Текст книги "Жизнь как она есть: её зарождение и сущность"
Автор книги: Фрэнсис Крик
сообщить о нарушении
Текущая страница: 4 (всего у книги 11 страниц)
Таким образом, форма жизни, основанная на других веществах, не является невозможной. Некоторые системы заслуживают дальнейшего изучения, но до сих пор никто не преуспел в том, чтобы предложить систему, которая действительно выглядит многообещающей. Некоторые системы, такие как жизнь в плазме или жизнь внутри звезды, кажутся наиболее маловероятными. Для того чтобы развить форму жизни внутри Солнца, необходимо иметь огромное разнообразие расширенных соединений нуклонов, которые были бы устойчивы довольно длительные периоды времени. Предположительно, события внутри Солнца могли бы происходить действительно очень быстро, потому что температура там очень высока. (На самом деле ядерные реакции там идут очень медленно, этим объясняется, почему Солнце светит так устойчиво в течение такого длительного времени ) Возможно, когда звезда взрывается, то реакции можно было бы считать очень примитивной формой естественного отбора, но взрыв столь скоротечен, что его результаты обычно оказывались замороженными чуть ли не раньше, чем у процесса появлялось время, чтобы начать развиваться.
К счастью, у нас здесь нет необходимости интересоваться этими довольно маловероятными возможностями. Очевидно, что наша форма жизни основана на соединениях углерода в водной среде. Что представляют собой эти органические соединения и как они взаимодействуют друг с другом?
Глава 5. Нуклеиновые кислоты и молекулярная репликация
Теперь, когда мы в несколько абстрактных выражениях описали требования к живой системе, мы должны подробнее рассмотреть, как осуществляются различные процессы в тех организмах, которые мы видим повсюду. Как мы уже видели, основное требование, безусловно, заключается в наличии некоторого довольно точного метода репликации и, в частности, копирования длинной линейной макромолекулы, образованной из стандартного набора субъединиц. На Земле эту роль играет то или иное из двух больших семейств нуклеиновых кислот: семейство ДНК и семейство РНК. Общее строение этих молекул является чрезвычайно простым, действительно, настолько простым, что ясно говорит о том, что они действительно восходят к самому началу появления жизни.
ДНК и РНК довольно похожи, они, можно сказать, молекулярные кузины, поэтому давайте сначала опишем ДНК, а затем то, чем отличается от нее РНК. Одна цепочка ДНК состоит из единообразного остова, последовательности атомов, повторяющейся снова и снова, с присоединенной при каждом повторе боковой группой. Химически в остове содержатся ...фосфат-сахар фосфат-сахар... и т.д., и так повторяется многие тысячи или даже миллионы раз. Сахар – это не тот сахар, что стоит у вас на обеденном столе, а более мелкий, который называется дезоксирибоза, то есть рибоза с одной отсутствующей «окси»-группой (следовательно, название ДНК означает Дезоксирибонуклеиновая Кислота; «нуклеиновая» – потому что найдена в ядре высших клеток, «кислота» – из-за фосфатных групп, каждая из которых в нормальных условиях несет отрицательный заряд). К каждому сахару присоединена одна боковая группа. Боковые группы различны, но всего насчитывается лишь четыре их основных типа. Эти боковые группы ДНК (по формальным причинам называемые основаниями) удобно обозначить по первым буквам их названий А, Г, Т и Ц (что означает, соответственно, Аденин, Гуанин, Тимин и Цитозин). Благодаря своему точному размеру и форме, а также характеру химических составляющих, А изящно соединится в пару с Т, а Г – с Ц. (А и Г большие, Т и Ц поменьше, поэтому каждая пара состоит из одного большого и одного малого оснований.)
Пары оснований, которые образуют секрет структуры ДНК Основания соединены слабыми водородными связями, показанными прерывистыми линиями Тимин всегда объединяется с аденином; цитозин с гуанином.
