Текст книги "Системы мира"
Автор книги: Г. Гурев
сообщить о нарушении
Текущая страница: 14 (всего у книги 15 страниц)
XXII. ПОИСКИ ДВИЖУЩЕЙ СИЛЫ СВЕТИЛ
Свои законы движения планет Кеплер нашел, исследуя хаотическую груду наблюдений, не зависимых друг от друга, не объединенных ни общей идеей, ни единым принципом. Они дали вполне ясное представление о геометрическом характере планетных движений, но не объясняли физических свойств явления, не вскрыли причины этих движений. Кеплер догадывался, что мир планет есть система, связанная «единой силой», но он не соблазнился распространенным в то время истолкованием законов в духе пифагорейцев, объяснявших явления «гармонией чисел». Он пытался заложить основы небесной механики (по его терминологии – небесной физики), найти физическое объяснение движения планет, найти силу, приводящую планеты в движение вокруг Солнца.
Эту силу Кеплер совершенно правильно видел в притяжении тел и поэтому допускал, что сила притяжения Земли не может ограничиваться телами на земной поверхности, но должна простираться в пространство. Более того, Кеплер считал, что очагом силы, управляющей движением планет вокруг Солнца, является само центральное светило, и это также было совершенно правильно. Из того, что Солнце находится в фокусе орбиты каждой планеты и что скорость планеты и время обращения зависят от расстояния ее до Солнца, он сделал вывод, что сила, которая движет все планеты, исходит от Солнца.
Но в своих рассуждениях об этой силе Кеплер пошел по ложному пути, потому что состояние тогдашней механики не давало ему еще возможности сделать правильные выводы, т. е. найти закон, по которому действует притяжение. Окончательно решить эту проблему удалось только Ньютону, который установил «закон всемирного тяготения» и показал, что законы Кеплера являются следствием свойств тяжести, т. е. той давно известной силы, с которой Земля притягивает тела на ее поверхности.
Птолемеева система допускала движения, совершающиеся вокруг геометрических, нематериальных точек (центров эпициклов, эксцентриков и т. д.). Некоторые движения такого рода признавал и Коперник, но он уже считал, что «Солнце управляет вращающимся вокруг него семейством светил», т. е. он признавал какое‑то «влияние» или «действие» Солнца на планеты. При этом он даже допускал, что Солнце, планеты и вообще все небесные тела обладают свойством притяжения.
Что же касается Кеплера, то он пошел значительно дальше Коперника и освободил гелиоцентрическую теорию от ее птолемеевских пережитков, так как считал бессмысленным допущение обращения материальных тел вокруг невещественных, математических точек. Кеплерова схема солнечной системы помещала вполне реальное тело. Солнце, в самую важную точку орбит – в один из фокусов эллипса – и одинаково объясняла и движение Луны вокруг Земли и четырех спутников Юпитера вокруг своей планеты. Обращения оказались связанными не с центральной точкой, т. е. не с математической фикцией, но с центральным телом.
Таким образом возник интересный вопрос, не находятся ли движения в какой‑нибудь зависимости от центрального тела. Давая положительный ответ на него, Кеплер в своей «Новой астрономии» утверждал, что сила тяжести действует не только на поверхности Земли, но и далеко за пределами земного шара, в космическом пространстве. Впрочем, напоминаем, что уже Коперник правильно полагал, что при– 12* 179
тяжение представляет собой общее свойство тел, что это качество присуще не только Земле, но и Солнцу, Луне и другим планетам.
