355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Генри Эрнест Дьюдени » Кентерберийские головоломки » Текст книги (страница 14)
Кентерберийские головоломки
  • Текст добавлен: 5 октября 2016, 20:49

Текст книги "Кентерберийские головоломки"


Автор книги: Генри Эрнест Дьюдени



сообщить о нарушении

Текущая страница: 14 (всего у книги 16 страниц)

84.Если бы не требовалось, чтобы все квадраты были одинаковых размеров, то ковер можно было бы разрезать на четыре части любым из трех способов, показанных на рисунке. В каждом случае две части, отмеченные буквой А,если их сложить вместе, образуют один из трех квадратов, два другие квадрата состоят из одной части. Но для того, чтобы получить квадраты одинаковых размеров, нам придется разрезать ковер на 6 частей, как показано ад большем рисунке. Часть 1сама является квадратом, из частей 4и 5можно сложить следующий квадрат, а из частей 2, 3и 6– третий, все одинакового размера.


Если из этих трех квадратов сложить прямоугольник IDBA,то среднее пропорциональное двух сторон прямоугольника равно стороне равновеликого квадрата. Продолжите ABдо С, сделав ВСравным BD,Затем поместите ножку циркуля в точку Е(середина АС)и опишите дугу АС.Я показываю совершенно общий метод превращения прямоугольника в квадраты, но в данном частном случае мы, конечно, можем сразу же поместить ножку циркуля в точку Е,которую искать не приходится. Продолжим BDдо пересечения с дугой в точке F,и BFокажется искомой стороной квадрата. Далее отметим AGи DH,равные BF,и проведем разрез IG,а также разрез H Киз Я перпендикулярно ID.Шесть искомых частей перенумерованы так же, как и на первом рисунке.


Можно заметить, что я сначала привел здесь обратный метод: разрезал три малых квадрата на шесть частей, из которых можно сложить большой квадрат. В случае нашей головоломки мы можем действовать следующим образом.


Возьмем LMравным половине диагонали ОN.Проведем прямую NMи опустим из Lперпендикуляр на NM.Тогда LPбудет равно стороне всех трех квадратов, сумма площадей которых равна площади большого квадрата QNLO.Читатель сможет теперь без труда вырезать шесть искомых частей, перенумерованных на первом рисунке.

85. Читателю может прийти в голову, что история о медведе на Северном полюсе не имеет никакого отношения к изложенной далее головоломке. На самом деле это не так. Одиннадцать медведей невозможно расположить таким образом, чтобы они образовали семь рядов по четыре медведя в каждом. Но другое дело, когда капитан Лонгбау сообщает нам, что «оказалосьсемь рядов по четыре медведя в каждом».

Ибо если расположить их так, как показано на рисунке, чтобы три медведя оказались на одной прямой с Северным полюсом, то на каждой из семи прямых действительно будет по четыре животных. На решение задачи не влияет, очевидно, тот факт, имеет ли этот седьмой ряд в длину сотню миль или сотню футов, лишь бы он был прямым – обстоятельство, которое капитан, быть может, проверил с помощью своего карманного компаса.

86. Требовалось показать, как житель города Амог бы посетить каждый город ровно по одному разу и закончить свое путешествие в Z. Эта головоломка содержит маленький трюк. После того как читатель докажет, к своему удовлетворению, что головоломка неразрешима при условиях, как он понял их первоначально, ему следует внимательно изучить букву формулировки, дабы найти в ней брешь.


Было сказано: «Это было бы нетрудно сделать, если бы он мог пользоваться не только железными, но и шоссейными дорогами, однако это исключено». Далее, хотя и запрещается пользоваться шоссейными дорогами, но ничего не сказано про море! Если мы вновь внимательно изучим карту, то заметим, что два города расположены на побережье. Достигнув одного из этих городов, он садится на судно, совершающее прибрежное плавание, и прибывает в другой порт. Полный путь показан на рисунке жирной линией. (См. также решение задачи 94.)