И ДНК, и РНК довольно легко образуют двуцепочечные структуры, в которых обе цепочки лежат рядом, бок о бок, переплетаясь друг с другом для образования двойной спирали и связанные воедино своими основаниями. На каждом уровне существует одна пара оснований, образованная основанием одной цепочки, спаренного (на основе правил спаривания) с основанием другой. Каждая из связей, соединяющая эти пары друг с другом, довольно слаба, хотя в совокупности они образуют достаточно устойчивую двойную спираль. Но если структура нагревается, то возросшее тепловое возбуждение оттолкнет цепочки в сторону с тем, чтобы они разделились и отплыли друг от друга в окружающей их воде.
Генетическое сообщение передается точной последовательностью оснований вдоль одной цепочки. Тогда, зная эту последовательность, можно считывать последовательность ее комплементарной соседки, используя правила спаривания оснований (А с Т, Г с Ц). Генетическая информация записывается дважды, один раз на каждой цепочке. Это может оказаться полезным, если одна из цепочек повреждена, поскольку ее можно восстановить, используя информацию – последовательность оснований – другой цепочки.
Здесь есть одна неожиданная особенность. В обычной двойной спирали оба остова обеих цепочек не приблизительно параллельны, а антипараллельны. Если последовательность атомов в одном остове быстро увеличивается, то во втором – уменьшается. Это приводит к определенным сложностям, но не таким значительным как можно ожидать. По сути, это вытекает из того типа симметрии, которым обладает двойная спираль. Он создается псевдосимметрией спаривания оснований. Оказывается, что для этих конкретных химических соединений это удобный способ точно совпадать друг с другом.
Легко понять, что молекула такого типа, состоящая из пары цепочек, нерегулярные элементы которых (основания) совпадают друг с другом, идеальна для молекулярной репликации, особенно потому, что обе цепочки можно довольно легко отделить друг от друга щадящими методами Это происходит потому, что связи внутри каждой цепочки, скрепляющие каждую цепочку, являются прочными химическими связями, довольно невосприимчивыми к обычному тепловому разрушению, тогда как обе цепочки удерживаются вместе довольно слабыми связями, так что их можно без значительных затруднений отодвинуть друг от Друга, не нарушив при этом остов каждой из них. Две цепочки ДНК подобны двум любовникам, они удерживают друг друга в тесных объятиях, но их можно разделить, потому что как бы тесно они ни соприкасались друг с другом, у каждой есть единство, которое сильнее связей, их объединяющих.
Поскольку они столь точно совпадают друг с другом, то одну цепочку можно считать матрицей другой. Основной механизм репликации очень просто понять. Обе цепочки разделяются. Затем каждая цепочка действует как шаблон для сборки новой парной цепочки, используя в качестве сырья запас из четырех стандартных элементов. Когда эта операция завершится, мы будем иметь две пары цепочек вместо одной, и поскольку для того, чтобы выполнить работу аккуратно, сборка должна подчиняться правилам спаривания оснований (А с Т, Г с Ц), то последовательности оснований обязательно будут точно скопированы. В итоге мы получим две двойные спирали, где раньше имели лишь одну. Каждая дочерняя двойная спираль будет состоять из одной старой цепочки и одной вновь синтезированной цепочки, точно совпадающих друг с другом, и что более важно, последовательности оснований этих двух дочерних цепочек окажутся идентичными последовательности первоначальной родительской ДНК.
Основная идея вряд ли может быть проще. Единственная довольно неожиданная особенность заключается в том, что обе цепочки не идентичны, а комплементарны. Можно представить даже еще более простой механизм, в котором одинаковое спаривается с одинаковым с тем, чтобы обе парные цепочки оказались идентичными, но характер химических взаимодействий, скорее, несколько облегчает точное соответствие друг другу комплементарным молекулам, нежели абсолютно идентичным.
Как подобный процесс выдерживает сравнение с более крупными механизмами копирования, распространенными сегодня? Строка набора, подготовленная для печати, состоит (или обычно состояла) из определенного числа стандартных символов, организованных в строку или ряд строк. У каждой буквы в этом шрифте есть одинаковый для всех букв стандартный элемент, который вставляется в бороздки, удерживающие эту литеру на месте, и элемент, который характерен для каждой буквы. На этом сходство кончается. В репликации ДНК нет ничего, что соответствовало бы полиграфической краске. Буквы, напечатанные на листе, являются зеркальными изображениями очка литеры, но не комплементом (который остаётся, когда очко литеры вошло), и, что самое важное, получившуюся на печати строчку нельзя потом вернуть на место в ту же машину, чтобы воспроизвести очко литеры. Печатные прессы выпускают многие тысячи экземпляров газет, но газеты не копируются обратно в набор.
