412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Гавриил Тихов » Шестьдесят лет у телескопа » Текст книги (страница 6)
Шестьдесят лет у телескопа
  • Текст добавлен: 3 октября 2016, 22:41

Текст книги "Шестьдесят лет у телескопа"


Автор книги: Гавриил Тихов



сообщить о нарушении

Текущая страница: 6 (всего у книги 10 страниц)

Каков же он, Марс?

Каков же он. Марс? Что мы знаем о нем?

Марс находится от Солнца в полтора раза дальше, чем Земля, и делает полный оборот вокруг Солнца за 687 земных суток. Атмосфера его довольно прозрачна, очень разрежена и неспокойна. На Марсе часты пылевые бури. Они несут вихри песка, покрывающие большие территории планеты. Атмосферное давление приблизительно в восемь раз ниже земного, или такое, как на высоте 10–15 километров над поверхностью Земли.

Что сказать о химическом составе атмосферы Марса? Можно ли ставить такой вопрос? Наука отвечает: можно. Для этого пользуются методом спектрального анализа. Заключается он, как мы знаем, в следующем.

Если мы пропустим через стеклянную призму свет Солнца, то он разложится на составные части в виде цветной полосы, называемой спектром.

Солнечные лучи, идущие от наблюдаемой планеты, дважды проходят через ее атмосферу: падая на планету и отражаясь от поверхности. Атмосфера частично поглощает некоторые из солнечных лучей, потому что каждый из газов поглощает только вполне определенные лучи. По месту, которое занимает та или иная темная линия в спектре, можно определить, через какие газы прошел свет Солнца и планет. А это, в свою очередь, дает возможность выяснить, из каких газов состоит атмосфера Солнца и планет.

Так определили, что в атмосфере Марса есть в небольшом количестве кислород, обнаружен там углекислый газ, предполагают и наличие азота. Значит, состав, близкий к атмосфере Земли. А это уже очень важный вывод.

В астрономическую трубу видно, что на поверхности Марса размещаются темные, пятна. Наблюдая периодичность, с которой они появляются и исчезают, определили, что планета вращается вокруг своей оси в 24 часа 37 минут. Ось вращения наклонена к плоскости марсианской орбиты, и угол её наклона почти такой же, как у Земли.

Мы знаем, что от наклона земной оси происходит смена времен года. Поэтому и на Марсе, в каждом его полушарии, происходит смена времен года. Только времена года почти в два раза длиннее земных, так как год там почти вдвое длиннее земного.

Давно замечено, что когда на одном из полушарий Марса наступает зима, то вокруг его полюса образуется яркая белая шапка. А на противоположном шапка постепенно исчезает (со стороны экватора), и через некоторое время от нее остается только небольшое пятно зеленовато-голубого цвета.

Считалось, что белые шапки на полюсах – снег.

В 1909 году мы с Калитиным изучали цвет шапок. Нас заинтересовал их зеленовато-голубой оттенок и то, что они не так ярко блестят, как снег. Глыба льда тоже меньше блестит, чем снег и цвет у нее зеленовато-голубой. Поэтому я сделал вывод, что вернее считать полярные шапки ледяными.

К такому же заключению пришел и американский астроном Куйпер, исследовавший отражательную способность различных участков поверхности планеты. Если на Марсе есть лед, то, значит, там есть и вода – одно из необходимых условий жизни. Значит, полярные шапки летом тают, лед превращается в воду.

То, что на Марсе есть вода, подтверждают наблюдения и других ученых. Астрономы давно обратили внимание, что вокруг тающих полярных шапок Марса видна темная полоса. Считают, что это почва, намокшая от талой воды.

Но воды на планете сравнительно мало. Там нет больших водоемов, нет рек, к которым мы так привыкли на Земле. Водные участки Марса – скорее всего, неглубокие болота.

Если бы на Марсе были моря, подобные нашим, или большие озера, то астрономы заметили бы в них отражение Солнца – ярко блестящую точку. Но пока никому этого наблюдать не удалось.

Пополняют запасы воды выпадающие осадки. Об этом нам говорит академик Академии наук УССР Н. П. Барабашов, который наблюдает Марс много лет: «Многие астрономы, в том числе и я, часто наблюдали, как из облаков, несущихся над поверхностью Марса, выпадают жидкие и твердые осадки, вызывающие заметное побеление и потемнение значительных участков почвы Марса».

