подтверждающих или отвергающих ту или иную гипотезу, пока не получено. Трудности усугубляются тем, что керамика имеет поликристаллическую, то есть зернистую структуру. Из‑за хаотического расположения зерен результаты измерений колеблются от образца к образцу. Правда, советским ученым уже удалось для исследований синтезировать монокристаллы керамики достаточно большой величины.

С момента открытия сверхпроводимости при низких температурах до теоретического обоснования этого явления прошло, как читатель уже знает, почти полвека… В какой срок уложатся на сей раз теоретики, предугадать трудно.

Однако это не удерживает экспериментаторов в их неуемном стремлении к вершинам высокотемпературной сверхпроводимости.

Когда‑то один известный физик высказался, правда по другому поводу, примерно так: можно хорошо играть в шахматы, не зная природы материала, из которого изготовлены шахматные фигуры.

Продолжая подобную аналогию, можно сказать, что гроссмейстеры высокотемпературной сверхпроводимости прекрасно разыграли дебют и перешли в миттельшпиль.

Но в отличие от шахматной партии, где время строго ограничено, невозможно предсказать, не обладая даром ясновидения, как будет протекать в дальнейшем «игра» в сверхпроводимость, длящаяся с начала нынешнего века. Однако, несомненно, проигравших в этой «партии» не будет.

12. Ученик чародея. Непокорная плазма. Династия Токамаков. Подземный склад энергии. Необычное озеро. Летающий поезд. Новейший ускоритель

Можно смело утверждать: «кораблю» сверхпроводимости уготовано большое плавание в безбрежном море технического прогресса.

Уже сегодня решение ряда перспективных проблем науки и техники не мыслится без использования сверхпроводимости.

Среди них особенно важны так называемые глобальные проблемы, решение которых имеет существенное значение для судьбы всего человечества.

Глобальной проблемой номер один является энергетическая.


 
Вся жизнь есть энергия,
Энергия – вечный восторг.
 

Эти строки английского поэта XVIII века Уильяма Блейка, разумеется, не претендуют на строго научное определение энергии. В них ярко выражена мысль о том, что без энергии вообще немыслима жизнь человека на Земле.

С развитием технического прогресса и ростом народонаселения потребность человечества в энергии непрерывно возрастает.

Ожидается, что к 2000 году потребление энергии на нашей планете возрастет почти в три раза по сравнению с сегодняшним уровнем.

Природные запасы источников энергии не безграничны.

И уже сегодня многие страны находятся под угрозой энергетического кризиса.

С овладением энергией атомного ядра человечество получило новый энергетический источник немыслимой ранее мощности.

По оценке специалистов, природных запасов основного «топлива» атомных электростанций – урана, при его рациональном использовании, хватит человечеству на несколько сотен лет.

Ученые всего мира усиленно работают над следующим этапом использования ядерной энергии – освоением управляемых термоядерных реакций.

В ядерной (атомной) энергетике используются реакции деления тяжелых ядер, при которых ядра делятся на части нейтронами и образуются новые нейтроны.

А в термоядерной энергетике используется противоположный эффект – процесс синтеза ядер легких элементов.

Когда два легких ядра сливаются вместе, происходит так называемая термоядерная реакция.

Термоядерная реакция может происходить только, когда ядра сближаются на расстояние в одну миллионную долю нанометра.

Чтобы состоялось такое сближение, ядра должны преодолеть кулоновские силы отталкивания, то есть обладать большой кинетической энергией. Для этого вещество должно находиться при достаточно высокой температуре, порядка сотен миллионов градусов.

Термоядерные реакции сопровождаются колоссальным выделением энергии. Так, например, энергия, освобождаемая при синтезе всего лишь четырех граммов гелия из водорода, оценивается в 700 тысяч киловатт часов. Это примерно соответствует дневной потребности в энергии для бытовых нужд города с населением в несколько сот тысяч человек.

На Земле термоядерные реакции впервые были осуществлены в водородной бомбе.

