Текст книги "Загадочные явления природы"
Автор книги: Галина Железняк
Соавторы: Андрей Козка
Жанр:
Эзотерика
сообщить о нарушении
Текущая страница: 14 (всего у книги 17 страниц)
Советские геофизики А. Л. Чижевский (1940-е годы) и Э. Р. Мустель (1980-е годы) связывали влияние солнечной активности с земной погодой. К сожалению, их доказательства были не прямыми (космические эксперименты еще не начались), а выводились путем сопоставлений (корреляций) погодных параметров с числами W и другими параметрами солнечной активности. Не все полученные корреляции оказались достоверными, многие исследователи сомневались в полученных результатах. Главный недостаток работ заключался в том, что оставался неизвестным материальный переносчик солнечного влияния на процессы в тропосфере, где формируется земная погода. Все кажущиеся факторы влияния (солнечный ультрафиолет, рентген, корпускулярные потоки) поглощаются в стратосфере (выше 25 км), не доходя до «уровня погоды» (ниже 12 км). Сейчас эти факторы и механизм передачи установлены, о чем будет сказано ниже.
На первый взгляд, числа Вольфа не подтверждают солнечного влияния на ураганы, активность которых совершенно не следует 11-летнему циклу. Анализ показал, что число ураганов одинаково во всех фазах цикла – на подъеме и спаде, в максимуме и минимуме. Самые разрушительные ураганы, упомянутые выше, тоже пришлись на все фазы. И все же зависимость ураганов от солнечной активности есть, что можно увидеть, сравнивая временные последовательности ураганов и чисел Вольфа для интервалов 20–30 лет. Лучшая корреляция солнечной активности и числа ураганов наблюдается при сдвиге последовательности ураганов примерно на 20 лет. «Холодные» земные процессы как бы запаздывают относительно «горячих» солнечных.
Как уже говорилось, анализ солнечных вспышек показал их полную непричастность к возникновению ураганов. Число вспышек возрастает в десятки раз от минимума до максимума 11 – летнего цикла, тогда как темп ураганов остается постоянным. Должен быть другой «носитель», который менее связан с солнечными пятнами, 11-летним циклом чисел Вольфа и в то же время обладает достаточной силой, чтобы «перенести» солнечную активность на земные процессы.
Сейчас установлено, что такими переносчиками энергии от Солнца к Земле выступают корональные выбросы, возникающие как пузыри в солнечной короне, напрямую не связанные с фотосферой и темными пятнами, что может объяснить отсутствие 11-летней цикличности ураганов. Это сбросы старых магнитных петель конвективной зоны Солнца под напором нового нарождающегося магнитного поля – процесс, идущий все время и по всем солнечным широтам, от экватора до полюсов. Этот процесс лучше, по сравнению с числом солнечных пятен, более глубоко и всесторонне отражает солнечную активность. То, что корональные выбросы ответственны за изменение темпа ураганов, отчетливо видно по одновременному возрастанию темпа ураганов и их числа в последнее десятилетие (1996–2005) по сравнению с предыдущими циклами. Корональные выбросы стали наблюдать сравнительно недавно, их статистика представлена с 1970-х годов, поэтому нет возможности провести их корреляцию со всеми данными об ураганах.
Корональные массовые выбросы представляют собой гигантские облака намагниченной плазмы (массой до 10 млрд тонн), летящие быстрее 1000 км/с и несущие энергию порядка 10 25джоулей. Они вылетают из Солнца по всем направлениям, большинство из них не представляет опасности для Земли. Но те, которые образуются в центральной части видимого солнечного диска, направлены к нам и через 2–3 суток появляются у Земли. От их прямого воздействия нас оберегает земное магнитное поле, не пускающее заряженные частицы внутрь магнитосферы, заставляющее их обтекать границу (магнитопаузу) и скользить по длинному (сотни земных радиусов) «хвосту» магнитосферы.
Контакт магнитного облака с земной магнитосферой не проходит бесследно – возникает магнитная буря. Магнитная встряска Земли – как раз то промежуточное звено солнечно-земных связей, которое долго не могли найти и которое, как сейчас считают, оказывается одним из главных в причинно-следственной цепочке солнечного влияния на земную погоду.