Репликация ДНК совсем не такая. Для того чтобы заработал естественный отбор, важно, чтобы саму эту копию можно было скопировать. Репликация ДНК больше похожа на отливку фрагмента скульптуры из литейной формы, так как если она достаточно простая, то саму скульптуру можно использовать для создания дополнительной формы. Основная разница заключается в том, что нить ДНК строится лишь из четырех стандартных отрезков. Очевидно, что это не относится к большинству фрагментов скульптуры.
Если мы исследуем процесс репликации ДНК, то увидим, что здесь есть ряд основных требований. Если мы начнем с двойной спирали, то обе цепочки должны каким-то образом разделяться. В наличии должен иметься запас из четырех элементов, каждый из которых состоит из характерного участка остова, – одна молекула сахара объединяется с одной молекулой фосфата, – и включает одно из четырех оснований, присоединенное к сахару. Такая состоящая из трех частей молекула называется нуклеотид. На практике эти первичные элементы имеют не просто один фосфат, а три, расположенные в ряд, причем два других отделяются в процессе полимеризации, предоставляя таким образом энергию для проведения синтеза в желаемом направлении. Хотя можно представить процесс, проходящий без дополнительных элементов, в развитой системе мы непременно рассчитываем обнаружить, по крайней мере, один фермент (то есть белок с каталитической активностью), который ускорит синтез и сделает его более точным.
Таковы в общих чертах требования. Когда исследуешь реальную систему репликации, то обнаруживаешь, что она значительно сложнее. Прежде всего, когда начинается синтез, обе цепочки еще полностью не разделились. Синтез новых цепочек происходит в процессе разделения, поэтому некоторые части двойной спирали копируются еще до того, как разделились другие более удаленные участки. Есть особые белки, функция которых состоит в том, чтобы раскрутить двойную спираль, и вместе с другими, которые могут создать ники[4] 4
Ник – разрыв одной внутренней фосфодиэфирной связи в двунитевой ДНК. – Прим. перев.
[Закрыть] в остове, дать возможность одной цепочке вращаться вокруг другой, и затем вновь объединить разорванную цепь. Так как обе цепочки двойной спирали быстро двигаются в противоположных направлениях, и так как, говоря химическим языком, синтез проходит только в одном направлении, то мы обнаружим, что синтез происходит в прямом направлении на одну из цепочек и в обратном направлении на другую, поэтому механизм должен учитывать эту сложность. Более того, новый фрагмент цепочки ДНК обычно начинается как небольшой отрезок РНК, с которым затем объединяется более длинный фрагмент ДНК. Существуют добавочные белки, которые затем вырезают этот праймер РНК и заменяют его эквивалентным отрезком цепочки ДНК, и затем объединяют все воедино без разрыва. Мы знаем, что для синтеза одного вида небольшого вируса, созданного из ДНК, требуется почти двадцать различных белков; какие-то из них выполняют одну функцию, какие-то – другую. Это очень характерно для биологических процессов. Лежащий в их основе механизм должен быть простым, но если процесс биологически важен, тогда в длительном ходе эволюции естественный отбор усовершенствует и приукрасит его, с тем чтобы он мог функционировать как быстрее, так и точнее. Именно вследствие этой причудливой усложненности биологические механизмы часто так трудно разгадать.
К счастью, как мы отмечали ранее, нам не нужно задерживаться на этих сложностях. Когда зародилась жизнь, химия, должно быть, была относительно простой. Здесь важно уяснить, что четкая геометрия пар оснований, которая лежит в основе правил спаривания, предоставляет удобный случай особой репликации, даже в совершенно простых системах. Мы видим, что решающей в ДНК является не ее двойная спираль. Действительно, простой вирус может иметь в качестве своего генетического материала единственную нить ДНК, и она может быть настолько коротка (длиной лишь в пять тысяч оснований), что ей не требуется вторая цепочка в качестве страховки от повреждения. Основная особенность заключается в том, что в механизме репликации должна использоваться простота особых пар оснований для построения новой цепочки с комплементарной последовательностью оснований по отношению к старой. Именно эта простота заставляет нас считать, что она использовалась в самых древних живых системах. Вопрос о том, остаются ли обе цепочки, новая и старая, вместе после репликации, менее важен.