Правда, в атмосфере Марса обнаружить пары воды не удалось. По-видимому, пары воды земной атмосферы как бы заслоняют собой пары воды марсианской атмосферы. В ней они превращаются при низкой температуре в иголочки льда и инея.

Марс расположен дальше от Солнца. Это определяет и суровость климата планеты: она получает в 2,3 раза меньше тепла, чем Земля.

Теперь осталось определить температуру Марса. Для этого астрономы пользуются чрезвычайно чувствительным прибором – термоэлементом, который помещают в астрономической трубе.

Трубу направляют на Марс так, чтобы на термоэлемент падали лучи с поверхности планеты. Чувствительный прибор реагирует на тепло, которое испускает исследуемый участок, нагретый солнечными лучами.

По нагреванию термоэлемента и вычисляют температуру, планеты.

Так получают сведения о температуре Марса. Там в полярных областях зимой стоят сильные морозы – до 80 градусов.

Летом температура 5-10 градусов тепла. Чем ближе к экватору, тем она выше. На экваторе температура приближается к земной 20 градусов тепла.

Некоторые участки «морей» теплее материков. Н. П. Барабашов указывает на это: «Установлено, что температура некоторых темных (зеленых) областей Марса в полдень поднимается до плюс 30 градусов, а в сумерки опускается до плюс 6 градусов. К полночи, эта температура должна спускаться ниже нуля».

Суточные колебания – неприятное свойство температуры на суровой планете. Допустим, на экваторе днем было 20 градусов тепла. Можно даже сказать, что день был жаркий. С ночи же начинается резкое понижение, к рассвету тепло сменяют сильные морозы – 40–45 градусов.

Подведем итог. В. марсианской атмосфере есть кислород и углекислый газ, есть и вода, хотя в небольших количествах, температура поднимается выше нуля. Такие сведения о Марсе дали астрономы.

Можно ли, основываясь на таких скудных данных, делать какие-либо выводы о жизни на Марсе?

ДОЧЬ АСТРОНОМИИ И БОТАНИКИ
Рождение науки

Когда наука, хотя бы и самая молодая, прочно отвоевала место, заставила с уважением относиться к себе, быстро забывается, каким долгим, трудным, тернистым был ее путь к утверждению.

В 1860 году впервые ученые заговорили о растительной жизни на Марсе. Разговоры, даже если это разговоры ученых, – еще не научное обоснование. Необходима длительная, подчас утомительная, не приносящая радости победы работа, чтобы получить подтверждение предсказанной догадки.

Многие ученые мира допускали, что жизнь на Марсе существует. Но, как всякая научная гипотеза, это предположение требовало серьезных научных доказательств.

«Есть ли растительная жизнь на Марсе?» – такова была основная задача, которую мы с Н. Н. Калитиным поставили перед собой, готовясь к наблюдениям планеты в 1909 году.

Для решения этого вопроса мы, можно сказать, спустились с Марса на Землю и стали изучать оптические свойства земной растительности, чтобы потом снова вернуться на Марс и сказать,

к какому виду земных растений подходит более всего растительный покров «морей» Марса.

Чрезвычайно важную проблему разработал в своих научных трудах великий ученый К. А. Тимирязев. Он открыл космическую роль растений.

Из его открытия следует, что жизнь на Земле не изолирована от Космоса, а, наоборот, связана с движениями, происходящими в солнечной системе.

Тимирязев рассматривал фотосинтез – освоение светового луча растением – как взаимосвязанность земных и космических процессов.

«Зеленый лист, или, вернее, микроскопическое зеленое зерно хлорофилла, является фокусом, точкой в мировом пространстве, в которую с одного конца притекает энергия Солнца, а с другого берут начало все проявления жизни на Земле. Растение – посредник между небом и Землей. Оно истинный Прометей, похитивший огонь у неба», – писал ученый. Он считал, что «если главное отправление растительного организма зависит от света, то очевидно, что и главную особенность растений должно искать в их оптических свойствах».

Понятно, что в своих исследованиях я пытался открыть поглощение хлорофиллом падающих на растения Марса лучей, но положительных результатов не получил.