87. Решение таково. Вы, конечно, можете принять предложение «попытаться сделать это за 20 шагов», но потерпите неудачу. Наименьшее возможное число шагов 26. Передвигайте вагоны так, чтобы они занимали последовательно следующие положения:


Всего – 26 шагов.

88. Наименьшее возможное число яиц, которое миссис Коуви могла взять с собой на рынок, равно 719. После того как она продала половину этого числа и отдала сверх того пол-яйца, у не оставалось 359 яиц; после второй операции осталось 239 яиц; после третьей – 179, а после четвертой – 143 яйца. Это количество она смогла разделить поровну между своими 13 друзьями, дав каждому из них по 11 яиц. При всех этих операциях она не повредила ни одного яйца.

89. Два слова, дающие решение нашей головоломки, – это BLUEBELL (колокольчик) и PEARTREE (грушевое дерево). Расположите буквы следующим образом: ВЗ – 1, L6 – 8, U5 – 3, Е4 – 6, В7 – 5, Е2 – 4, L9 – 7, L9 – 2. Это означает, что вы берете В, прыгаете с 3 на 1 и выписываете букву В на месте 1 и т. д. Второе слово можно выписать в том же порядке. Решение зависит от выбора слова, у которого вторая буква совпадает с восьмой, а четвертая – с шестой, поскольку эти буквы можно менять местами, не нарушая соответствующее слово. Слово MARITIMA (морская гвоздика) тоже подошло бы, если бы оно было словом английского языка.

90. Вот как следует расположить семь человек.


Разумеется, за круглым столом А будет соседом человека, указанного в конце строки.

Первоначально я сформулировал эту задачу для 6 человек и 10 дней. Разумеется, легко видеть, что максимальное число расположений для пчеловек равна (n – 1) (n – 2)/2. Эрнст Бергольт первым обнаружил сравнительно простой метод решения для всех случаев, где правно простому числу +1. Затем я указал способ построения решения для 10 человек, опираясь на который, Е. Д. Бьюли нашел общий метод для любых четных чисел. Нечетные числа, однако, оказались крайне трудными, и единственными нечетными числами, с которыми удалось справиться, были 7 (приведен выше), 5, 9, 17 и 33, причем четыре последних равны некой степени 2 плюс 1. Наконец, хотя и не без больших трудностей, я нашел некий тонкий метод решения для всех случаев и выписал схемы для всех чисел до 25 включительно. Для случая 11 решение получил также У. Наш, Быть может, читатель испытает свои способности в случае 13. Он обнаружит, что это необычайно крепкий орешек.

91. Существует 12 способов расположения коробок без учета рисунков. Если бы все 13 рисунков были различны, то ответ оказался бы равен 93 312, Но поскольку в некоторых случаях коробки можно переставлять, не меняя расположения рисунков, число способов уменьшается на 1728, и, следовательно, коробки в соответствий с условиями можно расположить 91 584 способами. Я предоставляю моим читателям выяснить самостоятельно, как получаются эти числа.

92. Число способов, которыми можно разместить четырех поросят по 36 свинарникам в соответствии с заданными условиями равно 17, включая приведенный мною пример и не считая новыми расположения, полученные из данных с помощью поворотов и отражений. Яниш в своей книге Analyse Mathйmatique au jeu des Echecs (1862 г.) утверждает, что существует ровно 21 решение небольшой задачи, на которой основана данная головоломка. Поскольку я сам нашел только 17, то я вновь изучил этот вопрос и обнаружил, что он ошибается, несомненно, засчитав решения, полученные с помощью поворотов и отражений, за новые.