Нагрев бомбы до температуры в несколько сотен миллионов градусов осуществляется путем взрыва обычной атомной бомбы. Мгновенно выделяющаяся при термоядерной реакции энергия обладает взрывным действием колоссальной разрушающей силы. По мощности взрыва и силе поражающих действий (ударная волна, радиоактивное излучение и т. п.) водородная бомба значительно превосходит атомную бомбу.

Среди произведений Иоганна Вольфганга Гете есть баллада «Ученик чародея».

В этой балладе колдун, отлучившись, оставляет своего ученика на кухне, приказав ему натаскать бочку воды. Мальчик ленив, но достаточно предприимчив: он заставляет выполнить это задание… метлу, произнеся над ней заклинание, подслушанное у своего хозяина.

Метла наполняет бочку водой, но остановить ее ученик чародея не может. Непутевый мальчик почти тонет – он не выучил или забыл другое заклинание, которое остановило бы метлу. В отчаянии он хватает метлу и ломает ее пополам, но с ужасом обнаруживает, что из каждой половины продолжает течь вода. К счастью, он не погиб – появился хозяин, который, произнеся магическое слово, остановил метлу и хорошенько наказал нерадивого ученика.

Так вот, в отношении термоядерных реакций мы в момент, когда пишутся эти строки, находимся на уровне «ученика чародея». Мы можем вызвать термоядерную реакцию, но пока не в состоянии полностью управлять ею, с тем чтобы направить освобождаемую при этом энергию не на разрушение, а на созидание материальных благ.

Трудности, которые суждено преодолеть ученым на пути к освоению управляемых термоядерных реакций, велики.

Газообразный водород в термоядерном реакторе необходимо не только разогреть до баснословной температуры, исчисляемой сотнями миллионов градусов.

При столь высокой температуре любое вещество превращается в плазму, то есть газ, состоящий практически из «голых» ядер и электронов. Разумеется, такую горячую плазму невозможно удержать ни в одном сосуде. Но поскольку плазма состоит в основном из заряженных частиц, на их траекторию можно воздействовать магнитными полями. Тогда при достаточно сильных магнитных полях и их соответствующей конфигурации представляется возможность, несмотря на высокие скорости частиц, удерживать их в пространстве, в котором может быть осуществлена термоядерная реакция.

Однако плазма – это весьма свободолюбивая «особа». Чем больше ограничивается движение частиц, тем сильнее плазма стремится вырваться из– под опеки, освободиться от удерживающих ее магнитных уз.

В плазме, ограниченной магнитным полем, развиваются колебания и волны, и плазма «просачивается» между силовыми линиями магнитного поля. Магнитное удержание нарушается.

Было предложено немало хитроумных конструкций для удержания плазмы. Из них наиболее удачной оказалась система типа «Токамак».

Слово «Токамак» расшифровывается так: «ТОроидальная КАмера с МАгнитными Катушками».

Эта система, предложенная советскими учеными в 50–х годах и впервые осуществленная в СССР, получила признание во всех странах мира, где ведутся работы по управляемым термоядерным реакциям. Сегодня слово «Токамак» одинаково звучит на русском, английском, японском и многих других языках.

Тороидальная камера – это, грубо говоря, гигантский пустотелый бублик. В такую камеру вводится газообразный водород сравнительно небольшой плотности, в ней возбуждается кольцевой электрический ток силой в сотню тысяч ампер.

Внутри тороидальной камеры образуется кольцевой плазменный виток, или, как его называют физики, плазменный шнур. По этому витку течет ток.

Однако такой виток с током сам по себе неустойчив. Для того чтобы его стабилизировать, на поверхности камеры устанавливаются катушки, возбуждающие сильное магнитное поле, силовые линии которого направлены параллельно току в плазменном шнуре.

«Токамак» для собственных нужд потребляет очень много энергии. Например, для питания экспериментальной установки «Токамак 10» потребовалась подстанция на 180 тысяч киловатт.