Кеплер отвергал старинные теории движения всех тяжелых тел к центру вселенной и, подобно Копернику, считал, что сила тяжести представляет собой стремление однородных тел слиться, соединиться воедино. Но он шел значительно дальше Коперника и указывал, что центр вселенной, как нематериальная, математическая точка, т. е. как фикция, не способен привлекать к себе тела. Всякое материальное тело, – считал он, – именно потому, что оно материальное, способно покоиться на любой точке мироздания, если только' в этом месте оно находится вне круга действия сродного ему тела. Тяжесть есть стремление тел к соединению, и поэтому камень стремится не к какой‑либо точке в пространстве, но притягивается Землей и следует за ее движением. Если два камня перенесены вне сферы действия притяжения третьего тела, то они будут взаимно притягиваться, двигаться друг к другу, пока не соединятся, подобно двум магнитам, причем пройденные ими пути, – пояснял Кеплер, – должны быть обратно пропорциональны их массам.
«Если бы Луна не обращалась вокруг Земли, – писал Кеплер, – то Земля приблизилась бы к Луне на одну пятьдесят четвертую часть отделяющего их расстояния, а Луна подвинулась бы к Земле на остальные пятьдесят три части этого расстояния, и оба тела тогда соединились бы, – все это при предположении, чт^плотность Земли и Луны одинакова» (так как при одинаШвой плотности массы пропорциональны объемам; действительный же объем Земли приблизительно в 50 раз превосходит объем Луны, между тем как плотности их относятся между собой как 1:0.6). В связи с этим Кеплер давал довольно правильное объяснение приливов и отливов, уверенный в том, что действие притягательной силы Луны на Землю можно явственно видеть на морях. Все моря излились бы на Луну, если бы Земля их не удерживала; но так как Земля их удерживает, то в том месте, над которым вертикально стоит Луна, образуется на морской воде «гора», обусловливающая морские приливы; эта гора, или волна, следует за движением Луны вокруг Земли, но в конце концов она опаздывает, так как не может сравняться с Луной в скорости.
Наконец, Кеплер подчеркивал, что аристотелевское представление об абсолютной легкости некоторых веществ ложно, потому что нет веществ, стремящихся прочь от Земли, – там, где подобное явление наблюдается, происходит вытеснение более легкого вещества более тяжелым. А отсюда Кеплер сделал вывод: Земля связывает все земные 180
тела и увлекает их с собой при своем ежедневном обращении вокруг оси.
Кеплер знал, что сила света обратно пропорциональна квадрату расстояния освещенного тела от источника света. В своей «Гармонии мира» он в проблеме тяжести пошел настолько далеко, что поставил вопрос, не подчиняется ли ослабление тяжести тому же закону, что ослабление света, и таким образом был уже очень близок к открытию ньютоновского закона всемирного тяготения. Однако Кеплеру не пришла мысль приложить свои представления о тяжести к обращению планет вокруг Солнца, ибо он видел в тяжести только причину взаимной связи в планетной системе, но не причину движения планет вокруг Солнца. Объясняется это тем, что Кеплер не знал закона инерции в его полной формулировке.
Не имея правильной теории движения вообще, Кеплер считал, что материя, из которой состоят планеты, по природе своей инертна («бессильна или неповоротлива», по его выражению), и потому каждая планета постоянно оставалась бы неподвижной, если какой‑либо импульс не принуждал бы ее менять положение в пространстве. Кеплер таким образом вполне ясно формулировал статическую сторону закона инерции, т. е. высказал этот закон для состояния покоя, тогда как о динамической стороне этого закона он не имел никакого понятия, т. е. представление об инерции движения и о его бесконечной и неограниченной продолжительности было ему совершенно чуждо. Он не думал о том, что движение небесных тел может быть вызвано присущей им прямолинейной скоростью, так как всецело находился под влиянием древнего представления, что движение должно угаснуть само собой, подобно пламени, если какая‑нибудь внешняя сила не будет поддерживать и питать его. Поэтому Кеплер пришел к совершенно ошибочному представлению, будто для движения планет нужна какая‑то подталкивающая сила, и их обращение вокруг Солнца происходит под влиянием постоянно повторяющегося толчка.
