355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Фрэнк Солтис » Основы AS/400 » Текст книги (страница 18)
Основы AS/400
  • Текст добавлен: 26 сентября 2016, 19:20

Текст книги "Основы AS/400"


Автор книги: Фрэнк Солтис


Жанр:

   

ОС и Сети


сообщить о нарушении

Текущая страница: 18 (всего у книги 41 страниц)

Хранимые процедуры

Один из самых действенных способов повысить производительность клиент/серверных приложений для AS/400 – хранимые процедуры. Оператор CALL в SQL позволяет приложению вызывать хранимую процедуру, которая исполняется на сервере AS/400. Таким образом, в результате одного обращения к серверу выполняется це

лая транзакция. Без хранимых процедур для этого потребовалось бы множество таких обращений. В качестве хранимой процедуры может использоваться, за небольшими исключениями, любая программа AS/400, в том числе написанная на ЯВУ и даже содержащая операторы SQL. Доступ к хранимым процедурам возможен только через интерфейс SQL с использованием оператора CALL.

Поддержка национальных языков

Первый шаг в реализации Unicode на AS/400 был сделан в V3R1, где с его помощью кодировались имена объектов некоторых компонентов интегрированной файловой системы. Unicode поддерживает одновременное использование множества наборов символов (национальных алфавитов) в одной кодировке.

В RISC-моделях эта поддержка была расширена, чтобы обеспечить хранение в файлах базы данных в Unicode (UCS2, уровень 1). Например, в одном файле базы данных может находиться информация на французском, немецком, английском, иврите, китайском, русском и других языках. SQL поддерживает преобразование в Unicode и обратно, что делает возможным работу старых приложений с данными в этой кодировке. Кроме того, имеется поддержка локализации (locale) – стандарт X/Open, дающий программистам возможность создавать приложения, самостоятельно адаптирующиеся к различным национальным особенностям (символ денежной единицы, формат даты и времени, формат чисел, порядок сортировки, преобразование регистров символов и др.).

Предсказывающий регулятор запросов

В большинстве реляционных баз данных присутствует регулятор запросов (query governor) гарантирующий, что единичный запрос не будет выполняться слишком долго. По истечении заданного времени такой регулятор останавливает выполнение запроса.

DB2/400 же экономит системные ресурсы, используя предсказывающий регулятор запросов: если, выполнение запроса потребует столь много времени, что все равно будет прервано, то оно просто не начинается. Оптимизатор запросов предварительно анализирует способ, который будет применен при выполнении запроса для доступа к базе, и необходимое для этого время. Предсказанное время сравнивается с предельным временем запроса для данного пользователя. Если предсказанное время превосходит предельное, то пользователю посылается сообщение и тот может либо прекратить выполнение запроса, либо все-таки выдать запрос, отдавая себе отчет в том, что лимит будет исчерпан.

Повышение производительности базы данных

Для увеличения производительности различных операций в базе данных DB2/400 есть несколько механизмов. Например, команда «Explain» применяется для предсказания или просмотра характеристик исполнения запроса. Эта функция собирает информацию о том, как SQL используется в программе. Затем пользователь на основе полученной информации может вносить повышающие производительность изменения, как в базу данных, так и в сам запрос. Другие функции позволяют осуществлять операции выборки и вставки поблочно, то есть манипулировать массивами данных одной командой.

Кроме того, существуют и расширенные механизмы кэширования. Пользователи могут активизировать экспертный кэш, размер которого в памяти автоматически увеличивается или уменьшается на основании текущей загрузки, предсказанной активности базы данных и выделенных ресурсов. Экспертный кэш использует этого алгоритмы искусственного интеллекта. Пользователь может также назначить статический кэш, чтобы поместить в резидентную область памяти целую таблицу или ее часть.

Распределенные базы данных

AS/400 позволяет прикладной программе работать с базой данных как на локальной, так и на удаленной системе; местоположение данных для приложения прозрачно. Это означает, что приложению доступна обработка файла базы данных без информации о том, где он находится. Кроме того, части базы данных могут быть перенесены на другую систему без изменения прикладных программ.

Возможность доступа к базе данных на удаленной системе и доступа удаленных систем к данным AS/400 достигается благодаря реализации двух ключевых архитектур: DRDA (Distributed Relational Database Architecture) и DDM (Distributed Data Management).