Здесь мы должны сказать несколько слов о близкой родственнице ДНК – РНК. (Подробнее различные виды РНК описаны в приложении.) Как мы уже объясняли, генетическая информация в каждой клетке высшего организма закодирована как подробная последовательность оснований ряда очень длинных молекул ДНК. В любое время многие более короткие участки этой последовательности копируются на однонитевые молекулы РНК и используются клеткой в качестве рабочих копий. Некоторые из них используются для структурных целей, но большинство как информационные РНК – инструкции для синтеза белка. Это происходит в очень сложных молекулярных структурах, называемых рибосомами, и для этого необходим дополнительный молекулярный аппарат, в частности, набор транспортных молекул РНК (тРНК).
Это, безусловно, очень сложная, но сложна она, в основном, потому, что должна выполнять сложную функцию. Процесс создания однонитевой копии РНК участка ДНК, который называется транскрипцией, относительно прост, и, чтобы направлять его, необходим лишь достаточно крупный белок. Процесс синтезирования белка с использованием фрагмента информационной РНК в качестве инструкций, который называется трансляцией, обязательно сложнее, так как инструкции написаны на языке РНК, состоящем из четырех букв, а их следует перевести с помощью химического механизма на язык белка из двадцати букв. Действительно, очень удивительно, что такой механизм вообще существует, и еще удивительнее, что любая живая клетка, животного ли, растения или же микроорганизма, содержит его вариант. Его открытие явилось одним из триумфов молекулярной биологии.
Таким образом, клетка – это миниатюрная фабрика, ведущая быструю, организованную химическую деятельность. В условиях соответствующих молекулярных воздействий фермент деловито синтезирует отрезки информационной РНК. Рибосома запрыгивает на каждую информационную молекулу РНК, двигается вдоль нее, считывая ее последовательность оснований и соединяя друг с другом аминокислоты (которые доставили ей молекулы тРНК) с тем, чтобы создать полипептидную цепь, которая, по завершении этого процесса, свернется и станет белком. Природа изобрела сборочный конвейер за несколько миллиардов лет до Генри Форда. Более того, этот сборочный конвейер производит много разных, весьма специфических белков, механических инструментов клетки, которые сами создают и восстанавливают органические химические молекулы для того, чтобы обеспечить сборочный конвейер сырьем, а также все молекулы, необходимые для устройства структуры фабрики, снабжают ее энергией, избавляют от отходов и выполняют другие Функции. Поскольку все это так сложно, то читателю не обязательно пытаться разобраться во всех этих тонкостях. Важно осознать тот факт, что несмотря на то, что генетический код почти универсален, механизм, необходимый для его реализации, слишком сложен для того, чтобы появиться внезапно. Он должен был развиться из какого-то более простого. Несомненно, что главная задача в понимании происхождения жизни – это попытаться разгадать, какой могла быть эта более простая система.
На этом этапе, возможно, стоит сравнить и сопоставить эти три больших семьи макромолекул: белок, РНК и ДНК. Молекулы белка, которые строятся из двадцати различных боковых цепочек, некоторые из которых химически довольно активны, более универсальны как класс, по сравнению с молекулами нуклеиновых кислот. Именно по этой причине все известные ферменты созданы из белков, хотя в некоторых случаях могут понадобиться мелкие органические молекулы, чтобы работать одновременно с ними в качестве фермента. Именно способность каждого фермента создавать или разрушать определенные химические связи позволяет современным клеткам вообще функционировать. Поскольку многие различные химические реакции необходимо подобным образом катализировать, то существует много различных видов ферментов.
