Текст книги "Кентерберийские головоломки"
Автор книги: Генри Эрнест Дьюдени
Жанры:
Математика
,сообщить о нарушении
Текущая страница: 16 (всего у книги 16 страниц)
Вариант, который я привел здесь на рисунке, довольно удивителен в том отношении, что содержит длинные участки параллельных прямых, образованных ходами.
163. Имеется ряд интересных моментов, связанных с этой задачей. Прежде всего если на положение двух концов пути не накладывается никаких условий, то совершенно невозможно составить такой путь, если только мы не будем начинать и заканчивать его в верхнем и нижнем рядах конур. Мы можем начинать в верхнем ряду, а заканчивать в нижнем (или, разумеется, наоборот), или же мы можем начинать в одном из этих рядов и заканчивать в нем же. Но мы не можем начинать или заканчивать путь в одном из двух центральных рядов. Однако начало и конец пути фиксированы условиями задачи. И все же первая половина нашего пути должна целиком ограничиваться теми клетками, которые на рисунке отмечены кружками, тогда как вторая половина пути должна, следовательно, ограничиваться клетками без кружков. Можно заметить, что клетки, обведенные для двух полупутей, расположены симметрично.
Следующий момент состоит в том, что первый полупуть должен заканчиваться в одном из центральных рядов, а второй полупуть обязан начинаться в одном из этих рядов. Теперь это очевидно, поскольку полупути должны быть связаны друг с другом, дабы образовать целый путь, а каждая клетка внешнего ряда связана ходом коня лишь с квадратами своего типа (то есть либо с кружками, либо без кружков). Следовательно, полупути могут соединиться лишь в двух центральных рядах.
Далее, существует ровно 8 различных первых полупутей и соответственно столько же вторых полупутей. Можно заметить, что из них удается составить 12 полных путей, а это и есть число различных правильных решений нашей головоломки. Я не собираюсь их здесь полностью перечислять, однако приведу ответ в такой форме, чтобы читатель сам без труда смог их все найти. Следующие числа соответствуют клеткам рисунка с теми же номерами.
Восемь первых полупутей – это от 1до 6(2 пути); от 1до 8(1 путь); от 1до 10(3 пути); от 1до 12(1 путь) и от 1до 14(1 путь). Восемь вторых полупутей: от 7до 20(1 путь); от 9до 20(1 путь); от 11до 20(3 пути); от 13до 20(1 путь) и от 15до 20(2 пути). Каждый новый способ, каким вы сумеете связать один полупуть с другим, даст новое решение задачи. Можно определить, что эти связи таковы: с 6на 13(2 случая); с 10на 13(3 случая); с 8на 11(3 случая); с 8на 15(2 случая); с 12на 9(1 случай) и с 14на 7(1 случай). Следовательно, существует 12 различных способов соединения и соответственно 12 различных решений нашей головоломки. Можно показать, что путь, приведенный на рисунке в условии задачи, состоит из одного из трех полупутей, идущих от 1до 10,и полупути от 13до 20.Стоит отметить, что 10 решений порождены пятью различными путями и их обращениями; другими словами, если вы отметите на рисунке эти 5 путей линиями, а затем перевернете рисунок вверх ногами, то получите 5 новых путей. Остальные два решения симметричны (в этих случаях 12связано с 9, а 14– с 7), и, следовательно, не порождают новых решений с помощью поворотов.
164. Изящное симметричное решение этой головоломки показано на рисунке. Каждый из четырех кенгуру совершает свою небольшую экскурсию и возвращается в свой угол, ни разу не прыгнув в клетку, посещавшуюся другим кенгуру, и не пересекая центральной прямой.
Читателю сразу же придет в голову возможность улучшить головоломку, разделив квадрат вертикальной прямой и потребовав, чтобы кенгуру не пересекали также и ее. Это означало бы, что каждый кенгуру ограничен квадратом 4×4, но это невозможно, как я покажу в решении следующих двух головоломок.
