355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Франклин Меррелл-Вольф » Математика, Философия и Йога » Текст книги (страница 6)
Математика, Философия и Йога
  • Текст добавлен: 10 октября 2016, 03:32

Текст книги "Математика, Философия и Йога"


Автор книги: Франклин Меррелл-Вольф


Жанры:

   

Эзотерика

,

сообщить о нарушении

Текущая страница: 6 (всего у книги 8 страниц)

На следующее утро я вновь оказался в этом мире, в сознании этого мира. Судя по всему, решение все же было принято, но, при всей произвольности, оно было ничуть не лучше любого другого возможного решения. Так я узнал нечто новое, чего не встречал ни в сутрах, ни в шастрах, несмотря на то что читал их очень внимательно. Едва ли я мог найти нечто такое, что предоставило бы хотя бы слабый намек на это. Кое-что в моих взглядах решительно изменилось: я стал совершенно иначе смотреть на характер отношений между Нирваной и Сансарой, деятельной вселенной. Я понял, что Нирвана не абсолютна, а относительна, что даже в ней сохраняется двойственность; а Высшее Сознание, в котором я побывал, есть, помимо прочего, слияние этой двойственности. Таким образом, Нирвана относительна. Позже, обратившись к некоторым сутрам тибетского буддизма под редакцией Эванса-Вентца [15], я встретил там эту мысль: Нирвана во вселенной действия относительна, и если человек превосходит такую Нирвану, то она может перейти в нефиксированную Нирвану. Если человек входит в нирваническое состояние по первому способу, он оказывается запертым – точно так же, как прежде был заперт в состоянии Сансары. Он не может покинуть его по желанию; а нефиксированная Нирвана позволяет переходить в нее и покидать ее по собственной воле. Таким образом, это стало определенным подтверждением, и все же в моем переживании были и другие особенности, намеков на которые я не встречал в книгах.

Я уделил много времени описанию этого состояния сознания, а теперь намерен предложить вам метод интеллектуального постижения его масштабов, опираясь на определенные понятия современной математики. Эта умственная разминка потребует определенной гибкости ума. Мы пользуемся понятием «бесконечность» довольно легкомысленно. Говорят, готтентоты умеют считать только до трех. Для них бесконечно все, что больше числа три. Один поэт говорил о бесконечности ночного неба, подразумевая при этом видимые звезды – однако их лишь чуть больше трех тысяч. Он, видимо, смог досчитать до трех тысяч, а все, что сверх этого, оказалось для него бесконечностью. Истинная бесконечность – нечто иное. Рассмотрим число 1+Е100 – единицу с сотней нулей; это число называется «гугол». Оно намного превышает наш национальный долг, составляющий всего 300 000 000 000 долларов [16]. В последнем числе только двенадцать цифр. Добавим к нему еще один нуль и получим число в десять раз большее; добавим два – и оно станет в сто раз больше, три – в тысячу раз.

Исходный долг составляет всего одну десятую процента (0,1%) от третьего числа, но и в этом, последнем числе только пятнадцать цифр, а у гугола сто нулей. Выходит, полученное нами число по-прежнему очень мало по сравнению с гуголом. Вероятнее всего, гугола, или десяти в сотой степени, вполне хватит для того, чтобы сосчитать все капли дождя, упавшие на Землю за весь геологический период.

Обратимся к другому числу, по сравнению с которым даже гугол покажется совсем крошечным. Это число можно было бы назвать «гуголлион». Записывается оно как десять в степени гугол:

10гугол

или, иначе, как десять в степени десять в сотой степени:

1010^100 .

Чтобы записать это число в полном виде, потребуется добавить к единице гугол нулей. Постичь это способен далеко не каждый. Однажды я объяснял эту мысль одному врачу, и тот никак не мог уловить ее, пока я не сказал, что есть огромная разница между записью миллиона как единицы с девятью нулями и записью числа с миллионом нулей после единицы. После этого он сразу понял смысл.

Чтобы вызвать у вас представление о подобной беспредельности, я попрошу задуматься о том, сколько места потребуется для записи «гуголлиона», то есть строки из гугола нулей. Когда-то я уже обращался с таким вопросом к группе слушателей. Предположим, у нас есть бумажная полоска, и каждый нуль представляет собой кружок диаметром в четверть дюйма. Какую длину будет иметь такая полоска?