Расчеты показывают, что для запуска промышленного термоядерного реактора типа «Токамак» понадобилось бы два миллиона киловатт, то есть мощность Куйбышевской ГЭС.

Существенное уменьшение энергии для питания «Токамаков» достигается при использовании сверхпроводящих магнитов.

В нашей стране была спроектирована и построена первая в мире сверхпроводящая электромагнитная система для установки «Токамак 7». В ней почти вплотную встретились самые низкие и фантастически высокие температуры: в нескольких сантиметрах от охлажденных почти до абсолютного нуля температуры сверхпроводящих витков бушует водородная плазма с температурой в десятки миллионов градусов. На сверхпроводящие катушки действуют электромагнитные силы в сотни тонн, а давление на центральный сердечник превышает 10 тысяч тонн.

Создателям этой системы пришлось решить уникальные по своей сложности инженерные задачи.

Еще более мощной сверхпроводящей электромагнитной системой оснащена новая установка «Токамак 15», которая введена в действие в конце 1988 года. Здесь накапливается магнитная энергия 600 миллионов джоулей, в 50 раз больше, чем в «Токама– ке 7». А по объему плазмы (25 кубических метров) «Токамак 15» превосходит свою предшественницу – установку «Токамак 10» в пять раз.

Одновременно в Советском Союзе проектируется опытный термоядерный реактор. По инициативе советских ученых, под эгидой Международного агентства по использованию атомной энергии (МАГАТЭ), разрабатывается международный проект токамака – реактора ИТЭР, в котором принимают участие ученые СССР, Западной Европы, США и Японии.

Строительство установок типа «Токамак» сегодня стало одним из главных направлений в мировой науке.

Во Франции планируется запустить в ближайшее время токамак «Тор – сюпра», оснащенный, как и наш «Токамак 15», сверхпроводящими магнитами.

В США введен в действие испытательный реактор – токамак ТФТР, на котором впервые достигнута температура плазмы свыше 300 миллионов градусов.

В Калэмской лаборатории, вблизи английского города Оксфорда, запущен токамак «Джет», сооруженный объединенными усилиями стран – участниц Европейского экономического сообщества. Токамак JT-60 строится в Японии.

С освоением управляемых термоядерных реакций глобальная проблема номер один будет окончательно решена. Человечество будет обеспечено практически неисчерпаемым источником энергии, так как запасы водорода в Мировом океане безграничны.

В отличие от атомных электростанций в процессе работы термоядерного реактора не происходит накопление радиоактивных шлаков.

Рентабельное производство электроэнергии требует строительства все более мощных электростанций вне зависимости от того, какие это станции: атомные, термоядерные, тепловые или гидроэлектростанции.

Мощности строящихся или уже построенных электростанций исчисляются миллиардами ватт.

Электростанции вырабатывают энергию, разумеется, не для собственных нужд. Необходимо эту энергию передать потребителям, расположенным зачастую на больших расстояниях от места ее производства.

Здесь вступает в действие хорошо знакомый нам со школьной скамьи закон Ома. Чем длиннее линия передачи, тем больше ее электрическое сопротивление, а следовательно, тем большая часть выработанной энергии рассеивается, переходит в тепло и не доходит до потребителя.

Значительная часть электрической энергии передается сейчас с помощью воздушных высоковольтных линий. С растущей потребностью в энергии возникает необходимость строительства и новых энергетических сетей. Однако, по крайней мере в густо населенных промышленных районах, уже становится практически невозможным прокладывать все новые воздушные линии.

…Если вы, гуляя за городом, будете проходить мимо воздушной линии электропередачи, то убедитесь, насколько она портит окружающий ландшафт. А сколько урожая недодает нам земля из‑за невозможности ее продуктивного использования вблизи высоковольтных трасс, сосчитать трудно!