165. Пытаясь решить эту задачу, сначала необходимо взять два различных отсека соответственно из 20 и 12 клеток и проанализировать, где могут находиться здесь места входа и выхода. В случае большего отсека можно определить, что, желая совершить на нем полное турне, мы должны начать и закончить на двух внешних клетках длинных сторон. Но, хотя вы можете начинать на любой из этих 10 клеток, выбор конечной клетки ограничен, либо (что то же самое) вы можете заканчивать, где угодно, но тогда обязаны начинать путь на некоторых определенных клетках. В случае меньшего отсека вам придется начинать и заканчивать на одной из шести клеток, принадлежащих узким концам, а остальные ограничения такие же, как и в предыдущем случае. Небольшое размышление покажет, что в случае двух малых отсеков вы должны начинать и заканчивать в прилегающих друг к другу концах, а отсюда следует, что и в больших отсеках турне должно начинаться и заканчиваться на прилегающих сторонах.
На рисунке, где показано одно из решений, можно заметить 8 мест, в которых мы можем начинать это конкретное турне; но в каждом случае существует лишь один путь, ибо мы должны закончить визиты в том отсеке, где находимся, прежде чем перейти в другой. Мы обнаружим, что в клетках, отмеченных звездочками, должны располагаться точки входа или выхода, но соображения, связанные с поворотами, наводят нас на мысль сделать другие соединения в местах, отмеченных либо ромбиками, либо кружочками. В решении, приведенном на рисунке, выбраны ромбики, но встречаются другие решения, где вместо них используются кружочки. Я думаю, что эти замечания поясняют все существенные моменты данной головоломки, которая весьма интересна и поучительна.
166.На рисунке показано, как шахматную доску можно разделить на 4 части одинаковых размеров и формы, чтобы на каждой из них можно было совершить турне конем.
Для каждого коня существуют только один путь и его обращения.
167.Если бы читатель вырезал приведенную здесь диаграмму, сложил ее в форме куба и склеил с помощью полосок вдоль ребер, у него получилась бы довольно любопытная вещица.
Ее можно выполнить в большем масштабе. Если мы представим себе, что на каждой грани куба расположена шахматная доска, то, как удается показать, мы можем начать в любой из 384 клеточек и совершить полное турне по кубу, вернувшись в конце в исходную точку. Метод перехода с одной грани на другую понять легко, но трудность, разумеется, состоит в том, чтобы определить нужные точки входа и выхода на каждой доске, порядок, в котором следует брать различные доски, и найти расположения, удовлетворяющие требуемым условиям.
168. Наименьшее возможное число ходов, считая каждый ход по отдельности, равно 16. Но головоломку можно решить за 7 перемещений, если действовать следующим образом (любое число последовательных ходов одной лягушки считается одним перемещением). Все ходы, содержащиеся в одних скобках, образуют одно перемещение: (1–5), (3–7, 7–1), (8–4, 4–3, 3–7), (6–2, 2–8, 8–4, 4–3), (5–6, 6–2, 2–8), (1–5, 5–6), (7–1).
Это хорошо известная старая головоломка Гуарини, предложенная в 1512 г., и я привел ее здесь, дабы объяснить мой метод «пуговиц и веревочек» для решения этого класса задач с передвигающимися шашками. В случае Апоказана старая форма головоломки Гуарини, где требуется поменять местами черных коней с белыми. В задаче о «четырех лягушках» возможные направления ходов показаны прямыми линиями, дабы избавиться от необходимости объяснять неискушенным читателям природу ходов коня на шахматной доске. Но сразу же ясно, что две задачи эквивалентны. Центральной клеткой, разумеется, можно пренебречь, поскольку ни один конь не сможет в нее попасть. Теперь будем рассматривать грибки как пуговицы, а соединяющие их прямые как веревочки (см. случай Б).Тогда, расцепив веревочки, мы представим диаграмму в форме, показанной в случае В, где связи между пуговицами такие же, как и в случае Б,любое решение Вприложимо к Би А.Поставьте ваших белых коней на 1и 3,а ваших черных – на 6и 8в диаграмме В,и простота решения станет совершенно очевидной. Вам нужно просто передвинуть коней по кругу в одном или в другом направлении. Сделайте приведенные выше ходы, я вы увидите, что не осталось ни малейших затруднений.
