355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Геннадий Блинов » Покорители земных недр » Текст книги (страница 5)
Покорители земных недр
  • Текст добавлен: 5 октября 2016, 02:52

Текст книги "Покорители земных недр"


Автор книги: Геннадий Блинов


Соавторы: Эрнст Махновецкий
сообщить о нарушении

Текущая страница: 5 (всего у книги 11 страниц)

Вращательное колонковое бурение

Если бескерновое нефтяное бурение является наиболее глубинным и фундаментальным, то колонковое, пожалуй, самым распространенным. Все геологические и инженерные исследования, на всех этапах и стадиях – от геологической съемки для составления геологических карт до эксплуатационной разведки – проводятся с применением именно колонкового способа. Керн – основа современной геологии, только с его помощью можно получить самые достоверные сведения о строении земных недр, о составе и характере залегания в них твердых полезных ископаемых; керн используется также для разнообразных анализов и испытаний.

Вот, скажем, первые скважины на Луне. Они пробурены, разумеется, керновым способом. Просто дырки в лунной поверхности совершенно бессмысленны. Нам нужны были образцы, и мы их получили. Точно так же и в сверхглубоких скважинах: здесь важен не рекорд глубины (только ради него нет смысла нести многомиллионные расходы), а прежде всего материал для исследований – керн горных пород!

Впрочем, лунные и сверхглубокие скважины являются как бы крайними звеньями длиннейшего колонкового ряда. Мы же говорим сейчас о самом распространенном бурении – о золотой середине между космосом и сверхглубинами, о том бурении, которым займется большинство из тех, кто захочет стать бурильщиком.

Колонковыми скважинами исследуются обычно верхние, приповерхностные части земной коры – твердая оболочка в диапазоне глубин от нуля до 1,5, реже до 2–3 км, т. е. именно та часть, которая (пока что) обеспечивает нас всеми твердыми полезными ископаемыми. При столь небольших глубинах важна не только скорость самого бурения, но и оперативность при перемещении буровой установки со скважины на скважину, с точки на точку. Поэтому агрегаты для колонкового бурения в сравнении с монументально-громоздкими нефтяными сооружениями отличаются компактностью, мобильностью, простотой.

Все механизмы и приспособления буровой установки, включая двигатель, буровой станок, насос и даже легкую складную вышку, обычно монтируются на тракторных санях либо на раме грузового автомобиля или трактора. Вот, например, самоходная установка УКБ-4СТ (расшифровывается это как «установка колонкового бурения четвертого класса, самоходная на тракторе»). Все снаряжение размещается на транспортной базе трелевочного трактора ТТ-4 (рис. 22). В походном положении установка весьма компактна и в любой момент может выехать на заданную точку, в течение нескольких дней отбурить там 500-метровую скважину; потом «пять минут на сборы», и она уже направляется на новую точку, снова за десятки километров. Легкий десант с весьма существенными результатами. Подобные установки незаменимы при бурении опорных картировочных скважин и профилей, т. е. в тех случаях, когда исследования проводятся единичными скважинами, но на больших площадях.



Рис. 22. Самоходная буровая установка типа УКБ-4СТ.

При поисково-разведочном бурении на рудные тела, когда десятки и даже сотни скважин отбуривают в одном месте, на пятачке в несколько квадратных километров, применяют более тяжелые станки. Но и они вместе со всем оборудованием обычно располагаются под единой крышей (в отапливаемом помещении, называемом «буровым зданием» или «тепляком»), на общем основании с полозьями из толстых труб или из широкого швеллера. В пределах участка работ такие установки перетаскиваются тракторами, а на большие расстояния перевозятся автомобилями на специальных подкатных тележках или трейлерах.

Компактность, мобильность, относительная простота – все это, так сказать, внешние атрибуты, взгляд со стороны. А сам принцип колонкового бурения? По сути своей он ничем не отличается от роторного бурения нефтяных скважин. Те же три главные составляющие единого процесса: вращение, нагрузка на инструмент, промывка, а если говорить точнее, то вращение под нагрузкой с промывкой.