Кеплер считал, что этот толчок имел своим источником вращение Солнца вокруг оси, причем вращение Солнца он допускал уже в то время, когда это явление еще не было установлено наблюдениями. В настоящее время мы знаем, что движение планет не связано с вращением Солнца вокруг его оси, – можно вообразить, что это вращение могло бы прекратиться под действием внешней силы, не вызвав изменений в движущихся вокруг него планетах. Кеплер не знал этого и думал, что если бы Солнце не вращалось вокруг своей оси, то планеты не могли бы обращаться вокруг Солнца и должны были бы упасть на него.
Он предполагал, что «движущая сила» простирается ог Солнца к планетам вместе или наподобие света и тепла и увлекает планеты вокруг Солнца. Что же касается неодинаковой продолжительности периодов обращения планет вокруг Солнца, то в своей книге «Краткое изложение Коперниковой астрономии» Кеплер писал: «Если бы планеты не обладали природным сопротивлением, то нельзя было бы указать причины, почему бы им не следовать в точности вращению Солнца. Но хотя в действительности все планеты движутся в том же самом направлении, в каком совершается вращение Солнца, скорость их движения неодинакова. А. это потому, что они смешивают в известных пропорциях косность своей собственной массы со» скоростью своего двигателя».
Свойства магнита внушили Кеплеру мысль, что>между Солнцем и планетами действует своеобразная магнитная сила, благодаря которой планеты то притягиваются, то отталкиваются в зависимости от того, какой стороной они обращены друг к другу. Рассматривая движущую планеты силу Солнца как особую разновидность магнетизма, Кеплер ссылается при этом на знаменитого исследователя магнетизма Гильберта, который рассматривал Землю как большой магнит. По мнению Кеплера, вращение Солнца увлекает за собой планеты, подобно тому, как железо следует за вращаемым магнитом, – отличие лишь в том, что планеты следуют за Солнцем с различной скоростью, соответствующей их тяжести. Во времена Кеплера объяснение всех непонятных явлений магнетизмом имело широкое распространение; Галилей также не отрицал связи между суточным вращением Земли и ее магнитными силами. Характерно, что при помощи подобных представлений некоторые пытались опровергнуть систему Коперника: они показывали, что шар из намагниченного железа отнюдь не способен благодаря магнетизму без конца вращаться вокруг оси, и отсюда делали вывод, что Земля не движется.
Фиг. 48. Идея Кеплера о тяготении. Диаграмма из «Краткого изложения коперниковой астрономии:».
Мы видим, таким образом, что хотя в некоторых идеях Кеплера можно видеть предвосхищение ньютоновского открытия всемирного тяготения, но эти идеи не получили у Кеплера полного развития. Эти идеи не прошли даром, и появление их свидетельствовало о том, что ни в «первый двигатель» Аристотеля – Птолемея, ни в ангелов, двигающих планеты, никто из мыслящих людей уже не верил, – аристотелева философия и старые системы мира не удовлетворяли более.
Фиг. 49. Ренэ Декарт.
Было необходимо найти силу, поддерживающую движение планет. Эту задачу пытался разрешить известный философ Ренэ Декарт (1596–1650) своей сравнительно долго державшейся теорией вихрей. Это учение заняло место аристотелевского учения о мире и сыграло большую роль в истории науки.
Согласно этой теории, все пространство вселенной заполнено тонким веществом, так называемым мировым эфиром. Вокруг всех небесных тел это вещество находится в вихреобразном движении, напоминающем водоворбт. Каждая планета и каждый спутник заключается в своем собственном вихре, который и увлекает небесное тело, как водоворот увлекает соломинку. Планеты движутся вокруг Солнца, а спутники вокруг своих планет потому, что таково движение их вихрей. В тяготении Декарт видел стремление тел к центру каждого вихря. Если движение планеты или спутника оказывалось не круговым, то это он объяснял столкновением или искривлением вихрей.