В случае Г я привел другую известную головоломку, впервые появившуюся в книге «Маленькие приключения Жерома Шарпа», изданной в Брюсселе в 1789 г. Поместите 7 шашек на 7 из 8 кружков следующим образом. Вы должны всегда ставить шашку на свободный кружок, а затем оттуда передвигать ее вдоль прямой, ведущей из этого кружка, в следующее свободное место (в любом направлении), где и оставлять шашку. Продолжайте действовать таким образом, пока все шашки не будут размещены. Помните, что вы ставите шашку на свободный кружок, а затем передвигаете ее на другой кружок, который тоже должен оказаться свободным. Теперь с помощью метода «пуговиц и веревочек» мы можем преобразовать нашу диаграмму, как в случае Д,после чего решение становится очевидным, «Всегда ходите накружок, скоторого вы передвигали шашку на предыдущем ходу». Это, конечно, не единственный способ, но простейшее решение, которое приходит на ум.
Существует несколько головоломок в этой книге, при решении которых данный метод может оказаться полезным.
169. Наиболее трудное место, которое должен выяснить для себя читатель, приступая к данной головоломке, состоит в том, чтобы решить, являются ли заштрихованные шашки (те, что находятся на правильных местах) просто «пустышками», не имеющими существенного отношения к делу. Из ста человек девяносто девять придут к выводу, что совершенно бесполезно передвигать какую-то из этих шашек, но здесь-то они и окажутся не правы.
Наикратчайшее решение в случае, если не передвигать заштрихованные шашки, состоит из 32 ходов. Однако головоломку удается решить всего за 30 ходов. Трюк состоит в том, чтобы передвинуть 6(или 15)на втором ходу и вернуть ее на место на девятнадцатом. Полное решение таково: 2, 6, 13, 4, 1, 21, 4, 1, 10, 2, 21, 10, 2, 5, 22, 16, 1, 13, 6, 19, 11,2, 5, 22, 16, 5, 13, 4, 10, 21.Всего 30 ходов.
170. Существует 80 различных расположений, образующих правильный путь коня, но только 40 из них можно достичь без того, чтобы два человека одновременно оказывались в одной камере. Наибольшее число людей, не участвующих в перемещениях, равно 2, и хотя путь коня можно устроить таким образом, чтобы оставить в исходных положениях 7 и 13, 8и 13, 5и 7или 5и 13,следующие четыре расположения, где неподвижными остаются 7 и 13– единственные, которых можно достичь при заданных условиях. Следовательно, нужно найти наименьшее число ходов, приводящее к одному из этих расположений. Это, разумеется, не легко сделать, и нельзя предложить никаких четких правил, приводящих к нужному ответу. Во многом здесь дело сводится к личному мнению, терпеливому экспериментированию и острому глазу по отношению к расположению и поворотам!
Кстати сказать, расположения Вможно добиться за 66 ходов, действуя следующим образом: 12, 11, 15, 12, 11, 8, 4, 3, 2, 6, 5, 1, 6, 5, 10, 15, 8, 4, 3, 2, 5, 10, 15, 8, 4, 3, 2, 5, 10, 15, 8, 4, 12, 11, 3, 2, 5, 10, 15, 6, 1, 8, 4, 9, 8, 1, 6, 4, 9, 12, 2, 5, 10, 15, 4, 9, 12, 2, 5, 3, 11, 14, 2, 5, 14, 11 = 66 ходов. Хотя это самое короткое решение, которое мне удалось найти, и я думаю, что более короткого не существует, я не могу это утверждать со всей определенностью. Наиболее привлекательным выглядит, конечно, расположение A, но вещи не таковы, какими кажутся, и достигнуть Воказывается легче всего.
Если бы можно было оставить свободной левую нижнюю камеру, то подошло бы следующее решение в 45 ходов, принадлежащее Р. Эрлику: 15, 11, 10, 9, 13, 14, 11, 10, 7, 8, 4, 3, 8, 6, 9, 7, 12, 4, 6, 9, 5, 13, 7, 5, 13. 1, 2, 13, 5, 7, 1, 2, 13, 8, 3, 6, 9, 12, 7, 11, 14, 1, 11, 14, 1.Но при этом передвигается каждый человек.