Основное отличие колонкового бурения от бескернового заключается не в конструктивных особенностях станка, не в размерах его и не в способе передачи нагрузки, а прежде всего в специфике бурового снаряда и его породоразрушающего инструмента (наконечника). Собственно, при роторном нефтяном бурении в любой момент можно заменить шарошечное долото на колонковую трубу с кольцевой коронкой и пройти тот или иной интервал с керном. Никаких переоборудований в двигателе, станке, бурильной колонне для этого не требуется. И наоборот, при поисково-разведочном бурении зачастую (при забуривании; при некоторых осложнениях; в тех случаях, когда геологический разрез в районе скважин достаточно хорошо изучен) на конец бурильной колонны ставится шарошка и определенный интервал глубины для скорости проходится «сплошным забоем» – без керна.

При колонковом бурении буровой снаряд (рис. 23) представляет собой полую трубу длиной от 3 до 9 м, которая по мере углубки скважины постепенно заполняется выбуренным столбиком породы. На нижнем конце этой колонковой трубы закрепляется кольцевая коронка, диаметр ее на 2–3 мм больше диаметра трубы, а верхний конец колонковой трубы соединяется с бурильными трубами. Вот и вся конструкция.



Рис. 23. Колонковый снаряд в скважине.
/ – переходники;
2 – колонковая труба;
3 —керн; 4– буровая коронка.

В качестве дополнительных приспособлений применяют специальные кернорвательные кольца – для отрыва столбика керна от монолита и для удержания его в колонковой трубе во время подъема на поверхность, а также расширители, которые обрабатывают и калибруют стенки скважины и не допускают уменьшения ее диаметра по мере изнашивания коронки. Однако эти приспособления существенно не усложняют конструкцию.

Как мы отметили, колонковая труба соединяется бурильными трубами, которые связывают буровой снаряд с земной поверхностью, с вращателем бурового станка. Через эти трубы передаются вращение и нагрузка на буровую коронку, по ним же поступает на забой промывочная жидкость.

Идет процесс бурения… Но вот пробурен определенный интервал, и по сигналу мастера бригада приступает к подъему бурового снаряда из скважины. Труба за трубой извлекается на поверхность лебедкой или гидравлическим подъемником бурового станка. Бурильную колонну разбирают на составные части – свечи, которые аккуратно устанавливают в буровой. Наконец, поднимают колонковую трубу, в которой и заключена драгоценная колонка горной породы, ради которой и был затрачен весь этот труд. Этой колонке керна горной породы, поднятой с неведомых ранее глубин и впервые увиденной именно буровиками, и надлежит раскрыть секреты недр Земли.

Керн будет изучен геологами-петрографами, минералогами, геохимиками. В опытных руках исследователей ему предстоит дать ответ: можно ли ожидать полезные ископаемые, сколько еще бурить до них, каковы перспективы дальнейшей разведки. А геологу-буровику керн подскажет, какой инструмент для бурения лучше применить, какие принять меры, чтобы обеспечить 100 %-ное получение выбуренной породи. Поэтому так осторожно обращаются геологи с этим керном, так тщательно укладывают его в специальные ящики, гак бережно содержат в кернохранилищах.

В большинстве буровых станков вращатель (в колонковом бурении он обычно называется «шпинделем») можно наклонить вправо или влево па угол до 30° и зафиксировать в таком положении, т. е. можно осуществлять бурение под строго заданным углом наклона. Надо сказать, что в разведочной геологии, в отличие от нефтяной, чаще отбуривают именно наклонные скважины. Такие скважины имеют кратчайший путь до рудного тела и пересекают его под прямым углом, как говорят геологи, – «вкрест падения». В результате наиболее эффективно решаются стоящие перед бурением задачи.

По способу истирания пород и соответственно по типу бурового породоразрушающего инструмента современное колонковое бурение бывает трех видов: дробовое, твердосплавное и алмазное. Правда, бурение дробью к настоящему времени практически отошло в прошлое.

Тяжелое это было бурение, малопроизводительное и хлопотное. Инструмент и все оборудование – массивное, громоздкое. Буровой снаряд, например, собирался шарнирными ключами, весящими с десяток килограммов каждый. Коронка и колонковая труба имели диаметр 90—130 мм. Не меньше, ибо в скважинах меньшего диаметра керн размолачивался дробью почти полностью.

