Текст книги "Физика в технике"
Автор книги: Г. Покровский
Жанры:
Прочая научная литература
,сообщить о нарушении
Текущая страница: 4 (всего у книги 7 страниц)
Радиотехника
Открытие радио А. С. Поповым привело к возникновению радиотехники – науки об электромагнитных колебаниях высокой частоты (радиоволнах), отрасли техники, осуществляющей их применение для связи, вещания, радиолокации, навигации, управления, астрономии и др. К основным областям радиотехники относятся: получение (генерирование) и усиление электромагнитных колебаний высокой частоты, а также управление ими; излучение, распространение и прием радиоволн, избирательное выделение электромагнитных колебаний заданной частоты; восстановление и усиление переданных сигналов; воспроизведение переданных сигналов управления и регулирования, телеграфного текста, речи, музыки и изображений.
Каким же образом происходит излучение радиоволн?
Если проводник, являющийся антенной радиостанции, излучает электромагнитные волны, это значит, что по антенне движутся электрические заряды то в одном направлении, то в другом. Иными словами, в антенне радиопередатчика возбуждается переменный электрический ток. Ток вызывает появление электрических и магнитных полей в окружающем пространстве, которые распространяются со скоростью света.
Электромагнитные волны бывают различной длины.
В радиотехнике применяют волны, имеющие длину от нескольких миллиметров до нескольких километров.
Длинные волны отражаются от верхних слоев атмосферы и движутся в сравнительно (с размерами Земли) тонком слое атмосферы, слабо поглощаясь поверхностью Земли и хорошо огибая препятствия. Говорят, что в этом случае радиоволны распространяются «поверхностным лучом».
Короткие волны распространяются по ломаной траектории, многократно преломляясь в ионосфере и отражаясь от поверхности Земли. Эти волны являются более «жесткими». Они плохо огибают препятствия, а поэтому распространяются преимущественно пространственным лучом.
Очень короткие волны могут концентрироваться в узкие пучки небольшими зеркалами, сделанными из сплошных листов металла или из металлических сеток и решеток с достаточно малыми отверстиями.
Используя вогнутые зеркала в качестве антенн, излучающих очень короткие волны, можно создавать направленные потоки радиоволн, напоминающие лучи прожекторов, но свободно проходящие через дым, туман, облака. С помощью таких систем из радиоволн могут быть созданы различные «конструкции».
Имеет ли смысл вообще говорить о конструкциях из электромагнитных волн? Ведь конструкция – нечто зримое и осязаемое. Конечно, в случае с электромагнитными волнами понятие «конструкция» следует расширить. Электромагнитные волны, имеющие длину, равную одной двухтысячной доле миллиметра, видимы глазом. Их можно зарегистрировать при помощи прибора, называемого фотоэлементом. Электромагнитные волны других длин невидимы, но и их молено обнаружить различными приборами.
Представим себе множество прожекторов, лучи которых образуют гигантский шатер. Такой шатер вполне можно назвать «конструкцией» из световых лучей или из электромагнитных волн.
Однако такая конструкция из световых лучей сама по себе не имеет практического смысла. Она приведена лишь для пояснения. Но могут быть конструкции из электромагнитных волн, имеющие огромное значение в науке и технике. Чтобы пояснить это, рассмотрим следующий характерный пример.
Последние годы весь мир был свидетелем крупных успехов советской космической ракетной техники. Создание самых мощных космических ракет и ракетных реактивных двигателей является выдающейся победой науки и техники.
Однако для успешного запуска ракет необходимо было обеспечить исключительную точность движения ракеты. Эта точность была наглядно продемонстрирована при испытаниях ракет, пущенных в район Тихого океана на расстояние 12 500 километров (по поверхности земли). Ракеты точно прибыли в намеченное место. Наибольшее отклонение не превышало нескольких километров.
Как же была достигнута такая точность? Не рассматривая подробно все стороны управления ракетами, остановимся только на одном примере.