Чтобы лучше понять то, о чем здесь говорится, сравним спектр Солнца и спектр земного растения, который получается при отражении солнечных лучей от зеленой листвы растений.

Числа на схеме указывают в миллионных долях миллиметра длину волны тех участков, которые отмечены белыми черточками. Латинские буквы над черными линиями соответствуют земным линиям в солнечном спектре. Заметим, что линии «А» и «В» получаются от поглощения света Солнца кислородом земной атмосферы, а линия «А» – от поглощения водяными парами земной атмосферы.

Из сравнения спектра Солнца со спектром зеленого растения ясно, что у растения видны три темные полосы: первая между волнами длиной 700 и 650, вторая-между 650 и 600 и третья – за 600. Кроме того, заметно значительное ослабление голубых лучей. Из полос в красных лучах темнее всего та, которая лежит между 700 и 650. Она носит название «Главная полоса поглощения хлорофилла».

Вот эту полосу я и пытался обнаружить в спектре Марса в 1918 и 1920 годах, но так и не нашел.

Многочисленные поиски ее другими наблюдателями тоже дали отрицательный результат. Загадка оставалась нерешенной, в течение многих лет.

Теперь обратимся к двум фотоснимкам. На них изображены тянь-шаньские ели, снятые на первом снимке в синих лучах, на втором – в инфракрасных. Второй напоминает зимний снимок после сильного снегопада. Это позволило заключить, что зеленые растения, очень сильно отражают или рассеивают инфракрасные лучи.

Между тем на Марсе подобного явления нет. Экспедиция Ленинградского университета, возглавляемая профессором В. В. Шароновым, установила на Ташкентской обсерватории в 1939 году, что в инфракрасных лучах «моря» Марса выходят, на оборот, особенно темными.

Опять противоречие.

Все эти факты, а также и то, что на Марсе очень суровый климат, мало воды, кислорода и в атмосфере нет озона, поглощающего гибельные для жизни коротковолновые ультрафиолетовые лучи, дали повод для категорических высказываний против гипотезы существования жизни на Марсе.

Кроме того, высказывалось еще одно сомнение: «моря» Марса голубого, синего и даже фиолетового цвета – следовательно, это не растительные покровы.

Посмотрим, как опровергли эти возражения сторонники мнения, что жизнь на Марсе существует.

В 1945 году в Алма-Ате я читал лекцию на тему о возможности жизни на других планетах. Как обычно, я указал, что одним из главных возражений против существования растительности на Марсе является отсутствие отражения инфракрасных лучей его растительными покровами.

После лекции агрометеоролог А. П. Кутырева спросила меня: не является ли такая особенность следствием сурового климата Марса? Ведь инфракрасные лучи несут почти половину солнечного тепла, и марсианские растения должны поглощать их для согревания.

Это мне показалось вполне вероятным. На следующий же день я решил заняться сравнением отражения инфракрасных лучей лиственными и хвойными растениями.

Если у хвойных отражение окажется значительно меньшим, чем у лиственных, то мысль А. П. Кутыревой верна. Для проверки я воспользовался тогда еще рукописными материалами моего ученика, ныне лауреата Сталинской премии Е. Л. Кринова, который изучал в течение нескольких лет отражательную способность всевозможных земных растений в разных лучах спектра.

Были взяты две пары растений: первая – зелёный овес и полярный можжевельник, вторая – береза и ель. Оказалось, что отражение инфракрасных лучей у хвойных растений – ели и можжевельника – в три раза меньше, чем у сфотографированных одновременно с ними березы и зеленого овса.

Таким образом, было выяснено, что летнезеленым растениям инфракрасные лучи не нужны, поэтому они отражаются.

Полярному можжевельнику, живущему в суровом климате, и ели, не теряющей своей зелени и зимой, инфракрасные лучи необходимы для согревания, потому и отражаются они слабо.

Работы Кринова показали, что зимой хвойные деревья отражают инфракрасные лучи почти вдвое слабее, чем летом. Наши наблюдения подтвердили обнаруженное явление.

Это были уже научные исследования и научные выводы из исследований.

В конце 1945 года па заседании президиума Казахского филиала Академии наук СССР я выступал с докладом, подводящим итоги многолетних наблюдений Марса. И мне посчастливилось первому в истории науки, во всеуслышание произнести слово астроботаника.