Один человек предположил, что ее хватит, чтобы обернуть земной шар по экватору. Другой, более реалистичный, сказал: «Скорее всего, миллион световых лет». Световой год представляет собой то расстояние, которое проходит за один год луч света, движущийся со скоростью 186 тысяч миль в секунду. Однако и эта догадка оказалась сильным преуменьшением. Представьте себе конечную вселенную (какой она является в соответствии с принципами Эйнштейна), поперечник которой составляет три миллиарда световых лет [17]. Вообразите это: огромная сфера диаметром в три миллиарда световых лет. Теперь представьте наши нули как крошечные сферы размерами меньше атома, но чуть больше его ядра. Заполните этими маленькими шариками весь объем сферы вселенной, и тогда у вас как раз хватит нулей, чтобы записать число «гуголлион». Я проверил это расчетами, а позже встретился с подсчетом количества электронов, необходимых для того, чтобы до отказа наполнить ими всю вселенную. Полученная оценка составляла десять в сто десятой степени (10110). Это, конечно, больше, но не намного – всего на несколько порядков, то есть наш расчет не так уж плох*.

Однако и «гуголлион» становится крошечным, когда речь заходит о Бесконечности. Работая с бесконечными числами, математики имеют дело с превосходящей любое воображение беспредельностью. Я имею в виду, что бесконечность как понятие аналогична Осознанию как факту; это помогает оценить ее значимость.

Особый вклад в эту область внесли два человека: Дедекинд и Кантор. Дедекинд первым ввел представление о бесконечности как о многообразии, или множестве, такого характера, что в нем есть определенная часть, содержащая столько же элементов, сколько их содержит все целое, – подобный пример мы рассматривали немного раньше. Когда Дедекинд перешел к формулировке своей теоремы о существовании в рамках этики, то, ставя вопрос о том, существует ли такая бесконечность, он взял в качестве примера человеческое мышление. В разуме возникает некая мысль, а затем может появиться мысль об этой мысли, потом третья мысль о второй и так далее; возникает последовательность:

1 Мысль 1

2 Мысль 2

3 Мысль 3

n Мысль N

Во втором ряду столько же элементов, сколько их в первом. Кроме того, существует один элемент – то самое Я, – который не входит в последовательность мыслей. Таким образом, один ряд является однозначно соответствующей частью другого, то есть равен его полноте. Это значит, что человеческий разум потенциально бесконечен – не только в психологическом, но и в более глубоком смысле.

Сейчас мне хочется познакомить вас с математической индукцией – и не только для того, чтобы узнать новый математический факт. Это позволит нам лучше понять сам разум, так как индукция демонстрирует принцип выявления истины, чрезвычайно важный для всей математики и ее отношения к истине. Одновременно мы сравним этот принцип с законами обычной формальной логики. Пусть, например, этот круг включает в себя все смертные существа (см. рис. 20).


Рис. 20

Все люди смертны. Это равносильно утверждению о том, что люди (множество которых мы изобразим кругом меньшего диаметра) образуют некое подмножество класса смертных существ. Далее можно сказать, что Сократ (отдельный элемент, обозначенный символом «X») – человек. Поскольку он входит в меньший круг, можно прийти к выводу о том, что Сократ смертен. Таков схематический способ изображения этого силлогизма [18]. В данном случае мы воспользовались дедуктивной логикой: спустились из обширной области в более узкую методом исключения. Такая форма логики является не очень творческой, она больше пригодна для целей критического рассмотрения, анализа и так далее.

В индуктивной логике – в том привычном смысле, в каком она применяется в науке, – законы выводятся исходя из ряда наблюдений. Например, увидев набор точек на плоскости, вы можете попытаться придумать некую гипотезу, которая объяснит закономерность или взаимосвязь между положениями этих точек. В одной лекции я говорил о примере поиска подобной закономерности в расположении пяти точек. Если вы наложите на этот закон ограничение и потребуете, чтобы он представлял собой уравнение второй степени, то найдете единственное решение, поскольку пять точек на плоскости однозначно определяют кривую второй степени. Но если вы не будете сковывать свое мышление такими ограничениями (то есть допустите, что закон может быть уравнением третьей, четвертой, пятой и любой другой степени), то через эти пять точек может пройти в буквальном смысле слова бесконечное число кривых.