Для доступа к удаленным данным интерфейс SQL использует DRDA. Сначала устанавливается связь с удаленной базой при помощи оператора SQL CONNECT, в котором указывается имя базы. Для поиска имени удаленной базы данных и определения системы, на которой она расположена, используется справочник на локальной системе. После установки соединения между двумя системами возможна посылка запросов SQL к удаленной базе данных. Менеджер базы данных на удаленной системе отвечает на запрос и возвращает ответ на локальную систему.

«Родной» интерфейс базы данных AS/400 использует архитектуру DDМ. Файл DDМ задает имя файла на удаленной системе и имя самой этой системы. Когда прикладной программе требуются удаленные данные, файл DDМ связывается с удаленной системой, после чего прикладная программа может работать с удаленным файлом. В отличие от DRDA, где обработка выполняется удаленной системой, использование DDМ означает, что обработка будет вестись на локальной системе. DDМ пересылает с удаленной системы на локальную все записи файла, тогда как DRDA – только результат уже выполненного запроса. Потенциально DRDA может обеспечить лучшую производительность приложений за счет меньших расходов на обслуживание коммуникаций.

Шлюзы к другим базам данных

AS/400 работает с базами данных, поддерживающими описанные архитектуры DRDA и DDМ, а также предоставляет интегрированный подход для доступа к другим базам данных. Это позволяет ей работать непосредственно с базой данных любого производителя на другом компьютере в сети. В дополнение к каталогу распределенной базы данных (Distributed Database Directory) в OS/400 присутствует менеджер драйверов (Distributed Database Driver Manager). Он работает с драйверами для других баз данных или файловых систем. Драйверы для баз данных Unix и ПК позволяют приложению AS/400 работать с этими базами так же, как и с любой базой DRDA.

Трансформация данных с помощью DataPropagator

Ранее, при обсуждении хранилищ данных мы упоминали о средствах трансформации данных, использующихся для их перемещения данных из оперативной базы в информационную. DataPropagator – одно из таких средств. Его можно использовать не только для хранилищ данных, но и для связи между любыми базами данных типа DB2.

В распределенной среде на разных компьютерах могут существовать множественные копии одного и того же файла базы данных. Изменение одной копии не отражается на другой немедленно, поэтому один и тот же файл на разных системах может быть в разной степени актуален. DataPropagator предоставляет механизм репликации изменений файла на все системы через некоторый, определяемый пользователем, интервал времени. Так как при этом используется технология репликации IBM, то изменения могут реплицироваться в сети на любую базу данных семейства DB2.

Соединение при помощи OptiConnect

Если компьютер работает не в сети, и сами данные, и средства их обработки располагаются на нем самом. Одиночная система AS/400 поддерживает очень большие, в том числе многопроцессорные, конфигурации, что вполне удовлетворяет нужды большинства крупных заказчиков. Однако, среди наших заказчиков есть такие, чьи требования к производительности и объемам данных превосходят возможности одиночной AS/400. Даже при работе компьютеров в сети накладные расходы на передачу данных ограничивают прирост производительности, который достигается путем распределения приложения между несколькими компьютерами. В этом случае может помочь OptiConnect. В главах 10 и 11 мы рассмотрим новейшие высокоскоростное межсистемное соединение – SAN. Но SAN поддерживается только линией AS/400е, так что OptiConnect еще будет какое-то время использоваться для объединения AS/400.

OptiConnect – это продукт, позволяющий соединять друг с другом компьютеры AS/400 с помощью волоконной оптики для большей скорости обработки транзакций. Часто, крупные заказчики AS/400 отделяют обработку баз данных от обработки приложений и размещают базу данных на серверной модели AS/400. В этом случае разные системы объединяются в кластер, в котором некоторые машины выделяются для обработки базы данных, а другие – для приложений.

OptiConnect использует DDM, но здесь важно отметить следующее. DDM на сети применяет коммуникационные протоколы на линиях связи (ЛВС). При таком способе связи обычны сильные шумы, и коммуникационный протокол вставляет в передачу слои избыточности и проверок, что приводит к замедлению передачи. Оптическая шина обеспечивает соединение, достаточно чистое, чтобы устранить большую часть избыточности, в результате производительность существенно возрастает. При использовании OptiConnect время, необходимое для доступа к базе на удаленной системе увеличивается лишь на 3 миллисекунды по сравнению с временем доступа к локальной базе данных, то есть удаленные диски работают почти со скоростью локальных.