Снова поиски

Название новой науки произнесено. Надо теперь, чтобы ее признали, надо, чтобы радовались ее достижениям и огорчались ее неудачами.

И сплоченный, дружный коллектив астроботаников берется за работу.

В 1946 году в «Вестнике Академии наук Казахской ССР» я опубликовал статью, смысл которой в основном сводился к следующему: в мягком климате низких и умеренных широт Земли растениям достаточно поглощать солнечные лучи в нескольких сравнительно узких участках спектра; в суровом же марсианском климате тепла растениям не хватает – они должны поглощать всю длинноволновую часть солнечного спектра, которая несет еще около одной трети солнечного тепла. Длинноволновые полосы поглощения хлорофилла от этого расширяются, сливаются и теряют отчетливость.

Однако теоретический вывод надо было проверить наблюдениями.

Марс находится от Солнца в полтора раза дальше, чем Земля, а потому климат на нем суровый, напоминающий климат Якутии и высоких гор. Вот почему мои сотрудники начали свою деятельность с изучения оптических свойств растений на высоких горах и в полярных странах. Отправлялись экспедиции на близкие к Алма-Ате горы Заилийского Алатау, на Памир, в холодную пустыню Центрального Тянь-Шаня, к устью реки Оби, в Якутию, вплоть до берегов Ледовитого океана.

В районе Верхоянска и Оймякона климат не менее суров, чем на Марсе, а между тем там живет около 200 видов растений. Сильные морозы, доходящие иногда до 60 градусов и ниже, казалось бы, должны были убить, все живое; но приходит весна – зеленеют деревья и кустарники, цветами покрывается земля.

А на берегах Ледовитого океана растет ложечная трава. Она переносит мороз в 46 градусов, иногда даже без снега. Привыкают растения и к резким сменам температуры. В этом отношении очень характерен Памир. По данным профессора П. А. Баранова, континентальность климата там выражена чрезвычайно резко. Суточные колебания доходят до 60 градусов, а средняя годовая температура отрицательная -0,9 градуса. Тем не менее памирская растительность очень разнообразна.

Колебания температуры дня и ночи являются основной причиной сильного повышения морозоустойчивости. С этой точки зрения а низких ночных температурах можно видеть скорее положительный фактор – постоянную закалку растений.

Таких примеров можно привести очень много. Но и растения, названные выше, красноречиво говорят о приспособленности их к низким температурам.

Но необходимо остановиться на еще одном очень важном примере, который сыграл значительную роль в наших дальнейших научных выводах.

Я обратил внимание на голубую канадскую ель растущую во дворе одного из алма-атинских домов.

Сняли спектр этой ели и увидели – полоса хлорофилла отсутствует. Сняли обыкновенную сосну в алма-атинском ботаническом саду – в спектре отчётливая узкая полоса поглощения хлорофилла. Значит, канадская ель и в Алма-Ате сохранила свои оптические свойства, вынесенные из суровой Канады.

Снимая спектр тянь-шаньской ели в ущелье Медео, близ Алма-Аты, мы нашли другое, не менее интересное явление. При температуре воздуха плюс 2 градуса полоса хлорофилла видна очень отчетливо, а на снимке, сделанном через две недели при температуре минус 6 градусов, полоса не видна. В противоположность канадской, тянь-шаньская ель очень быстро приспособилась к температуре воздуха.

Экспедиция астроботаников к устью Оби, в район Салехарда, привезла спектрограммы многих северных растений. У некоторых из них – карликовой, березы, кладоники, мытника, центрарин и других – спектр, снятый в июле, то есть даже в самое теплое время года, не дал сколько-нибудь заметной главной полосы поглощения хлорофилла.

Так мы нашли простое и естественное объяснение отсутствия полосы поглощения хлорофилла у марсианской растительности.

Теперь стало ясно, почему «зелень» на Марсе имеет голубой, синий и даже фиолетовый цвет. Если в спектре растения ослаблены красные, оранжевые, желтые и зеленые лучи, то лучи голубые, синие и фиолетовые приобретают большое значение. Значит, в суровом климате растения вместо зеленого могут иметь голубой, синий и фиолетовый цвет.