Теория Декарта не имела никакого отношения к законам Кеплера (которые, вероятно все же были известны Декарту), но она несомненно была теснейшим образом связана с системой Коперника. Это видно, между прочим, из того, что Декарт назвал эту систему «самой простой и ясной» и отметил, что она «принята теперь почти всеми астрономами, которые видят, что иначе невозможно объяснить совершающихся явлений». Но Декарт знал силу церкви и понимал, что с нею выгодно ладить, и поэтому, когда до него дошла весть о преследовании и отречении Галилея, сделал довольно лицемерный шаг: он попытался использовать свою теорию для того, чтобы формально «отрицать» движение Земли и таким путем создать «компромисс» между старыми и новыми системами мира. Он писал: «Земля находится в покое и не имеет никакого стремления к движению, так как мы ничего подобного в ней не замечаем. Но это не мешает ей уноситься течением неба и следовать его движению, не переставая оставаться в покое, подобно кораблю, который не двигаясь ни ветром, ни веслами, но и не удерживаясь якорями, покоится в водах моря, хотя течение этой громадной массы и уносит его незаметно с нею». Выходило, таким образом, что Земля подобна пассажиру на палубе корабля: она не имеет самостоятельного движения, но, охваченная вихревым движением, вращается и обращается вокруг Солнца, т. е. покоится и в то же время вертится…[28]28
Эта уловка не спасла, однако, книгу Декарта от запрещения, но все же изложенный лицемерно – компромиссный образ мыслей получил довольно широкое распространение в XVII в., особенно во Франции. Это видно, например, из того, что ученый Рого в 1672 г. сказал о декартовой системе следующее: «Самое удобное или выгодное в этой системе то, что она может удовлетворить и людей благоразумных, и людей мнительных, предоставляя одним свободу думать, как им угодно, я давать какие угодно названия передвижению Земли, и давая понять другим, которые боятся впасть в ошибку, если признают, что Земля движется, что им нечего тревожиться, принимая эту гипотезу, так как в действительности упомянутая система, хотя и признает, что Земля движется, но движение это от нее не зависит. Если движение не что иное, как перемещение тела относительно тел непосредственно его окружающих, то приходится согласиться, что так называемое суточное движение Земли скорее принадлежит массе, состоящей из земли, морей и воздуха, чем собственно Земле, которая пребывает в совершенном покое в то самое время, как ее увлекает поток материи, когда она плавает; о человеке, который спит на плывущем и увлекающем его корабле, тоже говорится, и весьма справедливо, что он находится в покое. Движение, которое привыкли называть. годовым движением Земли, тоже нисколько не принадлежит Земле, – это движение не принадлежит даже массе, состоящей из земли, воды и воздуха, но принадлежит небесной материи, увлекающей эту массу вокруг Солнца»
[Закрыть]
Декартово объяснение движения тел солнечной системы неправильно, но оно косвенно содействовало прогрессу астрономии, так как способствовало падению авторитета схоластики и восприятию великих открытий Ньютона, подготовленных как законами Кеплера, так и работами Галилея об инерции и теорией центробежной силы Гюйгенса.
Фиг. 50. Декартова диаграмма вихрей вокруг Солнца и звезд.
Закон инерции и действие центробежной силы вместе с кеплеровыми законами послужили исходными пунктами для тех исследований Ньютона, которые привели его к объяснению всех астрономических явлений одним великим принципом. Ньютон дал исчерпывающий ответ на вопрос, почему все планеты и их спутники двигаются, не по прямой линии, а по замкнутым, почти круговым путям.
Для ученых, живших до Кеплера и Ньютона, этого вопроса не существовало, потому что для них круговые движения небесных тел представлялись понятными сами по себе и не требовали дальнейшего обоснования. А так как наблюдения показывали, что свободные от внешнего воздействия движения на Земле, напротив того, являются прямолинейными, то делалось заключение, что небесные движения – нечто совершенно «особенное», не имеющие ничего общего с законами земных явлений. Но с тех пор, как узнали, что Земля есть планета, должна была возникнуть мысль, что в мире планет могут существовать только те законы движения, что и на Земле.