Потоки электронов, позитронов, протонов, ядер относительно невысоких энергий, захваченные в ловушку магнитного поля Земли, получили название радиационный пояс.Его открыли в 1958 году при полетах первых космических ракет Д. Ван Аллен (США) и А. Е. Чудаков (СССР). Радиационный пояс находится на высоте от нескольких сотен до тысяч километров, имеет сложную тороидальную структуру. Захваченные частицы движутся по спиралям вокруг магнитных силовых линий, сгущаются и совершают долготный дрейф: положительные – на запад, отрицательные – на восток. Интенсивность захваченной радиации велика, проход через нее космических кораблей опасен для космонавтов, вызывает сбои электроники, нарушает радиосвязь.
Исследование частиц радиационного пояса, проводимое по программе ISTP (Международная программа солнечно-земной физики), обнаружило ускорение частиц в «хвосте» магнитосферы во время магнитной бури, вызванной облаком коронального массового выброса. Частицы ускоряются в результате сжатия силовых линий солнечной плазмой, образования токового слоя, где в некоторый критический момент происходит быстрое пересоединение магнитных силовых линий с выделением энергии. Поток ускоренных частиц уже не удерживается, как прежде, магнитным полем. Происходит перескок частиц внутрь магнитосферы, на более низкие, расположенные ближе к экватору оболочки, и, в конце концов, высыпание ускоренного потока в атмосферу по геомагнитному экватору.
Потоки релятивистских электронов высокой энергии HRE (highly relativistic electrons), появляющиеся с приходом корональных выбросов, были зарегистрированы спутниками SAMPEX и POLAR (NASA). Появление релятивистских электронов в радиационном поясе – естественный механизм повышенного воздействия солнечной активности на атмосферу, которое российские ученые предвидели еще двадцать лет назад. Оказывается, магнитные бури, инициированные корональными массовыми выбросами, вызывают не только полярные сияния и аварии на линиях связи и в электросетях, о чем регулярно сообщают газеты и телевидение, но и нагрев верхних слоев атмосферы, образование вихрей в районе экватора, что грозит еще большими бедствиями.
Места высыпаний вторгающихся в атмосферу потоков частиц «указал» эксперимент со спектрометром AMS (атомный масс-спектрограф) на борту шаттла «Discovery» (1998). Спектрометр со сверхпроводящим магнитом обладал столь высокой разрешающей способностью, что мог точно распознавать частицы (электроны, позитроны, протоны) и прослеживать их траектории до и после прохождения через прибор. В результате было установлено, что поток положительно заряженных частиц (протоны, позитроны) в несколько раз превышает поток электронов. Эксперимент проводился в спокойное от магнитных бурь время. Потоки вторичных частиц не были столь интенсивными, как можно ожидать в магнитную бурю, и не могли вызвать заметного отклика в атмосфере. Они просто указали места, где должны высыпаться частицы радиационного пояса при взаимодействии облаков корональных выбросов с земной магнитосферой.
Сильные электромагнитные поля в торнадообразующих облаках могут служить и для дистанционного отслеживания пути движения смерчей. М. А. Гохберг обнаружил вполне значимые электромагнитные возмущения в верхних слоях атмосферы (ионосфере), связанные с образованием и движением торнадо. С. А. Арсеньев исследовал величину магнитного трения в смерчах и высказал идею подавления торнадо методом запыления материнского облака специальными ферромагнитными опилками. В результате величина магнитного трения может стать очень большой, скорость ветра в торнадо должна уменьшиться. Способы борьбы с торнадо в настоящее время находятся в стадии изучения.
Территория любого региона подвержена комплексному воздействию десятков опасных природных явлений, развитие и негативное проявление которых в виде катастроф и стихийных бедствий ежегодно наносит огромный материальный ущерб и приводит к человеческим жертвам. Наиболее характерными природными явлениями, повторяющимися в зависимости от времени года и приводящими к возникновению чрезвычайных ситуаций, являются ураганы, бури и смерчи.
Еще раз обозначим явления, связанные с движением воздушных потоков.
Буря – разновидность ураганов и штормов. Ураганы и бури различаются по скорости ветра, которая при урагане достигает 32 м/с и более, а при буре – 15–20 м/с. Убытки от урагана больше, чем от бури. Снежные бури сопровождаются переносом огромных масс снега с одного места на другое. При этом снегом засыпаются значительные территории.