Путь ракеты состоит из двух участков: активного, который ракета проходит с работающим двигателем, и пассивного, когда ракета движется по законам небесной механики в космическом пространстве. Чтобы ракета на пассивном участке двигалась точно в соответствии с заданием, необходимо очень тщательно направлять полет ракеты во время работы ее двигателей. Другими словами, нужно, запуская ракету в космос, очень точно прицеливаться. Правда, задача несколько упрощается благодаря тому, что после старта ракеты имеется возможность исправить некоторые ошибки прицеливания, корректируя скорость и положение ракеты.
Наиболее удобно прицеливание и коррекцию производить при помощи радиоволн.
Можно, например, поступить так. В районе пуска ракеты устанавливаются четыре радиопередатчика с антеннами направленного излучения (рис. 15). Антенны излучают четыре узких направленных пучка радиоволн, частично входящих друг в друга и образующих как бы трубку, полую изнутри.
В средней части трубки остается канал, в котором интенсивность радиоволн меньше, чем по краям. Ось этого канала направляется точно по направлению заданного движения ракеты. При пуске ракета входит снизу в канал и летит в так называемой равносигнальной зоне, т. е. в зоне, где сигналы, поступающие на вход системы управления от каждого передатчика, равны между собой. Если она случайно отклоняется от заданного пути, то сразу же происходит изменение входных сигналов, которое моментально воспринимается соответствующим радиоприемником на ракете. Радиоприемник передает сигнал автомату, управляющему рулями, находящимися в потоке газов реактивного двигателя. Рули изменяют направление потока реактивных газов. В результате этого ракета поворачивается и возвращается на заданный курс.
Таким образом можно очень точно управлять движением ракеты.
Указанным способом можно также решать многие другие задачи. Например, создав широкую «воронку» из радиолучей, можно обеспечить возвращение космических кораблей точно в заданное место.
Конструкции из радиоволн, едва успев возникнуть, оказываются послушным и могущественным средством в руках человека, позволяющим успешно решать такие задачи, о которых нельзя было даже думать несколько десятилетий тому назад.
Другим важным применением высокочастотных электрических колебаний в технике является нагревание обрабатываемых изделий с помощью ультразвуковых паяльников и электромагнитных печей. Помещая обрабатываемую деталь в мощное электромагнитное поле, можно равномерно пропреть ее по всей толщине.
Приведем для пояснения хотя бы такой пример. Чтобы напреть до высокой температуры конец стального стержня, его вводят внутрь катушки (рис. 16), по обмотке которой пропускают переменный ток высокой частоты. Индукционные токи, возникающие в стержне, быстро нагревают до высокой температуры соответствующую часть стержня.
Таким образом, электромагнитные устройства могут не только управлять различными машинами, но и переносить энергию.
В настоящее время в промышленности применяют электромагнитные ускорители электронов и атомных ядер.
Рис. 15. Управление ракетой с помощью радиолучей
Электромагнитные ускорители преобразуют энергию электрического поля в энергию движения частиц почти без потерь. Это дает основание предполагать, что в будущем, при создании космических ракет, предназначенных для полетов за пределы солнечной системы, вместо тепловых ракетных двигателей будут применяться электромагнитные или электрические ускорители. Вещество, предназначенное для образования реактивной струи, например водород, будет сначала ионизироваться. Потом электроны и протоны будут ускоряться в двух отдельных, самостоятельно действующих ускорителях и выбрасываться в космическое пространство. Так как скорости выбрасывания частиц очень велики и могут достигать значений, близких к скорости света, то такие ракеты смогут набирать большие скорости, имея на борту небольшое количество отбрасываемой массы, заменяющей топливо. Таким образом, использование в технике современных достижений радиофизики и электроники открывает большие возможности.
Полупроводники и вычислительные машины
Вещества, которые по своей электропроводимости занимают промежуточное положение между проводниками и изоляторами, называют полупроводниками.
В отличие от проводников тока, где свободных электронов очень много, в полупроводниках их гораздо меньше.