Под влиянием этой мысли Ньютон, опираясь на закон инерции и действие центробежной силы, пришел к заключению, что для возникновения криволинейного и, в частности, эллиптического движения планет, достаточно единственной силы – тяжести, или притяжения. Эта сила противодействует стремлению планеты двигаться прямолинейно и потому тождественна с центростремительной силой, теоретически изученной Гюйгенсом.
XXIII. ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ
Исаак Ньютон родился в 1643 г., через сто лет после смерти Коперника, в семье фермера, в деревне, расположенной недалеко от английского городка Грантама. Шестнадцати лет он кончил школу и должен был работать в ферме, ибо рано овдовевшая мать нуждалась в его помощи. Но юноша не любил сельскохозяйственных занятий, и когда ему приходилось ездить в город продавать продукты, он предоставлял работнику с фермы вести торговлю, а сам прятался где‑нибудь с книгой. Видя, что из него не выйдет фермера, огорченная мать вынуждена была в конце концов отослать его учиться. И восемнадцатилетний Ньютон поступил в университет, где он с увлечением стал изучать математику, физику и астрономию.
В 1669 г. Ньютон был назначен профессором математики; в это время он уже был светилом науки. Основные идеи величайших открытий в области математики (исчисления бесконечно малых), физики (теории цветов в связи с разложением белого цвета на различные цвета) и астрономии (закон притяжения различных тел) пришли ему в голову и были отчасти продуманы и разработаны в 1665–1666 гг., т. е. раньше, чем ему исполнилось 24 года. Следует отметить, что одновременно с Ньютоном и совершенно независимо от него теорией планетных движений начали заниматься и некоторые другие ученые – Борелли, Гук, Рен и Галлей. Но хотя эти выдающиеся исследователи высказали ряд правильных соображений о законе изменения притягательной силы, только Ньютону удалось окончательно решить вопрос о причине орбитального движения планет. И это потому, что только Ньютон дал строго математическое доказательство того, что солнечное притяжение действительно управляет движением планет и что эта сила тождественна с земной тяжестью.
До исследований Галилея предполагали, что движение может происходить непрерывно, если только его поддерживает какая‑то внешняя причина. Галилей опроверг это представление, открыв закон инерции, который лежит в основе механики: всякое тело, предоставленное самому себе, сохраняет состояние покоя или равномерного прямолинейного движения. Однако у самого Галилея этот закон остался почти без применения, и лишь Ньютон понял его великое значение. Он доказал, что на Земле не может существовать бесконечно продолжительного движения в виду неустранимости трения и сопротивления воздуха, между тем как небесные тела являют собой пример подобного движения.
Фиг. 51. Исаак Ньютон.
Ньютон учел произведенное в то время физиком Гюйгенсом (1629–1695) исследование сил, появляющихся при вращении тел. По закону инерции, каждое изменение скорости, как по величине, так и по направлению, обусловливается действием некоторой внешней силы. На этом основании Гюйгенс пришел к заключению, что криволинейное движение тела, привязанного на нитке и описывающего круги, может быть объяснено только присутствием силы, постоянно отклоняющей тело от прямолинейного пути. Напряжение нити и есть эта отклоняющая сила; ее называют центростремительной силой, так как она направлена к центру кругового движения.
Ньютон показал, что криволинейный путь планеты представляет собой не что иное, как следствие совместного действия инерции движения планеты и отклоняющей силы, тождественной с центростремительной силой Гюйгенса. Согласно закону инерции, планеты, как тела, предоставленные самим себе, должны двигаться прямолинейно и равномерно; но планеты движутся не по прямой, а по кривой линии, по эллипсу, что должно вызываться определенной причиной, каким‑то внешним воздействием. Это воздействие должно постоянно, в каждое мгновение, сталкивать планету с прямого пути, беспрерывно изменять направление движения планеты, приближать планету к Солнцу и таким образом все время удерживать ее на определенном расстоянии от Солнца, т. е. делать ее путь эллиптическим.