Казалось, сама природа борется с нарушением ее гармонии. Нередки случаи, когда при обрыве проводов воздушных линий электропередачи в результате бурь и ураганов или их обледенения при сильных морозах селения или даже целые города на длительное время остаются без электроэнергии.

Уже сегодня часть электроэнергии передается по подземным кабелям.

Мысль об использовании для этой цели сверхпроводящих кабелей является весьма заманчивой.

Казалось, проводник без омического сопротивления является идеальным средством для передачи электрической энергии. Но здесь еще в большей степени, чем для сверхпроводящих магнитов, имеет значение экономическая целесообразность. Одно дело – охлаждать до гелиевых температур аппарат, имеющий ограниченный объем, другое дело – поддерживать при температуре вблизи абсолютного нуля линии протяженностью в десятки и сотни километров. При этом через каждые несколько километров необходимо устанавливать станции охлаждения, обеспечивающие непрерывную циркуляцию жидкого гелия, и гарантировать надежность их работы.

Насколько же сверхпроводящий кабель с неотъемлемой от него достаточно сложной системой охлаждения с помощью жидкого гелия является экономичным? Над этими проблемами усиленно работают во многих научно – исследовательских институтах и лабораториях мира.

По мнению советских специалистов, сверхпроводящий кабель, охлаждаемый жидким гелием, целесообразно применять для передачи электрической энергии большой мощности, начиная от двух – трех миллиардов ватт.

Несравненно более широкие перспективы откроются, когда инженеры освоят изготовление сверхпроводящих кабелей, охлаждаемых жидким азотом. Такие кабели способны заменить воздушные линии электропередач.

График суточного потребления энергии похож на рельеф сильно пересеченной местности, где высокие холмы перемежаются глубокими оврагами. Так, например, зимой пик мощности приходится на 6–7 часов вечера, а в 2–3 часа ночи потребление электрической энергии становится мизерным.

Чтобы выпрямить график суточного потребления электрической энергии, всем людям пришлось бы не спать, а предприятиям и учреждениям работать круглосуточно.

Но стоит ли превращать ночь в день, даже в угоду энергетикам?

А что, если при электростанции построить «склад» электрической энергии, подобно тому как существуют склады готовой продукции на промышленном предприятии?

Ночью склад будет пополняться избытком электрической энергии, а днем потребители смогут получать электроэнергию со склада.

Предложено несколько проектов «складов», или, как их называют, накопителей электрической энергии. Пожалуй, наиболее перспективным из них является проект, основанный на использовании сверхпроводимости., Действительно, сверхпроводящее кольцо, по которому месяцы и годы непрерывно течет незатухающий электрический ток, чем не идеальное хранилище электрической энергии?

Сверхпроводящий индуктивный накопитель электрической энергии представляет собой, по сути, трансформатор, первичная обмотка которого выполнена из нормального, то есть не сверхпроводящего, провода. Вторичная, сверхпроводящая, обмотка такого трансформатора имеет вид гигантского «бублика» диаметром в несколько сот метров.

Постоянный ток, поступающий в первичную обмотку периодически (циклически), прерывается. В результате в сверхпроводящей обмотке индуцируется незатухающий электрический ток.

Подсчитано, что экономически выгодным может быть индуктивный накопитель с запасом энергии не менее 27 миллиардов ватт – часов.

Эксплуатация такого накопителя требует особо тщательных предосторожностей.

Склад электрической энергии. Проект сверхпроводящего накопителя электрической энергии, разработанный учеными Висконсинского университета (США). Эта установка содержит сообщающиеся каналы (1), в которых находятся сверхпроводники. В них из холодильного устройства (2) накачивается жидкий гелий.

Если обмотка вдруг перейдет из сверхпроводящего в обычное состояние, то циркулирующий в ней ток, силой в сотни тысяч ампер, моментально испарит и ее и всю установку. Это эквивалентно взрыву небольшой атомной бомбы.

Такие установки должны быть расположены глубоко под землей, вдали от городов.