Особенно интересные физические явления происходят в пограничном слое между двумя полупроводниками. Обычно, говоря о свойствах полупроводниковых устройств, имеют в виду свойства такого пограничного слоя.
При контакте двух полупроводников может быть создано устройство, хорошо проводящее ток в одном направлении и почти не проводящее его в обратном направлении. Это. свойство используют для выпрямления переменного тока.
Полупроводниковые устройства несколько иного типа, освещенные лучистой энергией (световыми, ультрафиолетовыми или инфракрасными лучами), могут служить источниками электрической энергии. В сельской местности широко применяют полупроводниковые преобразователи тепловой энергии в электрическую. Подобное устройство надевают на стекло керосиновой лампы и от него питают радиоприемник.
Воздействуя определенным образом на пограничный слой небольшим напряжением, можно широко изменять величину проходящего через полупроводник тока. Это свойство позволяет заменять громоздкие электронные радиолампы небольшими полупроводниками.
Такие полупроводники широко используют при создании современной электронной аппаратуры.
Различного рода полупроводниковые приборы, так или иначе управляющие электрическим током, лежат в основе разнообразных аппаратов, самыми простыми из которых являются радиоприемники и усилители.
Успехи в автоматической двусторонней радиосвязи с искусственными спутниками Земли и космическими ракетами стали возможными только благодаря полупроводниковым приборам.
Полупроводниковые приборы открыли широкие перспективы и перед электронными вычислительными машинами.
Электронные вычислительные машины представляют собой такие системы, в которых различного рода арифметические и логические действия с большой скоростью и точностью выполняются специальными схемами.
С помощью электронных вычислительных машин огромное количество задач, подлежащих расчетам, анализу и вычислениям, может быть сведено к простейшим логическим связям.
Подобные логические операции могут быть осуществлены с помощью так называемых устройств совпадения, различного рода триггерных схем (т. е. схем, обладающих двумя устойчивыми состояниями равновесия), инверторов, делительных цепей и т. д.
Так, например, используя электронную схему, в которой при наличии сигнала на ее входе выходной сигнал отсутствует и, наоборот, при отсутствии сигнала на входе выходной сигнал имеется (такая система называется инвертором), можно проводить операцию «да – нет».
Операция «или – или» может быть выполнена на так называемых разделительных цепях. В этом случае выходной сигнал будет возникать только тогда, когда хотя бы на одном из входов разделительной цепи есть входной сигнал.
Выполнение всевозможных арифметических действий (сложение, умножение и др.) может быть выполнено на триггерных схемах или на электронных логических схемах.
Поскольку электронные схемы и различные элементы вычислительных машин оперируют только с электрическими сигналами, то, для того чтобы машина стала решать ту или иную задачу или сложное математическое уравнение, надо сначала сформулировать эту задачу на «языке машины», т. е. составить программу работы машины применительно к данной задаче, предварительно приведя в соответствие величины чисел, входящих в формулы, с величинами электрических напряжений в машине.
Важной характеристикой всех электронных машин является объем их «памяти», т. е. максимальное число чисел и команд, которые могут «храниться» в машине.
Простейшим «запоминающим» устройством является ферритовый сердечник, который может намагничиваться или размагничиваться в зависимости от величины и направления электрического тока, протекающего по обмотке, намотанной на сердечник.
Намагниченный или размагниченный сердечник будет сохранять свое состояние как угодно долго, т. е. «запомнит» данный сигнал. Если через обмотку снова пропустить ток, то в зависимости от направления (полярности) последнего намагниченный сердечник или перемагнитится (при этом на выходе возникнет сигнал), или не перемагнитится (в этом случае выходной сигнал будет отсутствовать). Таким образом, возможность пропускания электрических сигналов запоминающей магнитной системой зависит от того, был ли ранее пропущен через эту систему сигнал и какова была его полярность.
В настоящее время в качестве запоминающих устройств в электронных машинах применяют специальные типы электронно-лучевых трубок, различные виды магнитной записи; причем современные вычислительные машины могут «запомнить» от 500 до нескольких сотен тысяч чисел и команд, а скорость их счета может достигать нескольких миллионов операций в секунду.