Смерч – восходящий вихрь из чрезвычайно быстро вращающегося в виде воронки воздуха огромной разрушительной силы, в котором присутствуют влага, песок и другие взвеси. Он имеет вид темного столба диаметром от нескольких десятков до сотен метров с вертикальной, иногда загнутой осью вращения. Смерч как бы «свешивается» из облака к земле в виде гигантской воронки, внутри которой давление всегда пониженное, поэтому проявляется эффект «всасывания».
Он поднимает в воздух и переносит на сотни метров животных, людей, автомобили, небольшие дома, срывает крыши, вырывает с корнем деревья. Средняя скорость ветра – от 15–18 м/с до 50 м/с, ширина фронта – 350–400 м. Длина пути – от сотен метров до десятков и сотен километров. Иногда смерчи сопровождаются осадками в виде града, проливного дождя.
Наиболее распространенными стихийными бедствиями в Европе являются ураганы и наводнения. В пересчете на экономические потери и объемы последующих страховых выплат именно они приносят наибольшее число убытков. Ураганы Лотаи Мартин, прошедшие в декабре 1999 года,нанесли ущерб, оцениваемый в 5 млрд евро, повредив сельскохозяйственные культуры, леса и инфраструктуру населенных пунктов.
Ураган – это чрезвычайно быстрое и сильное, нередко большой разрушительной силы и значительной продолжительности движение воздуха. При ураганах ширина зоны катастрофических разрушений достигает нескольких сотен километров (иногда тысячи км). Ураган длится 9—12 дней (буря – от нескольких часов до нескольких суток, ширина фронта при буре – несколько сотен километров), сопровождаясь большим количеством жертв и разрушений. Поперечный размер тропического циклона (называемого также тропическим ураганом, тайфуном) значительно меньше – всего несколько сотен километров, высота его – до 12–15 км. Давление в ураганах падает намного ниже, чем во вне-тропическом циклоне. При этом скорость ветра достигает 400–600 км/ч. В сердцевине смерча давление падает очень низко, поэтому смерчи «всасывают» в себя различные, иногда очень тяжелые предметы, которые переносят затем на большие расстояния. Люди, оказавшиеся в центре смерча, погибают.
По мере того как поверхностное давление продолжает падать, а скорости ветра начинают превышать 64 узла, тропическое возмущение становится ураганом. Заметное вращение развивается вокруг центра урагана, так как спиральные полосы выпадения осадков закручиваются вокруг глаза урагана.
Глаз– область диаметром в 20–50 км, находящаяся в центре урагана, где небо часто ясное, ветры слабые, а давление – самое низкое.
Стена глаза– кольцо кучево-дождевых облаков, закрученное вокруг глаза.Самые тяжелые осадки и самые сильные ветры обнаруживаются именно здесь.
Спиральные полосы выпадения осадков– полосы мощных конвективных ливней, направленных к центру циклона.
Смерч (торнадо) – вихревое горизонтальное движение воздуха, которое возникает в грозовом облаке и опускается на поверхность Земли в виде опрокинутой воронки, диаметр которой доходит до сотен метров. Воздух внутри столба вращается против часовой стрелки, поднимаясь вверх по спирали со скоростью в несколько десятков метров в секунду. Поскольку радиус смерча у земли уменьшается, то скорость здесь достигает сверхзвуковых величин. Движется столб со скоростью до 20 м/с и проходит расстояние 40–60 км. Внутри смерча разрежение воздуха так велико, что здания рассыпаются из-за напора находящегося в них воздуха. Удивительна способность смерчей вонзать продолговатые предметы (соломинки, палки, обломки и др.) в деревья, стены домов, землю и т. п. Мелкие камни пробивают стекло и тонкий металл.
Ураганы, возникающие в тропических широтах, имеют скорость до 64 узлов (74 миль в час) и способны вызывать разрушающие ветры, обильные осадки и наводнения, которые могут причинить огромный ущерб инфраструктуре населенных пунктов, частной собственности и часто приводят к человеческим жертвам. Ураган по силе воздействия на окружающую среду не уступает землетрясениям: разрушаются строения, мачты линий электропередач и связи, транспортные магистрали, ломаются и выворачиваются с корнями деревья, переворачиваются морские суда и автомобильный транспорт. Часто бури и ураганы сопровождаются ливнями и снегопадами, что еще больше осложняет ситуацию. В результате сильного ветра происходит ветровой нагон воды на устьевом участке рек, подтапливаются населенные пункты, пахотные земли, предприятия в таких регионах вынуждены останавливать производство.