Вот 17 ответов. Цифры обозначают горизонтали, а их положение показывает вертикали. Так, например, 104 603 означает, что мы помещаем поросенка в первую строку и первый столбец,никого не помещаем во второйстолбец, помещаем другого поросенка в четвертую строку и третийстолбец, третьего – в шестую строку и четвертыйстолбец, никого – в пятыйстолбец, четвертого поросенка мы помещаем в третью строку и шестойстолбец. Размещение Ея привел, формулируя условия:

A 104 603

В 136 002

С 140502

D 140 520

Е 160 025

F 160304

G 201 405

H 201 605

I 205104

J 206 104

К 241005

L 250014

M 250630

Н 260015

О 261005

С 261040

Q 306 104

Можно заметить, что Ми Qполусимметричны относительно центра и, следовательно, с помощью поворотов и отражений породят лишь по 2 расположения каждое, что Я четвертьсимметрично и породит лишь 4 расположения, тогда как 14 других расположений породят с помощью поворотов и отражений по 8 расположений каждое. Следовательно, поворачивая и отражая данные 17 расположений, мы получим всего (2×2) + (4×1) + (8×14) = 120 способов.

Трех поросят можно поместить так, чтобы каждый свинарник располагался на одной прямой с поросенком при условии, что поросятам не запрещается располагаться на одной прямой с другими; но имеется только один способ сделать это (не считая поворотов и отражений), а именно: 105030.

93. Расположите кубики и знаки умножения следующим образом: 915×64 и 732×80; в обоих случаях произведение окажется равным максимально возможному числу 58 600.

94. Наименьшее возможное число ходов равно 22, то есть И для лис и 11 для гусей. Вот одно из решений головоломки:


Разумеется, читатель должен сделать первый ход, указанный в «числителе» первой «дроби», затем ход, указанный в «знаменателе», затем ход, указанный в числителе второй дроби, и т. д. Я применю здесь мой метод «пуговиц и веревочек». На диаграмме Аданная головоломка представлена на куске шахматной доски с шестью конями.


Сравнение с рисунком из условия показывает, что там я избавил себя от необходимости объяснять неискушенному читателю, как ходит шахматный конь, проведя прямые, показывающие эти ходы. Так что эти две головоломки практически одно и то же, но в разных одеждах. Далее, сравнив рисунок из условия с диаграммой Б,можно заметить, что, расцепив «веревочки», соединяющие кружки, я упростил диаграмму, не изменив существенные соотношения между «пуговицами», или кружками. Читатель теперь без труда сам установит, что требуется 11 ходов для лис и 11 для гусей. Он заметит, что гусь с 1 или 3 должен ходить на 8, дабы избежать соседства с лисой и позволить лисе с 11 перейти на кольцо. Если мы пойдем 1–8, то ясно, что для лис лучше ходить 10 – 5, а не 12 – 5, когда все окажутся на окружности, то им нужно просто прогуляться вдоль нее по часовой стрелке, позаботившись сделать последними ходы 8–3 и 5 – 12. Таким образом, с помощью этого метода наша головоломка становится невероятно простой. (См. также замечание по поводу решения задачи 13.)

95. На рисунке показано, как из найденной доски можно вырезать два куска, из которых удается сложить квадратную крышку стола. А, B, С, D– углы стола. Способ, каким кусок Евставляется в кусок F,должен быть очевидным для читателя. Заштрихованная часть удаляется.


96. Это число должно быть наименьшим общим кратным 1, 2, 3 и т, д. до 15, которое при делении на 7 дает остаток 1, на 9–3, на 11–10, на 13 – 3 и при делении на 14 дает остаток 8. Таким числом является 120. Следующее число с таким свойством – это 360 480, но поскольку не сохранилось свидетельств, чтобы одно дерево (да еще очень молодое) приносило когда-нибудь такое огромное количество яблок, единственным приемлемым ответом может быть лишь 120.