Однако расходы на построение сверхпроводящих накопителей должны окупиться с лихвой.

Американские специалисты подсчитали, что двадцать подобных накопителей дадут возможность уменьшить капиталовложения в развитие энергетики США на 45 миллиардов долларов.

Резервуар для охлаждения катушки сверхпроводящего накопителя с запасом энергии 27 миллиардов ватт – часов по расчетам должен содержать 600 тысяч кубических метров, то есть, по сути, небольшое озеро жидкого газа.

В одном из проектов сверхпроводящего индуктивного накопителя электрической энергии такое «озеро» предлагается наполнять жидким водородом.

Но почему водородом? Ведь высокотемпературные керамические сверхпроводники можно охлаждать даже жидким азотом.

Водород сам по себе является источником энергии. Это прекрасное топливо для котлов электростанций, двигателей автомашин, тепловозов и самолетов.

Чтобы заменить органическое топливо водородом, его необходимо вырабатывать в больших количествах из морской воды. Предполагается, что это будет осуществляться на атомных, а позже на термоядерных станциях.

Тогда сверхпроводящий накопитель электрической энергии будет одновременно служить складом идеального горючего. Отсюда жидкий водород будет направляться потребителям, «по дороге» охлаждая сверхпроводящие кабели, несущие электрическую энергию.

Развитой промышленности требуются электродвигатели все большей мощности. Увеличивается мощность электрических машин – повышается их сложность, увеличиваются габариты, которые в конце концов превышают разумные пределы. Такие машины становятся, в частности, нетранспортабельными. Для электродвигателей постоянного тока предел мощности в общепринятом конструкторском решении составляет 10 миллионов ватт.

Практически перешагнуть этот барьер можно только при использовании сверхпроводимости.

Сверхпроводящая машина постоянного тока имеет неподвижный индуктор с обмотками возбуждения и вращающийся якорь.

Сверхпроводящие обмотки возбуждения располагаются в неподвижном криостате. В его центральном отверстии вращается «теплый» обычный якорь.

Плотность тока в обмотке сверхпроводящей машины может достигать 1000 ампер на квадратный миллиметр. При таком токе возбуждается достаточно сильное магнитное поле без помощи железа и отпадает надобность в ферромагнитном сердечнике.

Если учесть, что в обычных электрических машинах основную массу составляет железо, то нетрудно себе представить, насколько уменьшаются габариты и масса сверхпроводящей машины. Многие детали машины могут быть изготовлены из… пластмассы.

Малая инерционность и хорошая регулируемость сверхпроводящего электродвигателя постоянного тока создают хорошие перспективы для его применения в качестве привода прокатных станов, больших насосов и вентиляторов на электростанциях, шахтных подъемников и в ряде других отраслей промышленности.

Особенно перспективным является применение сверхпроводящих электрических машин в морском транспорте.

При проектировании электрического привода для кораблей редко удавалось преодолеть трудности, связанные с габаритами и стоимостью. На современных судах мощность на валу нередко превышает 30 миллионов ватт, что намного превосходит возможности обычных двигателей постоянного тока.

Сверхпроводящие машины постоянного тока обладают достаточной мощностью для непосредственного привода винта, а также для приведения в действие всех вспомогательных установок корабля, нуждающихся в электрическом питании. Подсчитано, что применение на танкерах и контейнеровозах сверхпроводящих электродвигателей даст возможность увеличить пространство, занимаемое грузом, на 10–20 %.

А знаете ли вы, что такое магнитогидродинамический генератор, или сокращенно МГД – генератор?

Уже его внешний вид ломает традиционное представление об электрических машинах. В нем нет вращающихся частей.

Принцип действия МГД – генератора заключается вкратце в следующем. Газ нагревается, например, путем сжигания какого‑либо горючего до температуры порядка 3000К. Для повышения степени ионизации в газ добавляется небольшое количество щелочных металлов. В результате газ становится электропроводным: он превращается в так называемую низкотемпературную плазму.