В противоположность этому, не найдена ни одна молекула нуклеиновой кислоты, выполняющая функции катализатора. Обе, и РНК, и ДНК, имеют только четыре типа боковых групп вместо двадцати, и, несмотря на то, что они идеальны для репликации, потому что их основания так хорошо совпадают друг с другом, эти боковые группы не подойдут для химического катализа. Но РНК и ДНК могут делать то, чего не могут белки, – образовывать комплементарные структуры типа найденной в двойной спирали. Мы не знаем способа, которым молекула белка могла бы сделать то же самое, ну и, конечно же, этого не сделает современный белок с его двадцатью различными видами боковых цепочек.
Большинство химиков, занимающихся проблемой происхождения жизни, считают, что в начале первой появилась РНК, а ДНК является более поздним изобретением. РНК химически реактивнее ДНК, и, вероятно, ее было легче синтезировать в первозданных условиях Земли. Самые первые гены, должно быть, были созданы из РНК. Только позднее, когда генетическая информация увеличилась в длину, появилась необходимость в более устойчивой ДНК для обеспечения архивной копии.
Жизнь, какой мы ее знаем на Земле, представляется синтезом двух макромолекулярных систем. Белки, благодаря своей универсальности и химической реактивности, выполняют все функции, но неустойчивы для репликации самих себя любым простым способом. Нуклеиновые кислоты, по-видимому, специально созданы для репликации, но кроме нее могут успешно выполнять довольно небольшое количество функций по сравнению с более сложными и лучше оснащенными белками. РНК и ДНК – эти немые ткани биомолекулярного мира, которые, в основном, подходят для воспроизведения (с небольшой помощью со стороны белков), но от них мало пользы во многих действительно необходимых вещах. К проблеме происхождения жизни было бы намного легче подойти, если бы существовала только одна семья макромолекул, способная выполнять обе функции, репликацию и катализ, но жизнь, как мы знаем, задействовала две семьи. Возможно, это происходит благодаря тому, что не существует макромолекул, которые могли бы выгодно выполнять обе функции вследствие ограничений, накладываемых органической химией, то есть вследствие природы вещей.
Для того чтобы продвинуться дальше вперед, мы должны попытаться что-нибудь узнать о химических и физических условиях на первозданной Земле или на любой другой похожей планете К этому мы сейчас обратимся.
Глава 6. Первозданная Земля
Какие нужны вещества для образования материальной основы жизни? Жизнь, которую мы все видим вокруг себя, основана на атомах углерода, соединенных с водородом, кислородом и азотом, наряду с некоторым количеством фосфора и серы. Используя эти немногие виды атомов, можно создать огромное количество различных мелких молекул, то есть молекул, в которых, скажем, менее пятидесяти атомов, и почти неограниченное количество различных макромолекул, каждая из которых содержит тысячи атомов. Важны также и другие атомы, такие как заряженные атомы (ионы) натрия, калия, магния, хлористых соединений, кальция, железа и ряд других, но в большинстве случаев они не входят в состав органических молекул, а существуют, главным образом, самостоятельно. Для зарождения жизни был необходим запас большей части этих атомов. Как они образовались? Существовали ли они отдельно или в простых соединениях?
Оказывается, что все атомы, найденные в органической химии, очень реактивны. Даже в атмосфере они существуют в соединениях. Простые химические доказательства говорят о том, что водород соединится сам с собой для образования молекулы Н2, кислород – О2, а азот – N2. Мы также можем рассчитывать на простые соединения, такие как H2O (вода), NH3 (аммиак), СO2 (углекислый газ), CH4 (метан), и ряд других. Сегодня наша атмосфера состоит, в основном, из очень инертного газа азота (N2), наряду с примерно двадцатью процентами кислорода (O2), а также небольшого количества водяного пара (H2O) и даже еще меньшего количества углекислого газа (CO2).
Привычным стало представление о том, что первозданная атмосфера на Земле была совершенно иной. Поскольку водород – безусловно, самый распространенный элемент во Вселенной, то естественно было считать, что в первозданной атмосфере преобладал водород. В настоящее время почти весь кислород в воздухе образуется в процессе фотосинтеза. В древнейшие времена на Земле жизни не было, и поэтому кислород не мог образоваться подобным образом. Такая атмосфера, богатая водородом и бедная кислородом, известна как восстановительная, в отличие от современной атмосферы, которая называется окислительной. Эксперименты по пребиотическому синтезу, которые следует кратко описать, по-видимому, подтверждают этот вывод.