Недавно я прочел книжку «Обитель снегов» В. В. Агибаловой и П. В. Ковалева, В ней описывается природа Гималаев. Оказывается, что на Гималаях растут голубые сосны и голубые маки.

В 1950 и в 1951 годах А. П. Кутырева на Памире установила, что уже перед подъемом на Алайский хребет в речных долинах большие пространства пойменных лугов, высоких и сухих мест речной долины имеют коричневато-лиловый или сплошь синевато-лиловый оттенок. Это невольно вызывает сравнение с окраской тех мест поверхности Марса, где возможно предположить наличие растительности.

Окраска колосков некоторых видов мятликов, бескильницы, разных осок и злаков субальпийской растительности и растений в альпийском поясе Памира и Алая преимущественно темная, коричневато-лиловая. Естественно, что луг, покрытый выколосивщимися травами этого вида, приобретает коричнево-лиловый фон.

Более сухие места долины покрыты другими видами злаков, преимущественно диким туркестанским ячменем, типчаном, карабашем, или Черноголовкой. Их колоски уже синевато-лиловые, почти фиолетовые с голубовато-матовым налетом. Обширные пространства речных долин, где преобладают эти разновидности злаков, имеют общий синевато-лиловый цвет.

Далее. Сухие южные склоны долин застилают заросли низкорослой полыни, различные лапчатники и некоторые другие растения, Большая их часть покрыта густым войлочным опушением, которое придает голубовато-белую окраску зелени этих видов. Общий фон таких склонов при значительной густоте, покрова принимает нежный голубоватый оттенок.

Особенно большое впечатление производит Алайская долина. Она лежит высоко в горах, на высоте 3500–3600 метров над уровнем моря. Климат здесь довольно суровый. Иногда даже в летнее время долину покрывают растения, опушенные войлочным покровом. Тогда голубоватые просторы долины напоминают большое озеро, по которому разбросаны отдельные небольшие ярко-зеленые островки.

Колоски злаков в Алайской долине имеют в большинстве своем темную фиолетово-коричневую окраску.

У злаков Восточного Памира преобладает зеленая окраска листьев, но зато колоски у видов имеют или темную синевато-лиловую, или коричневую окраску. Особенно темный синевато-лиловый оттенок имеют колоски Черноголовки.

А. П. Кутырева изучала на Памире отражение растениями разных участков солнечного спектра. Найдено, что красные и инфракрасные лучи отражаются в основном культурными растениями южного происхождения, которые ранее на Памире не выращивались.

Собранные спектры растений в изученный районах, после обработки, согласно показали, что оптические свойства земных растений сурового климата сходны с оптическими свойствами растений марсианских.

Растение регулирует тепло

За небольшой период работы, уже к 1946 году, у нас накопилось много спектрограмм растений и их цветов. При обработке этого материала мы обнаружили неожиданное явление. Оказалось, что некоторые цветы дают в инфракрасных лучах яркость больше единицы, то есть отражают света больше, чем белые порошки магнезии и барита, яркость которых принята за единицу.

Вот эти цветы: герань на высоте 3000 метров дает яркость 1,6; пион на высоте 1350 метров – тоже 1,6; желтая фиалка – 1,25. Откуда же могла появиться добавочная яркость? Не оставалось ничего иного, как допустить, что цветы излучают инфракрасные лучи под действием солнечного тепла.

В физике флуоресценцией называется самоизлучение, быстро прекращающееся после облучения. Есть самоизлучение, которое продолжается довольно долго, – это фосфоресценция.

Каким из этих двух свойств обладают цветы, мы не знали. Тогда стали закрывать на ночь цветы в саду ящиком без дна. В него был врезан фотоаппарат с очень светосильным объективом.

Объектив наводили на цветы, открывали затвор с наступлением сумерек и закрывали перед утренней зарей.

Испытали несколько цветов, но их изображения не получались. Значит, исследованные нами цветы не фосфоресцируют.

Мы стали изучать флуоресценцию цветов. Растение, над которым проводится исследование, освещается Солнцем так, что на него попадают все лучи, исключая красные, инфракрасные.

И все-таки на фотографии получается изображение цветка в инфракрасных лучах.

Лак мы убедились, что растения излучают крайние красные и инфракрасные лучи.