Поток такой плазмы пропускается с большой скоростью через канал, помещенный в сильное магнитное поле, которое может создаваться, например, сверхпроводящими магнитами. При этом отклоняемые магнитным полем ионы и электроны создают на специально введенных электродах электрическое напряжение.

Плазма покидает МГД – генератор при относительно высокой температуре. Следовательно, она уносит с собой часть тепла. Для его использования плазма после выхода из канала МГД – генератора попадает в парогенератор, где ее достаточно высокий запас тепла расходуется для получения пара.

Таким образом, плазма работает как бы дважды: в канале МГД – генератора из нее непосредственно извлекают электрическую энергию, а затем, несколько охладившись и превратившись в обычный неэлектропроводный газ, она отдает оставшееся тепло пару, который вращает турбину и сидящий с ней на валу электрический генератор.

У нас в стране сооружается первый промышленный гидродинамический энергетический блок мощностью 550 миллионов ватт. Он состоит из МГД – генератора мощностью 250 миллионов ватт и стандартной паровой турбины мощностью 300 миллионов ватт.

Главное преимущество МГД – метода преобразования энергии – высокий коэффициент полезного действия. По расчетам специалистов, относительное увеличение коэффициента полезного действия МГД – электростанции по сравнению с тепловой может составить около 25 %.

При сегодняшнем уровне выработки электроэнергии увеличение коэффициента полезного действия тепловых электростанций на такую величину сэкономило бы в нашей стране 75 миллионов тонн топлива (в пересчете на условное) в год или позволило при том же расходе выработать дополнительно 250 миллиардов киловатт – часов энергии.

МГД – генераторы со сверхпроводящими магнитами отличаются относительно малой массой. Поэтому их особенно разумно использовать в авиации или при космических полетах.

Читатель, наверное, помнит «гроб Магомета», о котором шла речь в главе четвертой. Такое шутливое название получил проведенный в 1945 году эффектный эксперимент московского профессора с небольшим постоянным магнитом, который парил над сверхпроводящей чашей.

Теперь мы в силах заставить парить в воздухе не только «гроб Магомета», но целый железнодорожный состав.

…В наш век больших скоростей тон задают космические ракеты и сверхзвуковые самолеты. Но и «старушка» железная дорога старается не отставать от требований века. Ведь и сегодня большая часть людей и грузов перевозится железнодорожным транспортом.

Люди старшего поколения помнят время, когда поезд преодолевал расстояние от Москвы до Ленинграда чуть ли не за сутки. Сегодня поезд, отправляющийся из Москвы поздно вечером, прибывает в город на Неве рано утром.

Можно ли увеличивать скорость обычного поезда беспредельно?

С повышением скорости увеличиваются вибрации, обусловленные неровностями пути и колес. При чрезвычайно большой скорости горизонтальные вибрации (рыскание) становятся столь большими, что они могут привести к катастрофе. При чрезмерной скорости вследствие больших вибраций нарушается нормальное функционирование системы подвески контактного провода.

Специалисты считают, что предельная скорость обычного железнодорожного состава не должна превышать 250 километров в час.

Сегодня мы уже подходим к этому пределу. Для того чтобы его перешагнуть, надо оторвать поезд от поверхности земли. А это возможно только с помощью магнитного подвеса, или, как его часто называют, магнитной подушки.

Представьте себе поезд, снабженный рядом сверхпроводящих магнитов, расположенных у основания вагонов. Необычный вид имеет и железнодорожное полотно. Оно содержит множество последовательно расположенных петель из хорошего проводника, например из алюминия.

Когда поезд стоит на месте, не возникает никакого взаимодействия между постоянными магнитами, расположенными в поезде, и железнодорожным полотном. Поезд необходимо сначала привести в движение и сообщить ему определенную скорость.