Иначе говоря, существует бессчетное, потенциально бесконечное число возможных объяснений наших научных наблюдений – потенциально неисчислимое разнообразие. Мы не можем добиться однозначной, определенной истины. Именно по этой причине аксиоматическая наука имеет только прагматическую ценность. Она некоторое время помогает, но рано или поздно становится неверной. После обобщения Ньютона люди считали, что наконец-то постигли истину. Эта точка зрения сохранялась очень долго, но и она была опровергнута. Теории Ньютона не удалось объяснить некоторые измерения после того, как люди смогли провести их точнее. Сегодня более адекватными считаются идеи Эйнштейна, но завтра и они могут смениться новыми представлениями. Таким образом, аксиоматическая наука предлагает не окончательную, а прагматическую истину.

Математическая индукция представляет собой тот процесс, благодаря которому мы можем переходить от чего-то конкретного и единичного к бесконечности в буквальном смысле. Я попытаюсь показать вам простой пример. Рассмотрим сумму:

1 + 3 + 5 + 7+…

и так далее, без конца. Этот ряд представляет собой сумму нечетных чисел. Для обозначения номеров каждой промежуточной суммы этого ряда я буду использовать римские цифры – они отличаются от привычных и потребуются нам для поиска окончательной формулы.

Количество слагаемых: I II III IV… n n+1

Слагаемые: 1+ 3+ 5+ 7+…+ (n-1) + (2n+1) +…

Сумма слагаемых: 1 4 9 16… n2 (n+1)2

Обратите внимание, что первая сумма равна 1, сумма первого и второго членов-4, сумма первых трех слагаемых – 9, сумма первых четырех – 16. Заметили ли вы зависимость между этими суммами и теми числами, которые обозначают количество слагаемых? Во всех случаях суммы равны квадратам этих чисел – довольно неожиданный результат! Теперь вас осеняет мысль: быть может, такое правило выполняется на всем протяжении этого бесконечного ряда. Для того чтобы проверить все суммы, потребуется бесконечное время. Однако математик не скован таким требованием.

Смотрите, как он поступает. Сначала он допускает, что это правило выполняется для n слагаемых (при этом п означает любое целое положительное число), то есть сумма первых n членов ряда равна n2 – такое предположение возникло в результате того, что ему уже известно. Затем он задает себе • вопрос: «Будет ли это выполняться и далее?» Будет ли это утверждение справедливо для суммы (п+1) первых слагаемых, если известно, что оно выполняется для суммы n слагаемых? Получим ли мы (n+1)2 в результате очередного суммирования? Математик поступает просто: берет сумму п первых членов и говорит, что она равна n2. В каком виде можно представить n-ый член этого ряда? Заметим, что ряд можно записать в форме:

2*(1)-1, 2*(2)-1, 2*(3)-1, 2*(4)-1,…

и тогда n-ое по счету слагаемое будет иметь вид 2n – 1. Определим (n+1)-ое слагаемое, заменив n на (n+1). Получим:

2(n+1)– 1 = 2n+ 1.

Это легко проверить, так как нам известно, что каждое слагаемое ровно на 2 больше предшествующего слагаемого. Сложим это слагаемое с полученной ранее суммой n2 и посмотрим, будет ли новая сумма равна (n+1):

n2+(2n+1) = n2+2n+ 1

Те, кто помнит школьную математику, уже узнали эту формулу: записанное справа выражение равно

(n+1)2.

Иными словами, если сумма первых n членов ряда равна n2, то сумма первых (n+1) членов будет равна (n+1)2.

Таким образом, если это правило выполняется для какого-либо члена ряда, то оно будет справедливо и для следующего члена. Правильность закономерности для нескольких первых сумм была показана практическим методом, то есть прямыми вычислениями, но теперь нам ясно, что она сохранится на всей бесконечной протяженности этой последовательности. Такой подход постоянно используется в математических доказательствах.