Из дневника наблюдений
«Москва, ночь с 20 на 21 июня– порывы ветра местами достигали 31 метра в секунду. Во время сильного ливня выпало 35 мм осадков (столичная месячная норма). По предварительным данным, сломано и вырвано с корнем не менее 45 тысяч деревьев, произошло 744 обрыва уличной осветительной сети. Более ста маршрутов городского общественного транспорта бездействовало из-за 585 обрывов троллейбусных и трамвайных контактных сетей. Шквальный ветер повредил высоковольтные линии электропередач – зарегистрировано 75 повреждений на линиях напряжением 500, 220 и 110 киловольт. В некоторых местах столицы произошли аварии строительной и дорожной техники. Повреждено множество машин и зданий, в том числе здание Кремля и Большого театра. Около полутора тысяч домов остались без крыш. В речном порту рухнул кран и потопил 2 теплохода. Штормовой ветер, скорость которого, по сообщениям синоптиков, в зоне урагана достигала 90 километров в час, принес и человеческие жертвы: 7 человек погибли, 122 госпитализированы и 161 человек обратились за медицинской помощью».
Своевременное оповещение об урагане от синоптиков может не поступить. Отсутствие штормового предупреждения приводит к колоссальному материальному ущербу, человеческим жертвам, а иногда и к значительным гуманитарным кризисам. Для эффективного разрешения кризисных ситуаций необходима координация и концентрация ресурсов, которые обеспечат оказание своевременной и соответствующей помощи нуждающимся в ней странам и людям. В 1992 году для координации гуманитарных операций за пределами Европейского Союза создано Бюро ЕС по гуманитарной помощи (ECHO).
Усовершенствование службы метеопрогнозов (внедрение системы предупреждения об ураганах космических средств наблюдения) позволяет осуществлять срочную эвакуацию населения из районов, которым угрожает ураган, и уменьшать количество человеческих жертв. Проводятся также исследования влияния на ураганы (в особенности те, что лишь зарождаются) внесением в облака некоторых химических реагентов (йодистого серебра). В ряде случаев удается вызвать преждевременное выпадение осадков и тем самым ослабить разрушительную силу урагана.
Для смягчения последствий стихийных бедствий предпринимаются действия и меры как на национальном, так и на региональном уровнях, хотя единой целевой политики еще не выработано. Планы действий в экстренных ситуациях, включающие инструкции по реагированию на различные стихийные бедствия, разработаны во всех странах Европейского союза, но они в основном еще не апробированы на практике.
Разрушительные действия ураганов связывают, прежде всего, с ветром, но следующая за этим фаза ливней и наводнений гораздо опаснее. Эти явления приобретают грозный характер, оборачиваются разгулом стихии с катастрофическими последствиями в масштабах целых государств или даже нескольких стран какого-либо географического района.
Мощные ураганы с дождями нередко приводят к человеческим жертвам. Повреждается большое количество общественных, хозяйственных и промышленных объектов и жилых домов. Ущерб может достигать миллиардов долларов.
Лето 2002 года.Крымское побережье. В квартирах выбило стекла и двери, с сотен домов сорвало крыши. Ветер валил деревья, гнул светофоры и опоры уличного освещения, словно с игрушками, расправлялся с газетными киосками и продовольственными ларьками.
Вышли из строя электро– и теплоснабжение. Люди оказались без света, воды и тепла. Замолчали телевидение и радиовещание. Нельзя было передать населению нужную информацию. Сошедшие с гор сели смыли в море кемпинги вместе с машинами, палатками и людьми.
Сопутствующие компоненты ураганов
Наводнения
Временные затопления низменных территорий речных долин вызываются проливными дождями, циклонами, ураганами и другими метеорологическими причинами. Значительный вред, который наводнения наносят человечеству, в определенной мере объясняется проблемой прогнозирования в настоящее время. Сильные дожди и акваториальные воды, принесенные к берегу сильными ветрами, могут вызвать подъем уровня воды более чем на 50 см всего за 24 часа. Системы стоков во многих городах не в состоянии выдержать такой подъем из-за мягкой топографии, общей для многих береговых областей, где происходят ураганы.
Штормовой нагон воды
Одним из последствий штормов часто становится увеличение уровня воды в акватории, иногда свыше нескольких метров. Это наиболее разрушительный фактор стихийных потрясений, разоряющий нижние уровни береговых построек. Серьезнейшая опасность возникает при повышении уровня воды во время высшей точки прилива.