На смену дроби пришли скачала твердые сплавы, а потом алмазы и сверхтвердые материала. Эти истирающие вещества совершили переворот в технологии колонкового бурения, вывели его на уровень, соответствующий современным требованиям, предъявляемым к механизмам и оборудованию. Прежде всего диаметры скважин, а вместе с ними диаметры труб и прочего вспомогательного оборудования уменьшились вдвое и втрое. Сейчас большинство керновых скважин отбуривают коронками диаметрами 46, 59 и 76 мм. Поскольку уменьшились диаметры скважин, то сократились и площади пород, подлежащих истиранию, и существенно возросли скорости бурения.

А результаты? При алмазном бурении выход керна (независимо от диаметра скважины) повысился до 80—100 %. Здесь ведь нет грубого разрушения пород, здесь осуществляется только направленное пропиливание. Керн из скважин, пройденных алмазными коронками, приятно взять в руки. Это тонкие монолитные цилиндры с пришлифованной боковой поверхностью – готовые музейные образцы, не очень-то нуждающиеся в дополнительной обработке.

Малые диаметры скважин, высокие скорости бурения, экономичность и образцово-показательный керн – все это прекрасно. Но ведь алмазы! Драгоценные камни, ценящиеся либо на вес золота, либо даже дороже. Оправдана ли подобная роскошь?. А как насчет соотношения цели и средств? Вопросы правомерны. Но надо иметь в виду, что в бурении применяются не ювелирные, а технические алмазы – мелкие, непрозрачные, неограненные, а в последние годы – не только природные, но и искусственные, синтетические. Цены на такие камни, хотя и высокие, но вполне доступные для массового их применения, в частности для бурения.

При современном колонковом бурении в равной мере применяют как твердые сплавы, так и алмазы. Достаточный запас коронок того и другого типа всегда есть на буровой. Твердосплавными коронками проходятся наносы при забуривании скважин, а также участки с трещиноватыми породами; алмазные коронки наиболее эффективны в плотных монолитах, в массивах изверженных и метаморфических окварцованных пород.



Рис. 24. Твердосплавная коронка.
1 – корпус; 2 – твердосплавные резцы.

Твердосплавные коронки (рис. 24) в работе достаточно неприхотливы, и никаких проблем с ними обычно нe возникает. Ни состояние забоя, ни характер разреза их применение особо не лимитируют. Опускай да бури, не забывая, разумеется, следить за промывкой. Они могут отбуривать любые породы – от вязких глин до достаточно твердых пород; правда, в таких разновидностях приходится слишком уж часто поднимать буровой снаряд и заменять изношенную коронку на новую.

Алмазы в бурении по своим свойствам – стойкости, выносливости, отдаче – не имеют конкурентов. И естественно, что как и все уникальные создания, они капризны и своенравны. Они требуют особого отношения к себе: заботы, внимания, терпения и даже любви. Иначе работать не будут. Не заставишь.

Во-первых, алмазы очень болезненно реагируют на присутствие посторонних предметов в скважине, особенно металлических. Любая крошка металла на забое, будь то кусочек изношенной трубы, случайно уроненный болтик или обломок твердого сплава, мгновенно выводит из строя даже новую коронку. Поэтому перед спуском алмазной коронки скважину приходится очень тщательно промывать сильной струей жидкости. Алмазы требуют совершенно чистого забоя – только горная порода и ничего более.



Рис. 25. Конструкция алмазной коронки.
/ – корпус; 2 – матрица; 3 – алмазы-резцы.

Аналогична их реакция на резкие удары и на сильную вибрацию. При неритмичной работе бурового инструмента (а такое случается при проходке трещиноватых пород либо при наличии в породах каверн и полостей) алмазы быстро крошатся и выпадают из коронки. Для борьбы с вибрацией приходится применять либо сложные приспособления (различные центраторы, амортизаторы, утяжеленные бурильные трубы), либо антивибрационные смазки, которыми покрываются поверхности бурильных труб и всех сочленений, либо специальные эмульсии.

В СССР история развития алмазного бурения,[6]6
  Основная заслуга в развитии алмазного бурения принадлежит специалистам Всесоюзного научно-исследовательского института методики и техники разведки (ВИТР, Ленинград).