Какое отношение это имеет к нашему разуму? Только что мы убедились, что несколько первых слагаемых позволяют нам с полной уверенностью судить о том, что произойдет с сотым, тысячным слагаемым, со слагаемым под номером гугол – с любым из всей бесконечности слагаемых. Эти факты известны нам с неоспоримой точностью. И это показывает, что разум не является чем-то конечным. Мне хотелось дать вам представление именно об этом, и не с точки зрения Осознания, а под неким иным углом, с позиции мышления, умозрительного понимания. У нас есть основания считать, что подлинный разум не есть что-то ограниченное, что это не просто заключенный в череп мозг, а нечто такое, что в определенном направлении простирается безгранично. Математик пользуется этой силой, чтобы строить свои доказательства. Благодаря приведенным выше рассуждениям он определяет, чему будет равна сумма произвольного количества слагаемых, с той же уверенностью, с какой складывает первые несколько членов этого ряда. Это отчасти приоткрывает тайну подлинного разума: в действительности, мы вовсе не ограниченные создания, мы так же велики, как Парабрахман. Я уже говорил о том, что, вполне возможно, существуют еще более глубокие Источники, чем те, которые представлены в идее Парабрахмана. Некоторые люди поднялись на огромные высоты и принесли нам эту идею, но что запрещает нам со временем подняться еще выше и проникнуть, как говорит Ауробиндо, в неведомые, беспредельные Бесконечности?

Лекция 6

Вчера мы были участниками необычного проявления того, что можно назвать «Полевым Сознанием». Это понятие пришло из физики поля и кажется мне очень удачным. Я еще называю его «Сознанием-без-объекта». Оно присутствовало почти все – а может быть и все – время и ощущалось с необычайной силой. Я видел его воздействие на большую часть слушателей. Оно вызывает такие состояния, как легкий транс, примешивающийся к обычному сознанию. Это было Присутствие самого Нумена – не вторичных проявлений, не эманации Нумена, а именно его Присутствие. Обладающие иным зрением могли воспринимать Присутствие Нумена как Лучезарное Существо в человекоподобном облике, но в том, что касается Нумена, такие внешние проявления несущественны – вспомним слова Шри Ауробиндо о том, что Божественное предстает перед человеком в той форме, в какой он готов Его воспринять. Так или иначе, форма – не главное. Важнейшим является то сознание, которое мы называем «Полевым Сознанием»: оно допускает беспредельное расширение, так как не ограничено объективным пространством. При соответствующем подъеме сознания Великие Сущности во всей полноте их бытия могут повстречаться сейчас, здесь, где бы вы ни были. Это значит, что Будда является не неким человеком, скончавшимся двадцать пять веков назад, но живым, находящимся всюду Присутствием, которое можно Осознать путем слияния сознаний. Сущностность одновременно является и личной, и всеобщей. Если вы уловили содержание тех символов, которые я заимствовал из математики бесконечных чисел, то уже владеете определенными средствами, позволяющими понять этот факт. Впрочем, достичь хотя бы слабого ощущения самого Нумена намного важнее, чем обрести все знания мира. То, что мы делаем с нашими понятиями, похоже на игру вторичного сознания в сфере Полевого Сознания: оба сознания становятся взаимосвязанными, и основная задача такой игры понятиями заключается в том, чтобы вызвать у как можно большего числа восприимчивых душ непосредственное переживание Полевого Сознания. Я заметил, что в прошлый вечер многие оказались достаточно чувствительными. Я видел слезы на глазах нескольких слушателей, хотя не говорил ничего печального.

Чтобы понять смысл этого, вновь обратимся к Ауробиндо. В его системе понятий существует нечто именуемое «Психической Сущностью». Этот термин не следует использовать в иных возможных значениях. Ауробиндо подразумевал под ним нечто строго определенное. Он называл Психической Сущностью ту частицу Божественного, которая пребывает в процессе развития и расположена в центре того, что кроется в глубине души каждого человека; обычно она тщательно скрыта и не может оказать большого влияния на жизнь и мысли личности. Величайшим устремлением Психической Сущности является достижение Божественного на уровне Полевого Сознания; и никогда, кроме, возможно, очень редких случаев, не бывает так, чтобы ее проявление после долгого заточения не вызвало у человека слез. Это не относится к самым необходимым для жизни чувствам. Жизненно важные чувства могут оказаться препятствиями, но ощущение Психической Сущности – одно из самых драгоценных переживаний. И не стыдитесь этих слез.