171. Сначала следует остановить свой выбор на наиболее обещающем пути коня, а затем попытаться достичь данного расположения за наименьшее число ходов. Я твердо держусь того мнения, что наилучшим будет расположение, представленное на рисунке, где, как можно заметить, каждое последующее число получается из предыдущего ходом коня, а пять собак (1, 5, 10, 15и 20)никогда не покидают свои первоначальные конуры.
К этому расположению можно прийти за 46 ходов: 16–21, 16–22, 16–23, 17–16, 12–17, 12–22, 12–21, 7 – 12, 7 – 17, 7 – 22, 11–12, 11–17, 2–7, 2 – 12, 6 – 11, 8–7, 8–6, 13 – 8, 18–13, 11–18, 2 – 17, 18–12, 18 – 7, 18 – 2, 13 – 7, 3–8, 3 – 13, 4–3, 4–8, 9–4, 9–3, 14 – 9, 14 – 4, 19–14, 19 – 9, 3 – 14, 3 – 19, 6 – 12, 6 – 13, 6 – 14, 17–11, 12–16, 2 – 12, 7 – 17, 11–13, 16–18 = 46 ходов. Я, конечно, не могу категорически утверждать, что не существует решения с меньшим числом ходов, но думаю, что отыскать такое решение будет чрезвычайно трудно.
172.Назовем одну пешку А, а другую В. Далее, учитывая, что первый ход можно делать на одну или две клетки, мы получаем, что каждая пешка достигает восьмой клетки за 5 или 6 своих ходов. Следовательно, нужно рассмотреть четыре случая: (1) А и В делают по 6 ходов; (2) А делает 6, а В – 5 ходов; (3) А делает 5, а В – 6 ходов; (4) А и В делают по 5 ходов. В случае (1) делается 12 ходов, и мы можем отдать А любые 6 из них. Следовательно, 7×8×9×10×11×12, деленное на 1×2×3×4×5×6, [39]39
12!/6!(12-6)! = C 6 12– Прим. neрев.
[Закрыть]дает нам число комбинаций в этом случае, равное 924«Аналогично в случае (2) 6 ходов из 11 возможных дадут нам 462 варианта, в случае (3) 5 ходов из 11 возможных также дадут 462 варианта, а в случае (4) 5 ходов из 10 возможных дадут 252 комбинации. Складывая эти числа, мы получим 2100, что и является правильным ответом для данной головоломки.
173.Белые пешки можно расположить 40 320 способами, белые ладьи – 2 способами, белых коней – 2 способами и белых слонов – 2 способами. Перемножая эти числа, мы обнаружим, что белые фигуры можно расположить 322 560 различными способами. Черные фигуры можно, разумеется, расположить таким же числом способов. Следовательно, общее число различных расположений равно 322 560×322 560 = 104 044 953600. Но почти все просматривают то обстоятельство, что при каждом расположении саму доску можно поставить 2 способами. Следовательно, ответ нужно удвоить, что даст 208 089 907 200 различных способов.
174.Всего существует 1296 различных прямоугольников, из которых 204 являются квадратами, включая саму доску, а 1092 прямоугольника – не квадраты.
В общем случае доска п X псодержит (n 2+n) 2/4 прямоугольников, из которых (2n 3+ 3 п 2+ п)/6 квадратов и (3n 4+ 2n 3– 3 п 2– 2п)/12 прямоугольников, не являющихся квадратами. Стоит отметить тот любопытный факт, что общее число прямоугольников всегда равно квадрату треугольного числа со стороной п. [40]40
То есть (1 + 2 +… + п)2= [( n( n+1))/2] 2= ( п2 +п) 2/4 – Прим. перев.