[Закрыть]
основанного на широком применении отечественных якутских алмазов, исчисляется неполными тремя десятилетиями. Научно-исследовательские работы по этой проблеме, начатые практически с нуля, ведутся также на протяжении очень короткого времени по сравнению с историей алмазного бурения в западных странах. И тем не менее наша наука об алмазном бурении и техника для его осуществления находятся па современном мировом техническом уровне.

Основная сложность при работе с алмазами состоит в том, что для каждой разновидности пород необходимо очень тщательно подбирать соответствующую ей марку коронки. Почему? Для начала давайте посмотрим, что представляет собой керновая алмазная коронка (рис. 25). Короткий тонкостенный цилиндр-корпус в верхней части имеет ленточную резьбу для соединения с расширителем либо непосредственно с колонковой трубой; в нижней торцевой части находится матрица – кольцевой металло-керамический сплав, включающий в себя мелкие технические алмазы. В матрице делаются прорези-каналы для выхода промывочной жидкости.

Диаметры таких коронок меняются от 26 до 112 мм (всего выпускаются коронки семи стандартных размеров). Коронки малых размеров применяют для лабораторных исследований и при поисковом бурении, средние – при разведке месторождений на глубинах до 1000–3000 м, большие – при проходке скважин на уголь и при различных инженерных исследованиях.

По крупности алмазов, а также по способу размещения их в матрице алмазные коронки бывают двух типов: однослойные с поверхностной вставкой алмазов в матрице и импрегнированные, в которых очень мелкие зерна алмазов равномерно рассеяны по всей массе матрицы. Во всех случаях по мере углубки скважины матрица постепенно снашивается, все более обнажая алмазы.

Крупность и масса алмазов измеряются в каратах. Название произошло через итальянское carato от греческого названия стручков рожкового дерева keration. Масса сухих косточек плода этого растения, удивительно идентичных друг другу, служила в древности единицей массы сначала для жемчуга, а затем и для других драгоценных камней. Международной единицей карат стал в 1913 г., после того как Международный комитет мер и весов в Париже предложил принять метрический карат, равный 200 мг (или 0,2 г), в качестве официальной единицы измерения.

Масса алмазов, встречающихся в природе, изменяется от тысячных долей карата до нескольких сотен и тысяч карат. Самый крупный найденный на Земле алмаз, названный «Куллинан», весил 3106 карат. Чаще же всего попадаются мелкие кристаллы и их обломки массой от 0,05 до 0,4 карата.

В технике сейчас применяют алмазы в количествах, измеряемых тысячами и миллионами карат, поэтому для перевода полезно запомнить: 1 г = 5 карат; 1 кг = 5000 карат; 1 тонна = = 5 000 000 карат.

Однослойные коронки армируются алмазами крупностью от 2–5 до 90 штук на один карат. В импрегнированных коронках применяются такие алмазы, которых на один карат приходится от 120 до 600 штук (!) и более (до 2000); в сущности, это уже тонкий алмазный порошок, разглядеть отдельные зерна в нем можно только под микроскопом. Общая масса всех алмазов в коронке колеблется от 3 до 24 карат, т. е. обычно не превышает одного-пяти граммов.

Импрегнированные алмазные коронки предназначаются для бурения особо твердых и трещиноватых пород с высокими абразивными свойствами, однослойные – менее твердых разновидностей. В мягких породах, таких как известняки, мергели, доломиты, применяются специальные коронки с крупными (от 2 до 12 штук на один карат) алмазами.

Весьма существенную роль играет и прочность самой матрицы. По твердости и износоустойчивости матриц выпускаемые сейчас коронки подразделяются на три типа. Если в твердых, абразивных породах поставить коронку с мягкой матрицей, то она быстро износится – алмазы выпадут, коронку придется заменять. И наоборот, – очень твердые матрицы в неабразивных породах почти не стачиваются (как говорят в таких случаях, – «коронка заполировалась») и алмазы перестают работать.