Рост производительности в результате разделения приложений и базы данных зависит от множества факторов, например, от степени использования базы данных. Однако то, что кластер OptiConnect может объединять до 32 машин, позволяет уверенно говорить, что с помощью этого соединения реально создание очень больших конфигураций.

OptiConnect применяется не только для наращивания. Система на волоконно-оптических линиях может заменить существующие ЛВС, использующие DDM, что сделает сетевые соединения более быстрыми и надежными. Соединение с помощью OptiConnect дублированных систем позволяет создавать конфигурации с высоким уровнем доступности и возможностей восстановления важнейших приложений и данных.

А теперь пришла пора спуститься на уровень ниже и рассмотреть, как функционирует база данных «изнутри». Затем мы поговорим об использовании машинного индекса для поддержки уже рассмотренных нами операций.

Внутренняя реализация функций базы данных

Как мы уже говорили в главе 3, функции базы данных AS/400 реализуются по разные стороны MI. В предыдущих разделах обсуждалась, в основном, база данных, реализованная как часть DB2/400 поверх MI. Давайте теперь рассмотрим некоторые системные объекты MI, используемые в DB2/400, а также то, как некоторые из операций над этими системными объектами реализованы в SLIC ниже MI. В этой книге нет места для детального описания всех средств и функций базы данных, и мы остановимся только на самых важных.

Далее мы рассмотрим машинный индекс, используемый базой данных и другими компонентами AS/400. Особое внимание уделяется этой теме не только потому, что машинный индекс важен для многих функций AS/400, но и потому что он интересен сам по себе.

SLIC поддерживает большие базы данных. Приведем некоторые предельные величины:

до 240 ГБ на физический файл;

более 2 миллиардов записей на физический файл;

до 4 ГБ на индекс;

до 2048 байтов на ключ.

Следует отметить, что эти ограничения размеров связаны с текущей реализацией SLIC. Для MI нет какого-либо ограничения размеров системных объектов, так как он независим от технологии. SLIC же зависит от технологии, то есть размеры полей некоторых внутренних структур данных предопределены, что, в свою очередь, задает ограничения сверху. Мы обсудим некоторые из этих ограничений при рассмотрении внутренней реализации. Впрочем, как и в любой хорошей системе, здесь остается возможность модификаций, если таковые понадобятся, и об этом мы тоже поговорим.

А сейчас, начнем с рассмотрения системных объектов MI, поддерживающих базу данных.

Объекты базы данных

Ранее мы рассмотрели три основных системных объекта для поддержки базы данных: области данных, индексы областей данных и курсоры. Как и остальные системные объекты, они занимают несколько сегментов в одноуровневой памяти. Каждый из них имеет базовый сегмент, содержащий заголовок сегмента, заголовок ЕРА и специфический заголовок объекта; а кроме того – сегмент ассоциированного пространства.

Области данных

Области данных содержат записи базы данных. Все записи одной области данных схожи: однородны и имеют фиксированную длину. Записи хранятся в порядке их поступления, и все удаленные записи по-прежнему занимают место.

Объект «область данных» состоит из сегментов трех типов. Кроме базового сегмента и сегмента ассоциированного пространства, в его состав может входить до 120 сегментов записей области данных. Каждый элемент сегмента содержит байты состояния и записи базы данных. Байт состояния содержит информацию о нынешнем состоянии записи, или о том, была ли она удалена.

Каждая запись в сегменте области данных записей имеет номер, называемый порядковым номером. Порядковый номер задает положение записи в сегменте. Не путайте порядковые номера, отсчет которых начинается в каждом сегменте заново, с относительным номером записи (возможно, последний Вам лучше знаком, так как находится на уровне OS/400). Относительные номера записей, хранящиеся в логическом файле или проекции, указывают местоположение данных в физическом файле или таблице. Те же самые номера иногда называются в MI номерами элементов области данных.

Начинающийся с нуля порядковый номер указывает, является ли запись первой, второй или n-ной в сегменте. Так как длина всех записей одинакова, необходимости хранения в сегменте порядковых номеров нет. Зная порядковый номер и длину каждой записи можно найти стартовый байт любой записи сегмента. Далее будет рассказано, как порядковый номер используется для поиска записей в базе данных.