В последнее время эти представления подверглись сомнению. Водород такой легкий, что силы земного тяготения недостаточно для его удержания, и он довольно легко улетучивается в космическое пространство. Точная его скорость зависит от ряда факторов, особенно от температуры в верхних слоях атмосферы, так как чем выше температура, тем быстрее перемещаются атомы или молекулы, и тем легче они улетучиваются в космическое пространство. Теперь считается вполне возможным, что значительное количество первоначально образовавшегося водорода улетучилось так быстро, что он никогда не преобладал в атмосфере.
А что же кислород? Если его нельзя было вырабатывать с помощью фотосинтеза, то есть ли какой-нибудь другой возможный механизм? Почти не вызывает сомнений, что на первозданной Земле было много воды, в частности, в ее атмосфере. В благоприятных условиях ультрафиолетовый свет может расщеплять воду на составляющие ее элементы. Если образованный таким образом водород затем улетучился в космическое пространство, то оставшийся кислород, вероятно, накапливался, и если процесс проходил в довольно большом масштабе, то атмосфера могла бы обогатиться кислородом. Сегодня, из-за химического состава современной атмосферы, этот процесс уже не вырабатывает кислород со значительной скоростью, но, по крайней мере, возможно, что в отдаленном прошлом условия настолько отличались, что кислород создавался более свободно.
Конечно, кислород и водород не были единственными элементами, которые содержались в воздухе. В нем, вероятно, было много азота, некоторое количество углерода и, возможно, немного серы, хотя последние два, скорее всего, входили в состав соединений. Может быть, в ней присутствовали газы N2 и СО2, а также в меньших количествах СН4, CO и, возможно, NH3 и H2S (сероводород). Что совершенно неясно, так это их точное количественное соотношение, в частности, количество H2 и O2.
Так как атмосфера взаимодействует с химическими веществами на поверхности Земли, то химический состав древнейших осадочных пород должен дать нам некоторые сведения о составе древней атмосферы. Некоторые из этих пород наводят на мысль, что они образовались в восстановительных условиях. Это восприняли как подтверждение гипотезы, что атмосфера тогда была восстановительной. С некоторых пор это также подвергают сомнению. Даже сегодня некоторые осадочные породы носят восстановительный характер, например, серные грязи, несмотря на весь кислород, содержащийся в воздухе вокруг нас. Такие условия обычно создает анаэробное гниение органических веществ в грязи. Сейчас утверждается, что если принять во внимание все имеющиеся в нашем распоряжении породы данного периода, то при усреднении, на основании этих данных, можно предположить, что атмосфера в прошлом была довольно похожа на современную. К сожалению, эти данные относятся лишь к периоду 3,2 миллиарда лет назад. Данные, относящие к более раннему периоду, слишком скудны, потому что в нашем распоряжении имеется слишком мало соответствующих пород. Вывод о том, что атмосфера 3,2 миллиарда лет назад была не восстановительной, не слишком удивляет, потому что мы считаем, что организмы, осуществляющие фотосинтез, уже существовали, по крайней мере, 3,6 миллиарда лет назад. К сожалению, сейчас мы не можем установить, сколько их было, поэтому трудно оценить, в больших или малых количествах они вырабатывали кислород.
Итак, нам хотелось бы знать приблизительный состав атмосферы Земли в период времени, предшествующий зарождению жизни, и, в частности, какой именно она была, восстановительной или окислительной. Сейчас, по-видимому, трудно прийти к какому-либо определенному выводу по этому вопросу.
Температура первозданной Земли также точно неизвестна, так как это в значительной степени зависит от того, насколько быстро она формировалась. Если температура падала одновременно с образованием Земли в течение короткого промежутка времени, то у тепла, порождаемого столкновениями, не было времени улетучиться, и, таким образом, на первой стадии Земля, вероятно, была очень горячей. Если процесс шел медленнее, то на первозданной Земле могла быть более умеренная температура, хотя, вероятно, были и неустойчивые локальные горячие точки, возникшие вследствие толчков во время последних этапов агрегации. Каким бы ни был характер процесса, по-видимому, в какой-то момент времени Земля успокоилась, создав достаточный запас жидкой воды для образования первозданных океанов, морей, рек, озер и заводей.