Дестабилизация условий жизнедеятельности населения
Коммунальное хозяйство.Повреждаются административные и производственные здания, жилые дома и объекты экономики. А также системы газо– и водоснабжения, канализации, котельные, теплотрассы, трансформаторные подстанции, фидеры ЛЭП, электрощиты. Ураганный ветер срывает крыши домов и административных зданий, валит деревья, столбы освещения. Затопляются подземные переходы, перекрестки улиц, линии водоводов и водостоков. Прерывается телефонная связь и нарушается электроснабжение населенных пунктов с населением в десятки и сотни тысяч человек.
Транспорт.Образуются завалы на дорогах от упавших деревьев, прерывается движение на автомобильных трассах. Размываются участки асфальтированных, железных и грунтовых дорог, задерживается движение пассажирских поездов. Повреждаются аэровокзалы, мосты и мостовые переходы.
Сельское хозяйство.Шквалистый ветер, сопровождающийся ливневым дождем с градом, повреждает кровли жилых домов, зернохранилищ. Вызывает подтопление домов, построек, частных домовладений, мостовых переходов, сельскохозяйственных угодий. Гибнут посевы сельскохозяйственных культур, сады и огороды на значительных площадях. Повреждаются фермы, кошары, погибают сотни голов скота и птицы. В результате разгула стихии уровень воды в реках повышается и превышает критические отметки. Длительному затоплению подвергаются пашни, тысячи гектаров многолетних трав, пастбищ и лугов.
Создается опасность активизации берегоразрушительных и оползневых процессов.
Из пострадавших районов может быть временно отселено практически все население.
Особую настороженность министерств и ведомств, принимающих участие в ликвидации последствий ЧС и катастроф природного характера, вызывают объекты, сами по себе представляющие опасность: ГЭС, АЭС, химические, биологические, пожаро– и взрывоопасные, производственные, военные склады и хранилища. Повышенного внимания требуют объекты социально-бытового назначения: аэропорты, вокзалы, транснациональные железные и автомобильные дороги, страховые компании, банки, стратегические объекты экономики и, главное, – энергетический потенциал, от которого зависит работоспособность всего комплекса инфраструктуры городов.
В 1980-х годах проводились попытки воздействовать на облака корональных выбросов, летящие к Земле, выпуская на их пути искусственные потоки плазмы со спутников. Гигантские солнечные облака эти преграды просто не замечали: наша техника слишком слаба, чтобы на них повлиять.
Нам не под силу сдержать солнечные выбросы и предотвратить магнитные бури в земной магнитосфере, как невозможно преградить путь развившемуся тропическому урагану. Но, может быть, в наших силах оказать опережающее воздействие на радиационный пояс, истощив его за несколько дней до прихода массового выброса, так что поток высыпающихся частиц будет ослаблен. Искусственное уменьшение концентрации заряженных частиц радиационного пояса – реальный факт, достигнутый, правда, очень грубым путем – ядерными взрывами в космосе («Морская звезда» и другие операции США, 1960-е годы). Управлять захваченной радиацией нужно, конечно, более цивилизованным и безопасным способом.
Методы воздействия могут быть разные. Это и распыление в определенных оболочках препаратов, захватывающих электроны (химическое отравление), и взрывы небольших зарядов в радиационном поясе, перераспределяющие населенность оболочек (физическое отравление). В настоящее время проводится эксперимент «Интербол» – попытки воздействовать мощными импульсами радиоизлучения на ионосферу, для чего созданы крупные комплексы антенн на Аляске, в Норвегии, России.
Изучается возможность «тонкой подстройки» ионосферы путем изменения ее проводимости. Поскольку магнитосферные токи замыкаются на ионосферу, таким способом повлиять на магнитную бурю в принципе можно. «Подстройка» в момент прихода выброса и начала магнитной бури, возможно, окажется тем рычагом, который позволит уменьшить интенсивность высыпающихся частиц и унять тропический циклон, не дав ему перерасти в ураган. Этот метод – «космический громоотвод», как некогда молниеотвод Франклина, – возможно, станет действенной защитой от ураганов и пока еще неизбежных природных катастроф.