Законы Кеплера указывают на то, что эта отклоняющая сила «исходит» от Солнца, а Ньютон показал, что она действует как центростремительная сила. Она дополняется инерцией планеты, и обе эти силы и вызывают эллиптическое движение планет. Сила инерции заставила бы планету удалиться на бесконечное расстояние по прямой от Солнца, а центральная сила принудила бы планету с чудовищно возрастающей скоростью устремиться к Солнцу и упасть на него. Благодаря же совместному действию этих двух сил получается эллиптическое движение: одна из них не дает планетам упасть на Солнце, а другая не дает им унестись от Солнца.
Фиг. 52. Происхождение кругового движения небесного тела (планеты вокруг Солнца или спутника вокруг планеты). Прямые линии АВ, В'С, C'D и т. д. представляют собой путь небесного тела по инерции, если бы не было силы притяжения. Но вследствие притяжения со стороны светила S небесное дело описывает дугу АВ', В'С', C'D' и т. д., т– е. падает на величину ВВ', СС', DD' и т. д. Так как это падение к центральному телу S происходит непрерывно, небесное тело постоянно искривляет свой путь и совершает движение вокруг S.
Так как свойство инерции присуще всем телам, то осталось лишь выяснить свойства и происхождение второй силы, искривляющей путь небесных тел. Ньютон показал, что второй закон Кеплера (закон площадей) будет иметь место лишь при условии, если «источником» или средоточием силы является Солнце: на планету действует сила, направленная прямо от центрального тела планетной системы. Тем самым этот закон, определявший, собственно, лишь чисто геометрическое соотношение площадей, приобретает и физическое значение, т. е. он указывает на то, что планеты совершают «центральное движение», – их движение происходит под влиянием силы, исходящей из одной точки.
Возникает вопрос: как изменяется эта отклоняющая центральная сила в зависимости от расстояния планеты от Солнца? Из первого закона Кеплера, определяющего форму орбит, Ньютон вывел, что сила, действующая на данную планету, изменяется обратно пропорционально квадрату ее расстояния от Солнца. Наконец, третий закон Кеплера позволил распространить этот вывод на все планеты, и таким образом было доказано, что отклоняющая центральная сила присуща всем небесным телам и что она зависит лишь от масс этих тел и расстояний между ними.
Установление при помощи законов Кеплера закона действия силы, производящей движение планет, не могло не привести к вопросу: не есть ли это та самая сила тяжести, под действием которой яблоко падает с дерева, камень – с утеса, дождевые капли – из тучи и т. д. И строго математическое исследование привело Ньютона к заключению, что на этот вопрос необходимо дать положительный ответ. Таким образом, Ньютон открыл, что сила тяжести не является свойством одной только Земли, но присуща всякому небесному телу.
Отсюда видно, что открытие Ньютона отнюдь не ограничивается утверждением, что Земля притягивает все тела и что это притяжение, являющееся причиной падения тел на Землю, направлено к центру Земли. Такое утверждение высказывалось неоднократно и до Ньютона, хотя и не доказывалось строго математически, как это сделал Ньютон, и оно не заключало в себе ничего неожиданного или нового. Действительно неожиданное и новое, составляющее бессмертную заслугу Ньютона, заключается в установлении того факта, что не только Земля или другое небесное тело, но и любая частица вещества притягивает всякую другую частицу вещества на любом расстоянии и, в свою очередь, испытывает с ее стороны притяжение.
Сам Ньютон указывал на то, что идея всемирного тяготения не нова и что ее высказывали еще некоторые древние философы. Действительно, Демокрит и Эпикур приписывали материальным атомам притяжение или стремление Друг к другу (между прочим, Маркс придавал особое значение тому, что Эпикур приписывал атомам тяжесть). Однако только Ньютон показал, что взаимное притяжение как атомных масс (так называемых «материальных точек»), так и гигантских небесных тел подчиняется закону, который гласит: взаимное притяжение между любыми телами прямо пропорционально их массам и обратно пропорционально квадрату расстояния между ними.