[Закрыть]
175. Небольшая тонкость состоит в том, что в конечной позиции перенумерованные ладьи должны располагаться в правильном числовом порядке, но в направлении, противоположном тому, которое было на исходной диаграмме, иначе задача не разрешима. Ходите ладьями в следующем порядке их номеров. Поскольку всегда имеется лишь одна свободная клетка, на которую можно ходить (за исключением последнего хода), то наши обозначения не вызовут недоразумений: 5, 6,7, 5, 6, 4, 3, 6, 4. 7, 5, 4, 7, 3, 6,7, 3, 5, 4, 3, 1, 8, 3, 4,5, 6, 7, 1, 8, 2, 1,ладья берет слона и делает мат. При этом делается наименьшее возможное число ходов, равное 32. Ходы короля черных вынуждены, и нет необходимости их здесь приводить.
176. С. Лойд, Е. Н. Франкенштейн, У. X. Томсон и я независимо друг от друга пришли к одной и той же позиции, поэтому приведенное здесь решение можно считать наилучшим для данной любопытной задачи.
И белым поставлен пат.
Мы приводим на рисунке эту странную итоговую позицию. Легко заметить, что ни одна белая фигура не может ходить.
177. Ходите следующим образом:
Разумеется, под «королевским рядом» понимается горизонталь, на которой король находился первоначально. Хотя если черные будут играть плохо, то могут получить мат за меньшее число ходов. Выше учтены все возможные ходы черных.
178.
Теперь белые дают мат в три хода.
Данная позиция после шестнадцатого хода с матом в три хода впервые была дана С. Лойдом в его книге «Шахматные орешки».
179.
17. Король берет коня, и мы получаем искомую позицию.
Черные в точности повторяют ходы белых, поэтому выше приведены лишь ходы последних. В партии число ходов (17) наименьшее возможное.
180. Расположите 8 оставшихся белых фигур следующим образом: Кр на f4, Ф – b6, Л – dé, Л – g7, С – d5, С – h8, К – а5 и К на с5. При этом можно получить следующее количество матов:
Открывая Ф – 8
Открывая Л на d6 – 13
Открывая С на h8 – 11
Слоном на а5 – 2
Пешками – 2
Итого: 36
Возможно ли придумать позицию, при которой за один ход можно было бы дать более 36 различных матов? Насколько мне известно, никому еще не удалось превзойти мое решение.
181.Мистер Блэк оставил своего короля на клетке g2, и, какую бы фигуру Уайт ни выбрал вместо своей пешки, ему не удастся поставить Блэку мат. Как мы уже сказали, черный король не обращает внимания на шахи и никогда не двигается с места. Уайт может, проведя пешку на восьмую горизонталь, заменить ее ферзем, взять черную ладью и атаковать тремя своими фигурами, но мат совершенно невозможен. На любой другой клетке мат для черного короля оказался бы возможным. Сэм Лойд первым указал на ту странную особенность, на которой основана данная головоломка.
182. Переместите белую пешку с f6 на е4 и поставьте черную пешку на f7. Теперь белые ходят пешкой на е5, шах, и черные должны ходить пешкой на f5. Тогда белые ходят пешкой, берут, проходя,пешку, шах и мат. Следовательно, белые сделали ход последними и привели к данной позиции. Это единственное возможное решение.
183. Если вы расположите фигуры так, как показано на рисунке (где изображен только нужный участок доски), то черному королю будет сделан шах, а ходить ему некуда. Читатель видит теперь, почему я избегал термина «мат».
Помимо того, что отсутствует белый король, данная позиция невозможна в реальной шахматной игре, ибо белые не могут сделать черным шах двумя ладьями одновременно, а черный король также на последнем шаге не может занять позицию под шахом.
Я полагаю, что эта позиция была впервые опубликована Сэмом Лойдом.
184. Ходите следующим образом:
1. Л cб – d6 2. Кр b6 – a7 3. Л a6 – c6 (мат).
Черные делают вынужденные ходы, которые не нужно указывать.