97. Прямоугольная закрытая цистерна, содержащая заданное количество воды и обладающая вместе с тем минимальной поверхностью, должна быть правильным кубом (то есть каждая ее сторона должна представлять собой квадрат). Для цистерны в 1000 кубических футов внутренние размеры должны быть 10×10×10 футов, а цинка на нее пойдет 600 квадратных футов. В случае цистерны без крышки пропорции будут точно как у полукуба. Это и есть требуемые «точные пропорции». Точные размеры привести нельзя, хотя близкими приближенными значениями будут 12,6×12,6×6,3 фута. [36]36
  Автор имеет в виду, что размеры цистерны находятся в отношении 1:1:1/2 – («как у полукуба»). Точные размеры таковы:
  фута, что приближенно равно значениям, укатанным автором. – Прим. перев.


[Закрыть]
Цистерна с такими размерами будет содержать чуть больше воды, на что покупатель не станет жаловаться, а жестянщик затратит несущественное количество лишнего металла.

98. Если вы возьмете лист бумаги и проведете карандашом диагональную прямую, как на рисунке А,то, свернув из листа цилиндр так, чтобы карандашная линия оказалась снаружи, обнаружите, что эта линия будет выглядеть, как на рисунке Б.


Можно заметить, что длина спирали (за один полный оборот) равна длине гипотенузы прямоугольного треугольника, катетами которого служат два края листа. В данной головоломке длина этих катетов равна соответственно 40 фт Г у от 200 фт) и 16 фт 8 дм– 16 2/3 фт. Следовательно, гипотенуза равна 43 1/3 фт = 43 фт 4 дм, а, значит, длина гирлянды в пять раз больше составляет 216 фт. 8 дм. Любопытная особенность этой головоломки состоит в том, что данное значение в точности совпадает с суммой высоты и окружности.

99. Для ответа на вопрос нужно всего лишь сложить оба расстояния от лавок до момента встречи с удвоенной разностью этих расстояний. Таким образом, расстояние между лавками составляет 720+400+640= 1760 ярдов, или одну милю. По-другому ответ можно получить, умножая первое расстояние на 3 и вычитая второе расстояние, только при этом первое расстояние должно превышать 2/3 второго.

100. Всего при заданных условиях можно образовать ровно шесть различных кружков. Вот один способ образования таких кружков:

Соедините концы и вы получите 6 кружков.

Люка придумал простой метод получения пкружков, которые при данных условиях могут образовать 2 n+1 детей.

101. Единственная тройка чисел, удовлетворяющих всем нужным условиям, – это 27, 594, 16 038. Эти три числа содержат все десять цифр и, кроме того, 27×594 = 16 038, a 594 делится без остатка на 27 (594:27 = 22). Если бы допускались числа, состоящие соответственно из одной, четырех и пяти цифр, то нашлось бы много решений вроде 3×5694 = 17 082; но странно, что при исходной формулировке существует лишь одно решение, хотя доказать это совсем не просто.

102*Можно заметить, что в приведенном на рисунке квадрате все числа различны, а их сумма вдоль каждой вертикали, горизонтали и диагонали равна 179 и не меняется при перевертывании рисунка вверх ногами. Читатель обратит внимание, что я не использовал цифры 3, 4, 5, 8 или 0.


103.Всего существует 640 различных путей. Общую формулу в головоломках такого рода получить не удается. Мы, очевидно, должны лишь рассмотреть различные пути между Ви Е.Здесь имеется 9 участков, или «линий», но при данных условиях и при любом выборе пути поезд не может проехать более чем по 7 из них. В следующей таблице под «направлениями» понимается порядок станций безотносительно к «путям». Таким образом, направление BCDEприводит к 9 путям, ибо можно тремя способами добраться от Вдо Си тремя способами – от Dдо Е.Однако направление BDCEне допускает вариаций; следовательно, его вклад в общее количество сводится к одному пути.

2 двухлинейных направления по 3 пути – 6

1 трехлинейное направление по 1 пути – 1

1 трехлинейное направление по 9 путей – 9

2 четырехлинейных направления по 6 путей – 12

2 четырехлинейных направления по 18 путей – 36

6 пятилинейных направлений по 6 путей – 36

2 пятилинейных направления по 18 путей – 36

2 шестилинейных направления по 36 путей – 72

12 семилинейных направлений по 36 путей – 432

Итого – 640

Таким образом, мы видим, что всего существует ровно 640 различных путей, что и служит правильным ответом на головоломку.