Базовый сегмент не содержит информации об области данных, его основная роль – хранить адреса сегментов области данных. Базовый сегмент также содержит адреса индексов, используемых с этой областью данных.

Ассоциированное пространство содержит таблицу описателей полей с описанием каждого поля записи. Там также размещается рабочая область, используемая компонентами базы данных OS/400. Например, в ассоциированном пространстве хранятся указатели на логические курсоры.

Индексы области данных

Индекс области данных задает альтернативный порядок записей в области данных. Для альтернативного упорядочения используется дерево с двоичным основанием. В разделе «Деревья с двоичным основанием» мы рассмотрим такое дерево и его использование для поддержки ряда функций AS/400, включая индекс области данных.

Индекс области данных задействован во множестве операций. Так, он поддерживает ключи переменной длины. Значения ключей могут вычисляться с помощью различных операций, таких как конкатенация, сложение, вычитание и умножение. Один такой индекс может обслуживать до 32 областей данных.

Есть несколько вариантов упорядочения индекса: по возрастанию, убыванию, числовому и абсолютному значениям. Существуют также варианты выполнения коррекции: обновления могут вноситься в индекс немедленно, либо быть отложены. Откладывание обновления индекса позволяет избежать накладных расходов, если изменение в области данных происходит, а индекс не используется.

В главе 5 были приведены примеры объектов, включая индекс области данных. Мы видели, что последний состоит из сегментов трех типов: базового, ассоциированного пространства и отложенной коррекции. Последние два сегмента уже были подробно рассмотрены, теперь остановимся на базовом сегменте.

Базовый сегмент содержит атрибуты альтернативной сортировки, обеспечиваемой индексом, а также таблицу, описывающую как индекс «видит» каждое поле записей в области данных. Это описание логического представления. Базовый сегмент также содержит до 32 адресов областей данных. Наконец, в базовом сегменте находится дерево с двоичным основанием.

Дерево с двоичным основанием может не умещаться в базовый сегмент целиком. Для размещения очень больших деревьев можно подключать сегменты четвертого типа. На практике, к индексу области данных можно присоединить до 64 сегментов дерева.

Каждый ключ, хранящийся в сегменте дерева, состоит из цепочки байтов, содержащих его фактическое значение, за которым следует пара полей суффикса ключа. Обычно, такая пара называется относительным адресом. Первое поле содержит номер области данных и идентификацию сегмента записей области, второе – порядковый номер записи в сегменте. Эти два числа уникально идентифицируют запись с ключом аналогично относительному номеру записи в логическом файле или проекции.

Курсоры

Курсоры – механизм просмотра данных в области данных; через них осуществляется весь доступ к данным. Курсор, о котором мы сейчас говорим, – системный объект MI. DB2/400 поддерживает позиционируемые (scrollable) и последовательные файловые курсоры в соответствии со стандартом SQL 1992. Курсор SQL – это не то же самое, что и системный объект MI «курсор», хотя последний и используется для реализации первого.

Как уже упоминалось, записи физического файла хранятся внутри разделов. Физический файл может состоять из одного или нескольких разделов. Это удобный способ разделения на части данных внутри физического файла. Логические файлы используют ту же концепцию множества разделов. Мы также оговорили, что таблицы и проекции SQL ограничены одним разделом на таблицу или проекцию.

Курсор связан с каждым разделом файла. Он может обеспечить доступ к записям области данных как в порядке их поступления, так и в порядке ключей индекса. Другими словами, курсор может указывать на область данных либо непосредственно, либо «сквозь» индекс области данных. Один курсор может использоваться для нескольких областей данных, а для одной области – несколько курсоров. Курсор отслеживает текущее положение в пути доступа, принадлежащем программе (или заданию, или группе активации). Кстати, это помогает понять, почему он так называется.

С помощью курсора также происходит проецирование в область данных и оттуда, что позволяет рассматривать данные иначе, чем когда они хранятся в области данных. Примеры проецирования – переименование полей, арифметические и строковые выражения и преобразования типов данных.