Итак, те понятия, которыми мы пользуемся, можно считать в достаточной мере похожими на игрушки, и сейчас мы начнем игры с ними. Сегодня я хочу рассказать вам о содержании одного из первых осознаний, которое было у меня в конце июля или в начале августа 1936 года. Это подготовит вас к тому, что я скажу в этот последний вечер, и послужит очень важной вехой на дальнейшем Пути. В то время я выполнял кое-какую работу на ручье Эльдорадо, притоке северного рукава Американ-ривер в округе Мазер-Лоуд штата Калифорния. Я остался в полном одиночестве, мне предстояло пробыть одному в течение нескольких дней, и потому я отбросил всякие заблаговременные планы и решил жить по своим спонтанным побуждениям. У меня была с собой только одна книга, «Система веданты»; я ел, когда хотел, спал, когда появлялось желание, работал по вдохновению и читал, когда испытывал к этому интерес. Я был один, и случись со мной какая-либо неприятность, помощь пришла бы лишь несколько дней спустя. Складывались самые благоприятные условия для ощущения Присутствия, ведь в тех случаях, когда ваше благополучие начинает зависеть только от Него и вы теряете обычную власть над обстоятельствами, это Присутствие становится ближе. Полное одиночество таит в себе огромные возможности для того, кто ищет Путь. Помнится, однажды я стоял на берегу ручья, подняв взор к уходящим в небо вершинам гор (насколько помню, повернувшись лицом к северу), и внезапно меня осенила мысль о том, что наши поиски Реального обращены в неверном направлении. Обычно мы ищем Реальное в содержании своего восприятия мира, доступного органам чувств, – и это значит, что все познается посредством органов чувств, – или в умозрительных построениях разума, блуждающих исходя из собственных мгновенных побуждений. Однако мне пришло в голову, что Реальное кроется в пустоте между образами и их содержанием. Реальное там, откуда ни умозрительное, ни чувственное восприятие не способны ничего извлечь; с другой стороны, там, где на первый взгляд что-то есть, в Действительности царит пустота. Видимое, будь то планеты, звезды и другие возвышенные объекты либо более привычные окружающие нас предметы, лишено субстанциальности и остается относительно пустым. То, что кажется обычному сознанию пустотой, в Действительности есть полнота, а то, что выглядит наполненным, явным, в Действительности пусто – или, точнее, относительно пусто. Чем призрачнее понятие, чем туманнее образ, тем больше в нем Реального; чем плотнее, тяжелее и массивнее предмет – такой, например, как невероятно огромные звезды, масса которых столь велика, что, говорят, крошечная частичка вещества размером с блоху будет весить на их поверхности целую тонну, – тем глубже его пустота. Эта мысль противоположна нашим обычным представлениям; ее можно выразить, парафразируя законы Исаака Ньютона: «Вещественность обратно пропорциональна ощутимости» или «Реальность обратно пропорциональна явственности». Я достаточно быстро понял, что имею дело с утверждениями, которые легко переводятся на язык математических символов, и сейчас я покажу, как это сделать.

Рассмотрим утверждение: «Реальность обратно пропорциональна явственности». Я заменю слова знаками: R будет означать «Реальность», которая равна единице, деленной на «явственность» А:

R=1/A

Это математическая форма того же утверждения. В обычном языке часто употребляется связка «есть, является», и чаще всего такие утверждения («Реальность является обратно пропорциональной…» и тому подобные) не так уж легко развернуть, поменяв понятия местами. Те, кто знаком с логикой, знают, что я имею в виду. Наше утверждение можно понимать как такое, которое допускает разворот, и, значит, мы имеем право воспользоваться знаком равенства. Теперь можно прибегнуть к алгебре и получить уравнение AR = 1 – мы умножили обе стороны равенства на А. Каждый, кто знаком с координатной, аналитической геометрией поймет, что если считать эту пару величин (А, R) переменными, то перед нами – уравнение симметричной гиперболы, асимптотами которой являются оси координат (см. рис. 21).


РЕАЛЬНОСТЬ ОБРАТНО ПРОПОРЦИОНАЛЬНА

ЯВСТВЕННОСТИ

Рис. 21

Надеюсь, сейчас это понятно всем? Вы помните, что мы просто забавляемся своими игрушками.