104.Каждая из трех частей, очевидно, по длине была равна якорной цепи. Но Саймон, полагая, что разрезы проходили трансверсально (то есть поперек), настаивал на том, что длина змея составляла девять якорных цепей. Шкипер, однако, объяснил (и здесь он был столь же правдив, как и в остальной части своего рассказа), что он разрубил змея вдоль – точно от кончика носа до кончика хвоста! Полная длина, следовательно, составляла лишь три якорных цепи, столько же, сколько и у каждой части по отдельности. Саймона не просили назвать точную длину змея, а лишь какой она должнабыть. Она должна быть равной по меньшей мере длине трех цепей, хотя может быть (оставляя без внимания утверждение шкипера) равной любому числу до девяти цепей включительно в зависимости от того, как проведены разрезы.

105.Если бы всего было 12 леди, то они обменялись бы между собой 132 поцелуями, а на долю помощника священника осталось бы 12 поцелуев (6 раз поцеловал он, и 6 раз – его). Следовательно, из 12 леди 6 должны быть его сестрами. Следовательно, если 12 выполняют работу за 4,5 месяца, то шестеро выполнят ее за вдвое большее время, то есть время работы увеличится на 4,5 месяца – это и есть правильный ответ.

На первый взгляд имеется некая двусмысленность в словах «все перецеловали друг друга, за исключением, разумеется, самого застенчивого молодого человека», Не означает ли это, что все леди нескромно поцеловали помощника священника и не были в свою очередь поцелованы им (исключая сестер)? Нет, ибо в этом случае мы обнаружили бы, что среди 12 леди нет ни одной сестры, а это противоречит условиям задачи. Если же, наоборот, у кого-то возникнет подозрение, что сестры не целовали своего брата, тогда как он их поцеловал, то я отвечу на это, что в таком случае все 12 леди оказались бы сестрами. А упоминание о том, что леди без сестер могли бы выполнить данную работу, исключает такую возможность.

106. В конце семнадцатых суток улитка взберется на 17 футов, а к концу восемнадцатого дня доберется до верхнего края и тут же начнет спать и соскальзывать вниз и к концу восемнадцатых суток окажется на другой стороне в 2 футах от верхнего края стены. За сколько она спустится на оставшиеся 18 футов? Если улитка соскальзывает на 2 фута ночью, то днем, взбираясь вверх, она, очевидно, преодолевает тенденцию такого соскальзывания на 2 фута. Гребя вверх по течению реки, мы преодолеваем это течение, тогда как двигаясь по реке вниз, мы используем течение, которое нам помогает. Если улитка днем может подняться на 3 фута, преодолевая тенденцию к соскальзыванию на 2 фута, то, двигаясь по полу, она может при тех же усилиях за день пройти расстояние в 5 футов. Когда же она опускается вниз, то к этим 5 футам надо добавить еще 2 фута за счет соскальзывания. Таким образом, на пути вниз за день она проходит 7 футов, а если к ним добавить 2 фута ночного соскальзывания, то получится, что за сутки улитка спускается на 9 футов. Значит, на преодоление 18 футов потребуется двое суток, а на все путешествие – ровно 20 суток.

107. Когда Монтукла в своем издании книги Озанама «Recreations in Mathematics» заявил, что «существует не более трех равновеликих прямоугольных треугольников с целыми сторонами, но имеется сколько угодно таких прямоугольных треугольников с рациональными сторонами», он, как это ни странно, упустил из виду, что если вы приведете рациональные длины сторон к общему знаменателю и удалите этот знаменатель, то получите значения целых сторон искомых треугольников.