Курсор позволяет осуществлять выборку записей, используя для этого функции арифметического и строкового проецирования. Обычно, критерий выборки записей задается в предложении WHERE оператора SQL (в DDS использовать арифметические выражения нельзя). С помощью курсоров (то есть, путей доступа), которые выбирают лишь некоторые записи, можно предотвратить нежелательный просмотр пользователем остальных записей. Иными словами, курсор обеспечивает защиту базы данных.

Курсор состоит из двух сегментов: базового и ассоциированного пространства. Базовый сегмент содержит два набора адресов для указания областей данных и индексов областей данных, которые могут использоваться курсором; и тех и других может быть по 32. Единственный случай, когда может потребоваться более одного индекса области данных – логический файл объединения (join-logical file, а не проекция SQL). Базовый сегмент также содержит код проецирования и код выборки, используемые курсором. Ассоциированное пространство курсора содержит текст описания раздела и его атрибуты. Связи на уровне раздела поддерживаются компонентом базы данных в OS/400.

Теперь, изучив каждый из трех основных системных объектов поддержки базы данных, можно говорить о том, как пользователь обращается к файлам базы данных в AS/400.

Доступ пользователя к данным

Все пути доступа пользователя к базе данных идут через OS/400 и MI, прямой доступ к данным – только у SLIC. С точки зрения пользователя, доступ к файлу базы данных OS/400 осуществляется с помощью открытия файла. На уровне MI эта функция реализована командой «Activate cursor». Когда пользователь закрывает файл, аналогично используется команда MI «Deactivate cursor».

При доступе к области данных пользователь может задать несколько опций команды открытия файла. В их состав входят тип операции (чтение, запись, обновление и удаление) и число записей. Если курсор оперирует с несколькими областями данных, пользователь может отобрать для работы подмножество этих областей. Определение этого подмножества задается при создании файла командой «CRTLF». В процессе работы это подмножество может быть переопределено командой «OVRDBF» (Override with Database File), выданной перед открытием файла. При создании файла пользователь также может задать время ожидания заблокированной записи, и также переопределить это время перед открытием файла.

Пользователь осуществляет доступ к области данных в произвольном или последовательном режиме. В режиме последовательного доступа возможна пересылка нескольких страниц с диска в основную память операцией переноса (bring). Пользователь задает размер переноса с помощью опции «число записей» в команде «OVRDBF» или «OPNQRYF» (Open Query File). В режиме произвольного доступа обычно считы-вается одна страница. Произвольный режим возможен только в том случае, если у области данных есть индекс, тогда код базы в SLIC использует схему просмотра для переноса в память следующей логической страницы индекса.

Для доступа к данным в области данных нужен курсор. Поэтому для начала работы можно использовать команду MI открытия курсора «Activate cursor», а по завершении закрыть курсор командой «Deactivate cursor». Эти функции работы с курсором на уровне MI эквивалентны открытию и закрытию файла в OS/400. Ассоциированное пространство активного курсора содержит информацию об открытом пути данных ODP (Open Data Path) для открытого раздела.

Исполнение команды: MI «Activate cursor» присоединеняет курсор к активизировавшему его процессу (единица работы в системе), а точнее – к связанному с процессом блоку управления (этот объект MI будет подробно рассмотрен позднее). Если процесс активизирует более одного курсора, то к блоку управления процессом присоединяется двусвязный список курсоров. Теперь никакой другой процесс не сможет использовать эти курсоры. Если тот же самый курсор потребуется другим пользователям, то при активизации ими курсора будет создана его копия.

Получается, что курсор может быть постоянным и временным. Постоянный курсор связан с каждым разделом файла, а каждый раздел файла имеет один и только один постоянный курсор. Если курсор активизируется для предоставления ODP к разделу файла, но он уже был активизирован другим процессом, то создается временный курсор-копия. В целях экономии места коды проецирования и выборки во временном курсоре не хранятся. Адреса во временном курсоре указывают на постоянный курсор, содержащий соответствующие коды.

По принятому соглашению, OS/400 всегда создает временную копию постоянного курсора с помощью команды «CRTDUPOBJ» (Create Duplicate Object) и затем активизирует только временные курсоры. Благодаря этому, постоянный курсор может быть представлением раздела файла, так как помимо него объекта-раздела на уровне MI нет. Более того, все ODP – это временные курсоры, что также результат соглашений принятых в OS/400, а не ограничение MI.


    Ваша оценка произведения:

Популярные книги за неделю