Применение полупроводников позволяет уменьшить размеры и вес электронных машин, которые используются на самолетах и космических кораблях.
Рис. 16. Нагрев детали токами высокой частоты
Электронные вычислительные машины на полупроводниках могут применяться в управлении ракетами в системе противовоздушной обороны. В этом случае задача решается следующим образом.
Радиолокаторы непрерывно следят за самолетом (самолетом-снарядом) противника и за ракетой, выпущенной для его поражения (рис. 17). Данные о положении самолета и ракеты непрерывно передаются на электронную вычислительную машину. Эта машина почти мгновенно определяет, на каком расстоянии находится ракета от самолета и по какому направлению она должна двигаться, чтобы быстрее поразить самолет. Решив задачу, машина по радио передает автоматические сигналы, которые управляют рулями и двигателем ракеты. В результате ракета автоматически следует за самолетом, настигает и точно поражает цель.
Не следует думать, что электронные вычислительные машины применяют только для решения сложных и трудных проблем новейшей техники. Электронные вычислительные машины могут применяться в бухгалтерских расчетах на предприятиях и колхозах, в управлении поездами, кораблями и даже автомобилями.
Рис. 17. Схема управления зенитной ракетой
Конечно, электронная автоматика и вычислительные машины не могут заменить творческую деятельность человеческого мозга. Это обусловлено тем, что все эти средства выполняют в конце концов только такие действия, которые до этого были продуманы и разработаны человеком или, точнее, большим творческим коллективом.
Из оказанного видно, что использование полупроводников открывает перед конструкторами электронной аппаратуры большие возможности для решения сложных задач.
Физическая оптика в науке и технике
Физическая оптика – это область физики, изучающая явления, связанные с процессами испускания, распространения и поглощения света.
Изучение спектра частот различных источников света дает возможность узнать строение и свойства атомов и молекул, определить наличие мельчайших примесей в том или ином веществе, судить о характере связей атомов в молекулах и о многом другом.
Все эти исследования связаны с применением спектрального анализа, идея которого принадлежит немецкому физику Кирхгофу.
Какова сущность спектрального анализа?
Всякое нагретое тело или разогретый газ излучает в окружающее пространство электромагнитные волны и, в частности, видимое, ультрафиолетовое и инфракрасное излучение.
При не очень высокой температуре, например при температуре 15–20 °C, максимальная доля энергии излучается в инфракрасной области, т. е. на волнах длиной в несколько десятых долей миллиметра. При повышении температуры вещества максимум его излучения перемещается в видимую, а затем и в ультрафиолетовую область спектра. Так, например, максимум излучения Солнца, температура поверхности которого равна примерно 5–6 тысяч градусов, приходится на длину волны [1]1
1Å (один ангстрем) равен 10−8 сантиметрам.
[Закрыть], т. е. лежит в желто-зеленой области спектра видимого света.
Смещение максимума излучаемой энергии в сторону более коротких длин волн с увеличением температуры тела носит название закона смещения Вина. С помощью закона Вина можно рассчитать, в какой части спектра излучается основная доля энергии разогретого тела, температура которого известна, и наоборот, зная распределение излучаемой телом энергии по спектру, можно определить его температуру.
Если свет, излучаемый нагретым телом или газом, пропустить через стеклянную или кварцевую призму (рис. 18), то можно наблюдать спектр этого света, т. е. распределение лучистой энергии, испускаемой телом, по длинам волн.
Рис. 18. Схема спектрографа
Твердые тела, например металлы, испускают непрерывный спектр, а разогретые газы – линейчатый, т. е. спектр, состоящий из отдельных линий. Если металл перевести в парообразное состояние, его пары также будут испускать линейчатый спектр (рис. 19). Каждому элементу периодической системы Д. И. Менделеева соответствует вполне определенный, собственный спектр. Так, в спектре паров ртути, возбуждаемых электрическим током (ртутная лампа), в видимой области наиболее характерны желтая, зеленая и голубая линии, в спектре натрия – двойная желтая линия (дублет), соответствующая длинам волн 5590 и 5596Å.