Каждому читателю стоит знать, что если мы возьмем любые два числа mи n,то m 2+ n 2, m 2n 2и 2тпбудут тремя сторонами рационального прямоугольного треугольника. [37]37
  То есть треугольника, длины сторон которого выражаются рациональными числами. – Прим. перев.


[Закрыть]
Здесь mи nназываются производящими числами. Чтобы образовать три таких равновеликих треугольника, мы воспользуемся следующими простыми соотношениями, где m – большее число:

тп +m 2+ n 2= a

m 2n 2и 2 = b

2mn + n 2= c

Теперь, если мы образуем три треугольника с помощью трех пар порождающих чисел, aи b, aи c, aи b+ c,то их площади окажутся равными. Это та самая небольшая задача, о которой Льюис Кэррол писал в своем дневнике: «Сидел прошлой ночью до 4 часов утра над соблазнительной задачей, которую мне прислали из Нью-Йорка, «найти три равновеликих прямоугольных треугольника с рациональными сторонами». Я нашел два… но не смог найти трех!»

Сейчас я приведу формулу, с помощью которой мы всегда по заданному рациональному прямоугольному треугольнику можем найти рациональный прямоугольный треугольник равной площади. Пусть z– гипотенуза, b– основание, h– высота, а– площадь данного треугольника; тогда все, что мы должны сделать, – это образовать рациональный прямоугольный треугольник с помощью производящих чисел z 2и 4aи привести каждую сторону к знаменателю 2z (b 2– h 2), и мы получим требуемый ответ в целых числах.

Ответ в наименьших целых числах на нашу головоломку такой:

Первый принц – 518 1320 1418

Второй принц —. 280 2442 2458

Третий принц – 231 2960 2969

Четвертый принц – 111 6160 6161

Площадь в каждом случае равна 341880 квадратным единицам. Я не стану здесь подробно показывать, как именно я получил эти числа. Однако я скажу, что первые три треугольника получены описанным выше способом, отправляясь от чисел 3 и 4, которые приводят к порождающим парам 37, 7; 37, 33; 37, 40. Эти три пары чисел дают решение неопределенного уравнения

а 3b– b 3а= 341 880.

Если мы сможем найти другую пару чисел, то дело будет сделано. Этими производящими числами будут 56, 55, которые и приводят к последнему треугольнику. Следующий ответ, наилучший после данного, который мне удалось найти, получается из 5 и 6, порождающих производящие пары 91, 11; 91, 85; 91, 96. Четвертой порождающей парой будет 63, 42.

Читатель поймет из того, что я сказал выше, что существует сколь угодно много равновеликих рациональных прямоугольных треугольников, стороны которых выражаются целыми числами.

108. Вот простое решение головоломки о трех девятках: 9 + 9/9.

Чтобы разделить 18 на 9 [38]38
  То есть на 0,9. – Прим. перев.


[Закрыть]
(или 9/10), мы, разумеется, умножим это число на 10 и разделим его на 9. В результате, как и требовалось, получится число 20.

109. Решение состоит в следующем. Партия двух игроков, в совершенстве владеющих данной игрой, всегда должна заканчиваться вничью. Ни один из таких игроков не может выиграть у другого иначе, как по недосмотру противника. Если Нолик (первый игрок) занимает центр, Крестик должен занять угол на своем первом ходу, в противном случае Нолик несомненно выиграет. Если Нолик на первом ходу занимает угол, то Крестик сразу же должен занять центр, иначе он проиграет. Если Нолик начинает с боковой клетки, то обоим игрокам следует быть очень внимательными, ибо имеется много подводных камней. Однако Нолик может безопасно для себя свести дело к ничьей, а выиграть он может лишь по недосмотру Крестика.

110. Решение таково. Первый игрок может всегда выиграть при условии, что первый ход он сделает в центр. Хорошей вариацией данной игры будет условие, что первый игрок на первом ходу не имеет права ходить в центр. В этом случае второй игрок сразу же должен пойти в центр. Такая ситуация должна кончиться ничьей, но чтобы свести игру к ней уверенно, первый игрок обязан пойти на своем первом и втором ходах в два смежных угла (например, в 1 и 3). Тогда игра потребует огромного внимания с обеих сторон.