Теперь мне следует объяснить, что такое асимптоты. Наша кривая имеет вот такой вид. Вообще говоря, они получились не очень изящными, но математик все равно говорит: «Будем считать, что это гипербола», хотя в действительности кривые не совсем на нее похожи. Знаете, профессора математики – очень веселые и несерьезные люди. В один прекрасный день они входят в аудиторию, проводят на доске черту и говорят: «Будем считать, что это бесконечная прямая». После этого происходит нечто. Когда-то Господь сказал: «Да будет свет» – и стал свет; подобно этому, когда математик говорит: «Да будет эта прямая бесконечна», прямая становится бесконечной. Любому студенту, у которого возникают в этом сомнения, лучше всего поскорее сменить будущую специальность. Именно в таком смысле я произношу: «Будем считать, что это гипербола» – несмотря на то что кривая совсем на нее не похожа. В конечном счете важен не сам видимый образ -это только способ сосредоточения на умозрительном понятии. По своей природе такая кривая оказывается все ближе и ближе к этим прямым, которые называются асимптотами; она касается их в бесконечности. Когда речь идет о математике, вам придется научиться несерьезности в обращении с бесконечностями.

Другой занятный факт заключается в том, что эти линии сходятся в одной и той же бесконечности, хотя приближаются к ней с разных направлений. Это строгий математический факт, и можно считать, что где-то там одна из кривых плавно смыкается с другой, что они являются единой кривой, охватывающей бесконечность. Это окажется весьма важным обстоятельством для нашего дальнейшего символизма. Поскольку асимптоты обычно изображают иначе – я имею в виду, что они редко совпадают с осями координат, – мы воспользуемся формулой, которая поворачивает кривые на угол π/4, или, говоря обычным языком, на 45 градусов. Чистые математики не пользуются градусами, им привычнее измерять углы радианами [1]. Нам предстоит изменить свой угол зрения. Воспользуемся осями Х и Y, построим две прямые, проходящие через центр системы координат и делящие ее квадранты пополам, и будем считать их новыми асимптотами. Теперь кривые приобрели более привычный вид. Они совершенно симметричны (чего не скажешь о моем рисунке на доске). Им соответствуют определенные точки под названием «фокусы» [2] и так далее. Что все это означает? Я дам вам время на размышление, и мы вернемся к этому вопросу чуть позже.

Формула

«Реальность обратно пропорциональна явственности», или, в перевернутом виде, «Явственность обратно пропорциональна реальности»

допускает определенные приложения. Один из примеров пришел мне и голову когда-то давно. Судя по всему, эта формула обрела практическое воплощение в теории растирания порошков в гомеопатии. Тем, кто знаком с этой наукой, известно, что посредством наблюдения за испытуемыми [3] многие вещества проверяются на симптомы, которые появляются, когда их принимают здоровые люди; такие симптомы записываются. В результате возникли объемистые книги, и теперь, когда к лекарю приходит больной с определенным набором симптомов, вопрос заключается не в том, чтобы найти название болезни или внутреннюю патологию, а в том, чтобы составить общую картину таких симптомов и провести поиск тех лекарственных средств, которые вызывают сходные симптомы у здорового человека. Часто случается, что точного совпадения симптомов нет, и тогда врач подбирает наиболее близкие из веществ. Именно поэтому такой методназвали «гомеопатией» -лечением подобного подобным.

Особых трудностей пока не видно, но они возникают, когда вопрос касается процесса приготовления порошков. Вы берете порцию нужного вещества, органического или минерального, затем добавляете, скажем, в десять раз больше нейтрального вещества -чаще всего сахара или молока -и тщательно все это перемешиваете. Процесс повторяется, а потом еще раз, и в итоге вы получаете смесь с очень низким содержанием исходного вещества – таким низким, что даже люди несведущие могут применять этот метод без особого риска. Обратите внимание на то, что три таких растирания приводят к тому, что в полученной смеси остается только одна тысячная доля исходного лекарственного вещества; все остальное-нейтральный наполнитель. Теперь представьте себе, что такой процесс повторяется тридцать раз. После этого доля лекарства составит всего единицу, деленную на единицу с тридцатью нулями, – это действительно очень малое содержание; уже возникает вероятность того, что в этой порции вообще не останется лекарства. Если продолжить делать это и провести тысячу, десять тысяч, сто тысяч или еще больше смешиваний, то не будет практически никакого шанса на то, что в итоговой порции останется хотя бы одна молекула исходного вещества. И все же опыт показывает, что подобная беззаботность по отношению к смесям, прошедшим большое число разбавлений, очень опасна. Я не встречал ни одного гомеопата, который пытался бы найти этому рациональное объяснение. Они просто эмпирически знают, что это правда, что это работает, но ни один из известных мне гомеопатов не мог логически пояснить, почему это происходит. И все же существует доказательство. Если назвать явственностью лекарственное растение и допустить, что любая явственность обратно пропорциональна ее ощутимости, что ее воздействие прямо противоположно самому наличию, то при стремлении этой явственности к нулю остается только подлинная субстанция – та, что прежде скрывалась за этим видимым обликом. Когда процесс разбавления достигает такой степени, что в смеси не остается ни единой молекулы исходного лекарства, вы срываете некий потаенный покров и в результате получаете нечто такое, что при небрежном использовании способно превратиться в настоящий динамит. Это и есть практическое приложение нашего принципа: «Явственность обратно пропорциональна ощутимости».