В спектре водорода наиболее характерной является красная линия, длина волны которой равна 6563Å.
В настоящее время спектры почти всех элементов периодической системы изучены достаточно хорошо, и составлены атласы спектральных линий, где указаны длины волн той или иной линии в спектре и ее принадлежность к тому или иному элементу.
Таким образом, сфотографировав с помощью спектрографа спектр какого-либо вещества, введенного в электрическую дугу постоянного или переменного тока, по атласу можно определить, какие элементы содержатся в исследуемом веществе. Однако можно не только качественно определить присутствие той или иной примеси в данном веществе, но и количественно ее измерить. При этом спектральный анализ позволяет обнаруживать и измерять ничтожно малое количество примесей (до миллионной доли процента).
Рис. 19. Спектры белого света и паров некоторых веществ
Спектральный анализ имеет очень большое значение во многих отраслях науки и техники. С его помощью, на сталелитейных заводах определяют качество выплавленных сталей, содержание в них углерода, никеля, кремния, марганца и др. Спектральный анализ позволяет определять химический состав звезд и скорости их движения относительно Земли, измерять температуру светящихся объектов, определять структуру атомов, строение электронных оболочек и даже исследовать магнитные свойства атомных ядер.
До сих пор говорилось об объектах, которые сами испускают свет. Однако в ряде случаев оказывается невозможным разогреть то или иное вещество до высокой температуры без изменения его свойств. Невозможно разогреть, например, воду или какое-либо органическое соединение до температуры, при которой эти вещества стали бы излучать свет, так как при гораздо более низкой температуре эти вещества распадутся или перейдут в другое агрегатное состояние.
Каким же образом исследовать структуру таких веществ?
На помощь приходит молекулярный спектральный анализ, основанный на том, что при прохождении света, спектр которого является непрерывным, через прозрачное вещество в спектре наблюдаются полосы поглощения.
Изучая эти полосы, можно изучить характер молекулярных связей в веществе и структуру самих молекул. Некоторые вещества (например, вода), являясь прозрачными для видимого света, дают ряд полос в инфракрасной области спектра, обусловленных структурой самих молекул воды.
С помощью молекулярного спектрального анализа изучено чрезвычайно большое количество различных видов веществ и химических соединений, в том числе таких, как нефть и ее производные, различные виды белков и др.
Однако область физической оптики далеко не исчерпывается применением спектрального анализа. Так, с помощью интерференционных явлений молено осуществлять контроль при изготовлении очень точных деталей и механизмов, контролировать качество различных поверхностей с точностью до одной стотысячной доли миллиметра, изготовлять светофильтры, обладающие очень узкой спектральной полосой пропускания.
Такие светофильтры были с успехом использованы при фотографировании натриевого облака – искусственной кометы, созданной впервые советскими учеными при запуске космической ракеты в сторону Луны
Интерференционные явления легли в основу опытов Майкельсона, результаты которых послужили фундаментом для создания теории относительности.
Немалую роль в развитии физической оптики сыграли такие ученые, как Ньютон, большая часть работ которого посвящена исследованию различных оптических явлений, Р. Вуд, создавший новый тип диффракционной решетки – прибора для спектрального разложения света, Рэлей, Вавилов и другие.
Самостоятельным разделом физической оптики является изучение люминесцентных свойств жидких и твердых соединений (люминесценцией называют способность веществ светиться после облучения их видимым, ультрафиолетовым или инфракрасным светом).
На люминесценции основан люминесцентный анализ, с помощью которого можно производить весьма точные измерения количественного состава различных органических соединений, восстанавливать стершиеся надписи, анализировать состав красок и многое другое.
Здесь приведены лишь некоторые примеры, из которых видно, что в современной науке и технике физическая оптика занимает далеко не последнее место.