Каким бы ни был состав атмосферы, несомненно, что она получала большие потоки солнечной энергии. Точно неизвестно, какой именно была в то время температура Солнца, хотя возможно, что его излучение не отличалось значительно от того, что мы получаем сегодня. Одним возможным отличием воздействия излучения, достигавшего поверхности Земли, могло быть отсутствие современного озонового слоя (O3), так как если в атмосфере было немного кислорода (за исключением того, что входил в состав воды, CO и CO2), то, вероятно, озоновый слой отсутствовал. Сегодня этот слой во многом защищает от ультрафиолетового света, излучаемого Солнцем. Вероятно, тогда, как и сегодня, часто случались электрические бури (похожие на наши грозы) и велась довольно бурная вулканическая деятельность, как на суше, так и на дне океанов. Кроме того, происходили ионно-молекулярные реакции в ионосфере и верхних слоях атмосферы, поэтому существовало несколько источников энергии того вида, который необходим для активизации химического обмена. Все это предполагает, что первозданные океаны состояли не только из воды и немногих простых солей, но и накопили достаточное разнообразие мелких органических молекул, образованных из молекул в атмосфере и растворенных в океанах с помощью электрических разрядов, ультрафиолетового света или других источников энергии.
Мысль о том, что древняя атмосфера была не похожа на современную, а содержала намного меньше кислорода, по-видимому, получила впечатляющее подтверждение в 1953 году от Стенли Миллера, студента Гарольда Урея (Harold Urey), который пропускал электрический заряд через смесь CH4, NH3, H2 и H2O, помещенную в закрытую систему. Система состояла из фляги воды, которую кипятили для того, чтобы ускорить циркуляцию газов, и которая служила для поглощения любых летучих, растворимых в воде продуктов реакции и их защиты от разделения электрической искрой. Через неделю (или около этого) разряд прекращался. Оказывалось, что вода содержит ряд мелких органических соединений, включая значительное количество двух простых аминокислот, глицина и аланина, найденных во всех белках. С тех пор проводилось много подобных экспериментов с использованием различных смесей сазов и множества источников энергии и условий эксперимента, включая пропуск газов через нагретые неорганические поверхности. Их результаты слишком сложны, чтобы кратко их здесь описать, за исключением одного поразительного факта. Если смесь газов включает значительное количество кислорода, то мелких молекул, похожих на молекулы, имеющиеся в живых системах, не обнаруживали. Если газообразный кислород отсутствует, то такие мелкие молекулы образуются при условии, что смесь газов содержит, в том или ином виде, азот и углерод. Некоторые смеси газов создают большее разнообразие аминокислот по сравнению с другими, особенно если в них не содержится H2. На первозданной Земле H2 обычно терялся в космическом пространстве, тогда как в Первоначальном эксперименте Миллера, который проводился в закрытом сосуде, у любого образованного H2 не было такой возможности, и поэтому он накапливался в установке, пока шел эксперимент.
Таким образом, если атмосфера была восстановительной, то вода на первозданной Земле, вероятно, содержала довольно разбавленную смесь мелких органических молекул, многие из которых могли послужить исходным материалом для древнейших живых систем. Какие именно образовались молекулы, в каком количестве и где – в верхних ли слоях атмосферы, в океанах, около подводных вулканов или в приливных заводях, в небольших озерах, в горячих источниках, вблизи вулканических трещин или же во всех этих местах, – этот вопрос остается открытым. Многие из этих молекул неустойчивы в воде в течение очень длительных периодов времени, поэтому, в конечном итоге, окажется, что установленные их количества появились благодаря равновесию между их непрерывным образованием в течение тысяч или миллионов лет и их разрушением вследствие теплового движения. Большинство аминокислот имеют как отрицательный, так и положительный заряд, поэтому, несмотря на то, что они небольшие и в сумме электрически нейтральные, они скорее останутся в воде, чем попадут в воздух. По этой причине они обычно не терялись при испарении. Этот первозданный бульон, как его часто называют, «получился плохим» в обычном смысле, потому что тогда не было микроорганизмов, которые жили бы в нем и питались бы его молекулами.