Сила тяжести, обнаруживаемая при падении камней, дождевых капель и пр., не исходит исключительно из центра Земли или другого небесного тела. Каждая частица тела принимает участие в ее проявлении, так что сила притяжения, существующая между двумя телами, представляет собой сумму всех взаимных притяжений составляющих ее частиц. Ньютон совершенно правильно дал этой силе название «всемирного тяготения» и показал, что движения небесных тел обусловлены совместным и постоянным действием их притяжения и инерции. Чем ближе планета к Солнцу, тем сильнее она им притягивается, но тем значительнее скорость ее движения по орбите, и, следовательно, тем меньше период ее обращения.
Притягательная сила находящихся на Земле небольших тел настолько слаба, что ее можно обнаружить лишь при помощи чрезвычайно чувствительных приборов, изобретенных уже после смерти Ньютона. Но у огромных небесных тел эта сила, как впервые показал Ньютон, достигает таких размеров, что ею определяются все движения в ми ровом пространстве. Ньютоновский закон всемирного тяготения является фундаментом всего здания «небесной механики».
В 1687 г. появился великий труд Ньютона «Математические начала естественной философии» (под «естественной философией» он понимал физику, механику и теоретическую астрономию), в котором он изложил этот основной закон всех движений вселенной и с большим остроумием рассмотрел все вытекающие из него следствия. Он показал, что при помощи этого закона можно объяснить не только движение планет, но и целый ряд других явлений, как например, приливы и отливы в океанах, неправильности движений Луны, а также непонятные до сих пор движения комет.
Главное внимание Ньютон обратил на особенности движения планет, причем ему удалось обобщить большое количество астрономических явлений, сводя их к одной причине – всемирному тяготению. Занявшись решением задачи, как должно двигаться тело вокруг Солнца, если между ними действует сила по закону тяготения, Ньютон нашел объяснение законам Кеплера. Оказалось, что кеплеровы законы – это следствия проявления закона всемирного тяготения, результат совокупного действия инерции и притяжения. Таким образом, Ньютон не только вывел закон тяготения из кеплеровых законов, но и решил обратную задачу, т. е. математически вывел из своего закона все законы движения планет, открытые Кеплером. Другими словами, Ньютон ответил на вопросы: почему планеты движутся по эллипсам, почему радиусы – векторы описывают площади, пропорциональные времени, почему существует зависимость между расстоянием и временем обращения» Тем самым он дал прекрасное подтверждение закону всемирного тяготения, доказав, что если бы сила притяжения определялась другим законом, то орбиты планет не могли бы быть кеплеровыми, т. е. не могли бы соответствовать наблюдаемым явлениям.
Чрезвычайно важно следующее открытие Ньютона: он показал, что орбиты планет вовсе не являются точными эллипсами, что они должны представляться гораздо более сложными кривыми. Дело в том, что в силу закона Ньютона планеты также взаимно притягивают друг друга, так что движение каждой из них сильно усложняется, – оно обусловливается не только притяжением Солнца, но и всех остальных планет. Поэтому законы Кеплера являются' не вполне точными, т. е. они должны считаться «первым приближением» к истинному положению вещей, – они применимы, собственно, лишь при наличии притяжения одного лишь Солнца. На самом же деле вследствие того, что планеты взаимно притягивают друг друга, происходят беспрерывные отклонения планет от чисто эллиптических движений, так называемые возмущения или пертурбации. Определение этих возмущений составляет одну из важнейших и в то же время труднейших задач астрономии, потому что каждое новое положение на орбите во время ее движения вокруг Солнца обусловливает новое воздействие на все остальные, – новое по силе и по направлению.