Ученые из Научно-исследовательской лаборатории ВМС США (НИЛ ВМС) при Стессисском космическом центре НАСА в штате Миссисипи зарегистрировали рекордную высоту волны в момент прохождения урагана Айвеннад швартовыми НИЛ ВМС в Мексиканском заливе в 2004 году. Согласно пресс-релизу НИЛ ВМС от 4 августа, во время проводившегося НИЛ ВМС полевого эксперимента под названием «Энергетика наклона к шельфу и динамика обмена» (ЭНШДО) на океаническом континентальном шельфе в Мексиканском заливе на глубине 60–90 метров было размещено шесть профилографических швартовых (содержащих метеорологические датчики), также оснащенных волнографами и самописцами уровня моря.
Швартовый, как правило, представляет собой находящийся на морском дне тяжелый объект, от которого к поверхности моря тянется трос или кабель, прикрепленный к поплавку.
Когда ураган Айвенпронесся над этим районом в сентябре 2004 года, его глазпрошел непосредственно над четырьмя швартовыми. На том же склоне шельфа было размещено восемь других швартовых, которые, однако, не были оснащены волнографами и самописцами уровня моря.
Обычно, при столь мощных штормах океанические измерительные приборы выходят из строя, однако «ЭНШДО» успешно пережили ураган Айвени обеспечили лучшие из когда-либо произведенных измерения океанических течений и волн непосредственно в условиях сильного урагана.
Результаты анализа данных о волнах и ветрах свидетельствуют о том, что высота волн вблизи центра урагана, скорее всего, превышала 39 метров, это были самые сильные ветра из когда-либо зарегистрированных в непосредственной близости от глазаурагана.
Ученых беспокоит ряд странных особенностей, которыми отличались три самых разрушительных урагана 2005 года. Ураганы обычно не сопровождаются грозами с молниями. В то же время эти три урагана – Катрина, Ритаи Эмили, – изуродовавшие южное побережье США, были отмечены очень большой частотой молний. Эти ураганы уже заслужили название электрических.
Ученые NASA и метеорологического агентства США NOAA отмечают три особенности «электрических» ураганов: все они отличались огромной мощью, во всех трех молнии были обнаружены еще до того, как они вышли на сушу, что чрезвычайно нехарактерно для молний при ураганах вообще; кроме того, во всех трех случаях, сообщает Live Science,молнии наблюдались в окрестностях глазаурагана.
По словам Ричарда Блэксли ( Richard Blackslee),сотрудника центра глобальной гидрологии и климата (GHCC) в г. Хантсвилл, штат Алабама, отсутствие молниевых разрядов при ураганах было бы вполне понятно. «В них отсутствует ключевой элемент, необходимый для возникновения молний, – вертикальная динамика воздушных масс», – поясняет он. Неясно как раз, откуда могли взяться молнии.
Правда, иногда молнии наблюдались при ураганах и раньше. Так, в 1998 году молниевые разряды были отмечены в урагане Джордж,пронесшимся над островом Эспаньола в Карибском заливе. Однако как раз в этом случае их появление можно объяснить возникновением вертикальной динамики воздушных масс под действием так называемых орографических сил,связанных с прохождением урагана над горными вершинами. «Как правило, ураганы продуцируют разряды молний при выходе на сушу», – говорит д-р Блэксли. Однако мощнейшие ураганы 2005 года сопровождались молниями еще тогда, когда под ними была лишь водная гладь без каких бы то ни было гор вообще.
Необычная мощь ураганов 2005 года, а также высокая точность, позволившая урагану Катринаразрушить крупнейший город побережья – Новый Орлеан, породила множество догадок об их природе и о том, что столь точный удар по самому, вероятно, уязвимому для стихии городу на южном побережье США был нанесен неспроста. Возникли даже спекуляции по поводу того, что «электрические ураганы» явились якобы результатом испытания секретного метеорологического оружия. Так, американский метеоролог Скотт Стивенс (Scott Stevens), готовящий сводки метеорологических прогнозов для телевидения, заявлял, в частности, что ураган Катринабыл вызван искусственно. По его словам, для инициации ураганов и управления их движением могли использоваться электромагнитные генераторы, создававшиеся еще в годы холодной войны. Об этом, по его мнению, свидетельствует появление перед ураганом облачности с необычным искусственным паттерном, а также странные помехи в радиодиапазоне и даже странный маршрут движения Катриныперед ударом по Новому Орлеану. Большое количество снимков странной облачности автор оригинальной идеи представил в свое время на собственном сайте.
Можно ли бороться с ураганами и другими мощными тропическими циклонами?