Таким образом, алмазные керновые коронки имеют семь разновидностей по размерам, две – по характеру распределения зерен, три – по твердости матриц и множество – по крупности алмазов и по общей их массе. Если же представить, что все эти разновидности еще сочетаются между собой (например, коронки диаметром 59 мм могут быть однослойными и импрегнированными, каждая из них имеет три типа матриц, которые в свою очередь армированы различными алмазами…), то получим длинный ряд коронок различных марок. И все они выпускаются промышленностью, и все находят себе применение. Главное – подобрать для отбуриваемой породы соответствующую ей марку коронки. Тогда и отдача от алмазов будет максимальной, не сравнимой с возможностями никакого другого материала на Земле, ни природного, ни искусственного. Таковы алмазы.

Насколько мы убедились, осложнений при работе с алмазным инструментом бывает более чем достаточно. Однако если набраться терпения и исполнить все прихоти этого капризного материала (хорошо вычистить забой, избавиться от вибрации, подобрать нужную коронку и тщательно следить за режимом работы станка), то алмазы с лихвой оправдают себя пробуренными метрами скважины, причем пройдена она будет на большой скорости при высокой стойкости (высоком ресурсе) коронок, а следовательно, с малым числом трудоемких подъемов бурового снаряда на поверхность.

Запасы природных технических алмазов, как и любого другого минерала на Земле, ограниченны. А бурно развивающиеся из года в год геологоразведочные работы требуют для бурения все большего и большего количества алмазных коронок. Поэтому в пашей стране успешно используются в буровом инструменте синтетические алмазы.

Попытки синтезировать алмазы начались практически сразу же после того, как стало известно, что графит и алмаз состоят лишь из углерода, но синтезирован алмаз был только в 50-х годах текущего столетия. Однако создать алмаз в лаборатории – это полдела. Главное – наладить его производство в промышленности. В наши дни во многих странах (СССР, ЧССР, Англия, США, Япония, Франция и др.) выпускаются искусственные алмазы. Постоянно совершенствуются и методы синтеза алмаза, так как развитие техники и промышленность непрерывно требуют новых видов сверхтвердых материалов повышенного качества.

Кроме монокристаллов были синтезированы поликристаллические алмазы типа «баллас» и «карбонадо». Алмазы этого типа, встречающиеся и среди природных алмазов, состоят из мелких кристаллов, соединенных между собой. Для применения в технике поликристаллические материалы в ряде случаев предпочтительнее, поскольку их свойства по различным направлениям одинаковы. Искусственные баллас и карбонадо по прочности не уступают природным алмазам. Буровые коронки из дробленого синтетического карбонадо по работоспособности даже лучше коронок, оснащенных естественными алмазами.

Ради справедливости следует отметить, однако, что для бурения в особо сложных геологических условиях (твердые, раздробленные, трещиноватые, абразивные породы) по-прежнему используют природные алмазы. Но связано это не со свойствами синтетических карбонадо, а скорее, с применяемыми ныне способами изготовления буровых коронок. Матрица этих коронок, в которой размещаются алмазы, делается из весьма тугоплавких металлов, значит, для изготовления коронок нужен длительный нагрев при очень высоких температурах. Синтетический же карбонадо включает в себя значительное количество примесей металлов, применяемых при синтезе алмаза. При нагревании эти примеси взаимодействуют с алмазными зернами и поликристаллический материал теряет свою прочность. К сожалению, при остывании прочность уже не восстанавливается.

Низкая термопрочность синтетических карбонадо, т. е. уменьшение его прочности после нагревания, заставила ученых искать новые способы получения подобных материалов, но обладающих высокой термопрочностью. И такой способ был найден, это – спекание тонких алмазных порошков при высоких давлениях. Спекаемые алмазные материалы называют «спёками» или «компактами».

В настоящее время синтетическими алмазами все настойчивее вытесняются технические природные. Росту доли применения синтетических алмазов в технике способствует в значительной степени меньшая их стоимость. Например, в мире (без СССР) синтетические алмазы составляют в технике по массе около 80 % всех алмазов, тогда как их стоимость выражается всего лишь 25–30 % от общей стоимости всех алмазов.

Основными потребителями синтетических алмазов является не только машиностроение (станко-, самолето-, кораблестроение), но и геологоразведка, где отдача от одного карата применяемого при бурении алмаза особенно велика.

А теперь давайте поговорим об использовании, бурения в геологии и постараемся уяснить,—


    Ваша оценка произведения:

Популярные книги за неделю