Долгие годы я искал пути примирения принципа всеобщей иллюзорности, выдвинутого Шанкарачарьей, с концепцией всеобщей реальности Шри Ауробиндо; достаточно поздно, но все же я осознал, что ключ уже давно у меня. Когда Осознавший пишет философские работы, а вам кажется, что его мировоззрение несовместимо с представлениями других Осознавших, то правильным подходом оказывается вовсе не диалектическая аннигиляция – не попытка диалектического отрицания противной стороны, – хотя именно это происходит на обычных семинарах по философии.

Вспомните мои слова о характере двойственного сознания, определяющего сферу наших жизней, – в противоположность сознанию запредельному, которое в конечном счете и по меньшей мере является недвойственным. Если говорящий находится на уровне недвойственного прозрения, то любые достаточно полные формулировки в двойственных терминах непременно окажутся парадоксальными. Однако при этом особое внимание может уделяться то одной, то другой грани – смысловое ударение предназначено для того, чтобы произвести необходимое здесь и сейчас воздействие, но в результате утверждения могут казаться односторонними. Испытание, с которым сталкивается тот, кто оценивает подобные исходящие из первоисточника Осознания утверждения, заключается в поиске совмещающих представлений. Такой объединяющий подход не чужд и науке. Например, мы можем утверждать, что Земля падает на Солнце под влиянием силы притяжения; в то же время можно говорить, что Земля улетает от Солнца, из-за инерции ее движения по орбите. Она и падает на Солнце, и одновременно удаляется от него (см. рис. 22).


ПАРАЛЛЕЛОГРАММ СИЛ

Рис. 22

Вот оно, противоречие! Земля улетает прочь по касательной, и потому результирующее движение определяется параллелограммом сил Земля удаляется в сторону перпендикулярно направлению к Солнцу и в то же время с определенной силой притягивается к нему. Нарисуем возникающий параллелограмм, и подлинный путь Земли будет описываться этой диагональю, слиянием двух сил, учитывая, что каждый отрезок пропорционален соответствующей силе. Используйте для расчетов очень маленькие по размерам параллелограммы, и получится истинная кривая. Это объединение двух по видимости противоположных принципов, и оно возникает в обычной науке очень часто. Я предлагаю вам сделать то же самое с более сложным для понимания вопросом. Предположим, один философ направляется к внешнему смыслу чувственного восприятия или внешнему содержанию умозрительного постижения. Он движется к майе, иллюзии, и в этом смысле Шанкара прав: возникающие перед мысленным или обычным взором человека образы не приносят Реального и не ведут к нему. По этой причине йога предлагает уничтожить их! Разрушьте майю, и тогда проявится Реальное. В этом утверждении не говорится, что явственное никак не связано с Реальным. Обратите внимание на эту тонкость. Майявида в чистой форме утверждала бы, что майя не имеет никакой связи с Реальным, это только та преграда, которую следует разрушить. Однако мы говорим, что между ними сохраняется отношение обратной пропорциональности, и этот принцип чрезвычайно важен для любого йогического развития – обращения, или переворота, сознания. Явственное обратно пропорционально Реальному. Эту фразу, как и любое другое утверждение, в которое входит знак равенства, можно развернуть. При такой взаимосвязи Реального возможно достичь посредством явственного, достаточно только применить принцип обращения. Если этого принципа нет, остается чистая майя. Понимаете мою мысль? Какая-то ее доля остается, но не очень много.


    Ваша оценка произведения:

Популярные книги за неделю