Каждый год атмосферные вихри, скорость ветра в которых достигает порой 120 км/ч, проносятся над тропическими морями, опустошая побережье. В Атлантике и восточной части Тихого океана их называют ураганами, на западном побережье Тихого океана – тайфунами, в Индийском океане – циклонами. Когда они врываются в густо населенные районы, гибнут тысячи людей, а материальный ущерб достигает миллиардов долларов. Сможем ли мы когда-нибудь обуздать беспощадную стихию? Что нужно сделать, чтобы ураган изменил свою траекторию или потерял разрушительную силу?
Исследователь Росс Хоффман считает, что препятствовать ураганам можно. Он является ведущим специалистом и вице-президентом массачусетской фирмы «Исследования атмосферы и окружающей среды» (AER). Хоффман занимается объективным и сравнительным анализом данных, динамикой и радиационным балансом атмосферы, а также климатологией. Он работал в различных подразделениях NASA и в Национальном научно-исследовательском консультативном комитете по состоянию и будущим направлениям исследований и деятельности в области преобразования погодных условий в США.
Прежде чем приступить к управлению ураганами, необходимо научиться точно прогнозировать их маршрут и определять физические параметры, влияющие на поведение атмосферных вихрей. Затем можно будет заняться поисками способов воздействия на них. Пока мы еще в самом начале пути, но успехи компьютерного моделирования ураганов позволяют надеяться, что мы все-таки можем справиться со стихией.
Результаты моделирования реакции ураганов на мельчайшие изменения их первоначального состояния оказались весьма обнадеживающими. Чтобы понять, почему мощные тропические циклоны чутко реагируют на любые возмущения, необходимо разобраться, что они собой представляют и как зарождаются. Как мы уже выяснили, ураганы возникают из грозовых скоплений над океанами в экваториальной зоне. Тропические моря поставляют в атмосферу тепло и водяной пар. Теплый влажный воздух поднимается вверх, где пары воды конденсируются и превращаются в облака и осадки. При этом тепло, запасенное водяным паром во время испарения с поверхности океана, освобождается, воздух продолжает нагреваться и поднимается все выше. В результате в тропиках формируется зона пониженного давления, образующая глаз бури– зону затишья, вокруг которой закручивается вихрь.
Оказавшись над сушей, ураган утрачивает поддерживающий его тепловой источник и быстро ослабевает. Так как ураганы получают большую часть энергии из тепла, освобождающегося при конденсации водяных паров над океаном и образовании дождевых облаков, первые попытки укрощения непокорных гигантов сводились к искусственному созданию облаков. В начале 60-х годов XX века этот метод был опробован в ходе экспериментов, проведенных научно-консультативной комиссией Project Stormfury, учрежденной правительством США.
Ученые попытались замедлить развитие ураганов, увеличивая количество осадков в первой полосе дождей, которая начинается сразу за стеной глаза бури, скоплением облаков и сильных ветров, окружающих центр урагана. Для создания искусственных облаков с самолета сбрасывали йодистое серебро. Метеорологи надеялись, что распыляемые частицы станут центрами кристаллизации переохлажденного водяного пара, поднявшегося в холодные слои атмосферы. Предполагалось, что облака будут формироваться быстрее, поглощая при этом тепло и влагу с поверхности океана и замещая стену глаза бури.Это привело бы к расширению центральной спокойной зоны и ослаблению урагана.
Сегодня создание искусственных облаков уже не считается эффективным методом, так как выяснилось, что содержание переохлажденного водяного пара в воздушных массах бурь незначительно. Современные исследования ураганов опираются на предположение, связанное с теорией хаоса. На первый взгляд, хаотические системы ведут себя произвольно. На самом деле их поведение подчиняется определенным правилам и сильно зависит от первоначальных условий. Поэтому с виду незначительные, случайные возмущения могут привести к серьезным непредсказуемым последствиям. Например, небольшие колебания температуры воды в океане, смещение крупных воздушных потоков и даже изменение формы дождевых облаков, окружающих центр урагана, могут повлиять на его силу и направление движения. Высокая восприимчивость атмосферы к незначительным воздействиям и ошибки, накапливающиеся при моделировании погоды, затрудняют долгосрочное прогнозирование. Возникает вопрос: если атмосфера столь чувствительна, то нельзя ли как-нибудь повлиять на циклон, чтобы он не достиг населенных районов, или хотя бы ослабить его?