Следует иметь в виду, что уклонения планет от эллиптических путей настолько незначительны, что они могут быть замечены лишь весьма точными наблюдениями, так что Тихо Браге не в состоянии был их обнаружить. Если бы точность наблюдений Тихо Браге позволила их обнаружить, Кеплер оказался бы в чрезвычайно затруднительном положении, – он не мог бы согласовать видимые положения планет с вычисленными. Таким образом, можно порадоваться, что во времена Кеплера не было более точных наблюдений, нежели наблюдения Тихо Браге: если бы он пользовался более точным наблюдательным материалом, то не получил бы своих законов движения планет, сыгравших такую важную роль в открытии законов тяготения. Поэтому можно сказать, что в истории открытия кеплеровых законов сыграло роль то обстоятельство, что масса Солнца подавляюще велика сравнительно с массами планет и что Солнце и планеты находятся на громадных расстояниях, так что планетные возмущения невелики и орбиты планет приближаются к эллиптическим кривым.
Как видно из изложенного, великое значение открытия Ньютона состоит в том, что ему удалось все разнообразные движения небесных тел свести к тяготению и инерции вещества, т. е. к тем же явлениям, которые мы наблюдаем всегда на Земле. Ньютон сделал несомненным тот факт, что непрерывное движение небесных тел по эллипсам и движения, наблюдаемые на земной поверхности, подчинены одинаковому закону, т. е. вызваны одной и той же «силой», общей причиной. Таким образом, понятные, привычные земные явления он связал с казавшимися непонятными небесными явлениями и этим лишил небесные движения той таинственности, в которую они были облечены. Благодаря Ньютону пришлось признать, что тяготение присуще всякому телу и каждой частице тела, где бы это тело ни находилось, т. е. оно представляет собой неотъемлемое общее свойство всякого вещества. А в результате весьма сильно укрепилось убеждение в строгой закономерности всех явлений природы, а учение Коперника получило физическое обоснование.
Тем самым астрономия стала одной из точнейших наук: стало возможным поразительно точно вычислять все движения небесных тел и сверять результаты этих вычислений с наблюдениями. Чем точнее становились методы вычисления, тем яснее делалось, что движения небесных тел чрезвычайно сложны, вследствие того, что небесные тела испытывают возмущения, подвергаются действию различных притяжений, направленных в разные стороны. Но важно то, что при сличении с результатами наблюдений, все более и более совершенных, обнаруживались в точности все небольшие неправильности движений, которые были предварительно вычислены теоретически, на основании закона Ньютона. Таким образом этот закон оказался первым всеобъемлющим, универсальным законом, абсолютно точным, не знающим исключения, применимым ко всем телам вселенной.
Правда, в одном случае правильность закона тяготения казалась под сомнением, но этот случай лишь способствовал укреплению убеждения в том, что тяготение действительно является всемирной силой. Дело в том, что результаты вычислений относительно движений планеты Уран, открытой в 1781 г., не совпадали с данными наблюдений, хотя это отклонение было незначительно. Некоторые ученые увидели в этом факте свидетельство того, что закон тяготения не распространяется на наиболее отдаленные области солнечной системы и что, стало быть, этот закон не является всеобщим, всемирным. Но другие ученые решили, что должна существовать еще одна неизвестная планета, которая находится дальше Урана и своим притяжением вызывает изменение в орбите Урана, как бы «совращает» эту планету с ее пути. Два молодых астронома – Леверрье во Франции и Адамс в Англии – одновременно и совершенно независимо друг от друга попытались по обнаруженным отклонениям вычислить, на основании закона Ньютона, местонахождение неизвестного небесного тела. В 1846 г. они пришли приблизительно к одинаковым результатам, и действительно, на определенном вычислениями месте в том же году астрономом Галле была найдена планета, названная впоследствии Нептуном. Таким образом то, что казалось сперва опровержением закона Ньютона, послужило торжеству его: стало совершенно ясно, что этот закон является универсальным, всеобъемлющим законом мира.