111. Сэр Исаак Ньютон в своей «Универсальной арифметике» показал нам, что мы можем разделить волов в каждом случае на две части – одна часть съедает прирост травы, а другая – накопленную траву. Первая часть меняется прямо пропорционально размеру поля и не зависит от времени; вторая тоже меняется прямо пропорционально размеру поля и, кроме того, обратно пропорционально времени. Со слов фермера мы определяем, что 6 волов съедают прирост травы на 10-акровом поле, а 6 волов съедают траву на 10 акрах за 16 недель. Следовательно, если 6 волов съедают прирост травы на 10 акрах, то 24 вола будут его съедать на 40 акрах.

Далее мы находим, что если 6 волов съедают накопленную траву на 10 акрах за 16 недель, то

12 съедают траву на 10 акрах за 8 недель,

48 съедают траву на 40 акрах за 8 недель,

192 съедают траву на 40 акрах за 2 недели,

64 съедают траву на 40 акрах за 6 недель.

Складывая полученные два результата (24 + 64), мы находим, что 88 волов могут прокормиться на 40-акровом лугу в течение 6 недель при условии равномерного роста травы в течение всего времени.

112. Нам известно, что пуля, убившая мистера Стэнтона Маубрея, попала в самый центр циферблата и мгновенно спаяла между собой часовую, минутную и секундную стрелки, так что они все стали поворачиваться как одно целое. Головоломка состояла в том, чтобы, исходя из взаимного расположения стрелок, определить точное время выстрела.

Нам известно также, а рисунок часов подтверждает это, что часовая и минутная стрелки отстояли друг от друга ровно на 20 делений, «треть окружности циферблата». Далее, в течение 12 часов часовая стрелка ровно 11 раз бывает на 20 делений впереди минутной и равно 11 раз – на 20 делений позади нее. Из рисунка видно, что нам следует рассмотреть лишь первый случай. Если мы начнем от четырех часов и будем все время добавлять по 1 час. 5 мин. и 27 3/11 сек., то получим все 11 расположений, последнее из которых придется на 2 час. 54 мин. 32 8/11 сек. Еще одно добавление указанной величины приведет нас вновь к четырем часам. Если теперь мы изучим циферблат, то обнаружим, что секундная стрелка находится приблизительно на 22 деления позади минутной, а если мы просмотрим все наши 11 случаев, то заметим, что лишь в последнем из них секундная стрелка занимает указанное положение. Следовательно, выстрел произошел ровно в 2 час. 54 мин, 32 8/11 сек., или без 5 мин. 27 3/11 сек. три. Это правильный и единственно возможный ответ к данной головоломке.

113. Хотя объем бруска достаточен для того, чтобы получить 25 кусков, на самом деле удается вырезать лишь 24. Сначала уменьшите длину бруска в полдюйма. Меньший кусок отрежьте, ибо его не удастся использовать. Разрежьте больший кусок на три плитки толщиной в 1 1/4 дюйма, и вы обнаружите, что из каждой плитки легко можно вырезать по восемь блоков без дальнейших потерь материала.

114. Наименьшее число бисквитов равно 1021, откуда видно, что это были те миниатюрные бисквитики, которые любят дети. Общее решение состоит в том, что для случая пчеловек число бисквитов должно равняться m (n n+l) – (п-1), где m– любое целое число. Каждый человек получит при окончательном разделе m (n-1 ) n– і бисквитов, хотя в случае двух человек, когда m= 1, при окончательной дележке бисквит получит лишь собака. Разумеется, в любом случае каждый человек крадет n-ю часть бисквитов, отдав предварительно лишний бисквит собаке.


    Ваша оценка произведения:

Популярные книги за неделю