Теперь надо сфотографировать спектр излучения. Для выражения силы самоизлучения растений ввели понятие: энергетическая отдача самоизлучения. Оно выражает отношение энергии самоизлучения к энергии облучения.

Оказалось, что отдача самоизлучения увеличивается с повышением температуры. У пихты, например, при переходе от минус 40 к плюс 20 это число возрастает в 40 раз. Однако и при минус 40 градусов самоизлучение еще существует.

Спрашивается: неужели и при такой низкой температуре пинта испытывает избыток тепла? Возможно, это результат чрезвычайной закалки пихты. Более правильным будет предполагать двойную роль самоизлучения в жизни растения. Так, в жаркую погоду оно избавляется от лишнего тепла, а в холодную – выделяет тепло, чтобы согреть окружающий его воздух и таким образом согреться самому.

Примеры подобного самообогревания растений наблюдались во время зимовки на Тянь-Шаньской высокогорной обсерватории, в 1931–1932 годах. Было обнаружено целое поле в 400 квадратных метров подледной растительности, которая жила как бы в природной теплице.

Солнечная энергия, собранная подо льдом в «оранжереях» куполообразной формы, защищала растения от морозов. Очевидно растения своим собственным излучением устроили такую теплицу.

Еще пример; ранние весенние цветы подснежника и сольданеллы выходят из-под снега, расплавляя его своим теплом.

Такое же явление наблюдается на Алтае, в горной Шории. Ранней весной, когда температура воздуха еще значительно ниже нуля, из-под снега толщиной в 10–15 сантиметров выходят голубые анемоны.

Некоторые ботаники задавали мне такой вопрос; если по теоретическим выводам астроботаники желтые, оранжевые и красные цветы, освобождающиеся от теплых красных и инфракрасных лучей, характерцы для мест с высокой температурой, то почему же на севере и на высоких горах встречается немало желтых и красных цветов желтый мак, калужница, лютик, одуванчик, красные альпийские рододендроны?

Я пытался объяснить это явление следующим примером.

Были сделаны два образчика оранжевого цвета, совершенно одинаковые на глаз, но разные по спектральному анализу.

Один представлял собой нанесенный на стекло желатиновый слой, окрашенный в водном растворе анилиновой краской. Он прекрасно пропускает лучи инфракрасные, красные, оранжевые, желтые и половину зеленых.

Такая же окраска была бы у цветка, рассеивающего все эти лучи. Цветок мог бы жить в жарком климате. Он отражал бы лучи, несущие особенно много тепла.

Другой подобный же слой был нанесен на плоскую бутылочку, наполненную слабым водным раствором медного купороса.

Он полностью поглощает красные и инфракрасные лучи, пропускает оранжевые, желтые и немного зеленых. Таким мог бы быть цветок, растущий в холодном климате.

Интересные мысли о происхождении окраски цветов есть у Ивана Владимировича Мичурина.

В статье «Теплота и свет, как самые лучшие помощники в деле осмысленной гибридизации роз» он пишет: «Степень интенсивности света и количество его, а также температура воздуха и почвы играют главную роль в происхождении колеров цветочных лепестков растений. Несомненно, для различных не только семейств, родов, видов, но даже разновидностей для получения одного и того же данного колера требуется различная температура воздуха и почвы, а также и различная степень интенсивности лучей света, падающих на растение.

Известно, что в экваториальных местностях флора богаче желтыми колерами, что легко объясняется более высокой температурой воздуха и почвы и более высокой степенью интенсивности и суммы света, требующихся для получения желтого колёра.

Из наблюдений в Канаде выяснилось, что из всего летнего сезона месяцы сентябрь и октябрь отличаются обилием голубых цветов».

И наши опыты и высказывания Мичурина позволили нам сделать интересные выводы.

Если не так давно некоторые ученые говорили, что мы почти не знаем внешних приспособительных признаков, вызываемых холодом или избытком тепла, так как защита от тепла и холода внешне ничем не выражается, то теперь можно на это возразить.

Защита от тепла и холода выражается внешними цветовыми свойствами света, который идет к нам от растения, иными словами – спектром этого света.

Спектральный анализ дал нам возможность узнать химический состав и многие физические свойства отдаленных небесных светил.

Безусловно, он должен обнаружить и много нового у земных растений.


    Ваша оценка произведения:

Популярные книги за неделю