185. Общая формула для шести пешек на квадратных досках больших 2 X 2 такова: ушестеренный квадрат числа сочетаний из ппредметов по 3, где п– число клеток на одной стороне доски. Разумеется, если пчетно, то и число незанятых клеток в одном ряду должно быть четным, а если п– нечетно, то и число незанятых клеток обязано быть нечетным. В нашем случае п= 8, так что ответ равен 18 816. Это иная форма уже знаков мой головоломки 27. Я повторяю ее здесь, чтобы объяснить метод решения, доступный новичку. Прежде всего очевидно, что если мы поставим пешку на любую прямую, то должны поставить на эту же прямую еще одну пешку, дабы число пустующих клеток оказалось четным. Мы не можем поставить в одной горизонтали 4 или 6 пешек, ибо в соответствующих вертикалях не удалось бы тогда обеспечить четное число пустующих клеток. Следовательно, мы должны поставить по две пешки в каждую из трех горизонталей и в каждую из трех вертикалей. Далее, при этих условиях существует всего 6 схем расположения, указанных на рисунке.
Я только упомяну, что А и Г – единственные два существенно различных расположения, поскольку если вы повернете Ана четверть оборота, то получите В,а если вы станете поворачивать Гна четверть оборота по часовой стрелке, то получите последовательно Д, Еи Ж.Неважно, как вы располагаете свои пешки; если удовлетворяются условия головоломки, то вы обязательно получите одно из этих расположений. Разумеется, мы понимаем, что простое расширение не нарушает существенно характера этих расположений. Так, Бесть всего лишь расширенная форма А.Решение, следовательно, состоит в отыскании числа таких расширений. Предположим, что мы ограничились первыми тремя горизонталями, как в случае Б;тогда, поместив пары аи bна первых двух вертикалях, мы можем пару срасположить на любой из шести остальных вертикалей, что даст 6 решений. Теперь сдвинем пару bна третью вертикаль; тогда для пары состанется 5 возможных положений. Сдвинув bна четвертую вертикаль, мы оставим для с4 возможности и так далее до тех пор (где апо-прежнему находится на первой вертикали), пока мы не сдвинем bна седьмую вертикаль, оставив для сединственное место на восьмой вертикали. Затем мы можем поместить ана второй, bна третьей, а с пачетвертой вертикали и, сдвигая, как и прежде, си b,находить серии новых решений.
Таким образом, мы получаем, что, пользуясь лишь схемой Аи ограничивая себя только тремя верхними горизонталями, мы получаем столько ответов, сколько есть сочетании из 8 предметов по 3, то есть (8×7×6)/(1×2×3) = 56. Читатель сразу же догадается, что если можно 56 способами выбрать вертикали, то ровно столькими же способами в каждом из этих случаев можно выбрать горизонтали, ибо мы можем сдвигать пару сверху вниз точно так же, как и слева направо. Следовательно, общее число способов, подчиняющихся схеме А,равно 56×56 = 3136. Но, как мы уже видели ранее, существует 6 различных схем. Поэтому ответ равен 3136 X 6 = 18 816, как я и утверждал.
186.Ходите следующим образом: 3 – 11, 9 – 10, 1–2, 7 – 15, 8 – 16, 8–7, 5 – 13, 1–4, 8–5, 6 – 14, 3–8, 6–3, 6 – 12, 1–6, 1–9,и все шашки оказываются удаленными, за исключением /, что и требовалось в условиях задачи.
187.Ходите следующим образом: 7 – 15, 8 – 16, 8–7, 2 – 10, 1–9, 1–2, 5 – 13, 3–4, 6–3, 11 – 1, 14 – 8, 6 – 12, 5–6, 5 – 11, 31–23, 32–24, 32–31, 26–18, 25–17, 25–26, 22–32, 14–22, 29–21, 14–29, 27–28, 30–27, 25–14, 30–20, 25–30, 25 – 5. Две оставшиеся шашки – это 25 и 19; обе они принадлежат к одной группе, как и требовалось, причем 19 ни разу не сдвигается со своего исходного положения.
Я думаю, что невозможно придумать решение, где бы в конце игры на доске осталась только одна шашка.
188.
И получилась нужная позиция.
Порядок ходов не важен и может сильно меняться. Однако, несмотря на многочисленные попытки, число ходов уменьшить не удалось.