В этом смысле поезд на магнитной подушке можно уподобить самолету. Для того чтобы воздушный лайнер мог оторваться от земли, ему надо дать разгон, то есть он должен пробежать определенное расстояние на колесах по земле, как и обычное средство наземного транспорта. Очевидно, по этой аналогии поезд на магнитной подушке называется магнитопланом.

При движении сверхпроводящих магнитов вместе с поездом в проводящих петлях железнодорожного полотна возбуждаются вихревые токи, которые по правилу Ленца создают магнитное поле, направленное навстречу вызвавшему их полю сверхпроводящих магнитов поезда. Это поле создает силу отталкивания, или подъемную силу, и поезд отрывается от земли.

Какая же сила заставляет его устремиться вперед с немыслимой ранее скоростью?

На первый взгляд может показаться логичным использовать с этой целью реактивный двигатель, как в современных самолетах. Но эти двигатели слишком шумные, и, кроме того, они вызывают загрязнение окружающей среды.

Значит, электрический двигатель?

Как известно, любой электродвигатель состоит из двух основных частей: неподвижной – статора и подвижной – ротора. Мы привыкли к тому, что обе части составляют единое целое.

Иное дело линейный электродвигатель магнитоплана. Он как бы состоит из двух самостоятельных, пространственно разделенных частей. Статор находится на земле, а ротор в «парящем» над землей поезде. В статоре возбуждается электромагнитная волна, которая увлекает за собой магнитоплан.

Магниты выполняют двойную функцию: как средство подвеса и средство тяги. При этом отпадает необходимость подводить электрическую энергию к движущемуся поезду извне с помощью контактного провода, что, как читатель уже знает, является одной из причин, ограничивающей скорость движения обычного поезда.

По сообщениям иностранной прессы, в Японии создан магнитоплан Малев (магнитная «левитация»), развивающий скорость 517 километров в час.

Примерно на таком же принципе, как магнитоплан, основан разработанный в Японии проект магнитного судна.

Представьте себе сверхпроводящий магнит, установленный на борту корабля, создающий мощное магнитное поле. С помощью электродов, установленных под дном судна, соединенных с бортовым источником электричества, через воду пропускается электрический ток. Электромагнитное поле, порождаемое током, отталкивается от поля магнита, и судно отрывается от поверхности воды.

Действующая модель магнитного судна разработана в Университете торгового флота в Кобе. Японские специалисты надеются построить 100–тонное магнитосудно уже в ближайшие годы.

Другой проект сверхскоростного судна с использованием эффекта сверхпроводимости утвержден Японской ассоциацией содействия судостроению. В начале 90–х годов предполагается отправить в морское плавание экспериментальное судно «Ямо– то-1» водоизмещением 150 тонн. Два движителя, установленные в днище этого корабля, будут забирать морскую воду и с силой выталкивать ее, используя мощное магнитное поле, возбуждаемое сверхпроводящими магнитами.

Один из научно – фантастических рассказов Г. Уэллса называется «Новейший ускоритель». Однако вряд ли писатель мог предполагать, что пройдет несколько десятилетий и термин «ускоритель» прочно утвердится в науке и технике.

В современной технике под названием «ускоритель» подразумевается ускоритель заряженных частиц – установка для получения пучков электронов, протонов и других заряженных частиц с большой энергией, являющаяся незаменимым аппаратом для различного рода исследований в ядерной физике, физике элементарных частиц, получения новых, так называемых трансурановых элементов и т; п.

Ускорители заряженных частиц находят применение и в технике: в металлургии для выявления дефектов в толстых металлических изделиях, в пищевой промышленности для стерилизации пищевых продуктов, в медицине для глубинной терапии злокачественных опухолей.

Современные мощные ускорители заряженных частиц – это крупные инженерные сооружения, основанные на последних достижениях науки и техники. По действующим ускорителям сейчас нередко судят об уровне развития техники в той или иной стране.

Для защиты окружающей среды от излучений, возникающих в процессе работы мощного ускорителя, его обычно помещают глубоко под землей.


    Ваша оценка произведения:

Популярные книги за неделю