355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Евгений Елизаров » Сколько будет 2+2? » Текст книги (страница 3)
Сколько будет 2+2?
  • Текст добавлен: 9 сентября 2016, 19:20

Текст книги "Сколько будет 2+2?"


Автор книги: Евгений Елизаров


Жанр:

   

Психология


сообщить о нарушении

Текущая страница: 3 (всего у книги 10 страниц)

Но перед нами-то стоит задача количественного соизмерения не только тех свойств, которые все еще сохраняются на самой вершине пирамиды, но и индивидуальных характеристик вещей, явлений, процессов, тяготеющих к самому ее основанию. Другими словами, измерения не умозрительных абстракций, но вполне осязаемых вещей. (Кстати, осязаемых не только кожным покровом, но и покровом нравственного чувства, ибо «бессовестное» – это отнюдь не умозрительность, но вполне осязаемое этим тонким метафизическим чувством начало.)

Поэтому вернемся к нашей исходной задаче.

Поиск строгого ответа на нее – это своеобразная модель движения научной мысли, итогом которого должен быть абсолютно объективный, полный, точный и, наконец, конкретный результат. Однако уже сейчас можно видеть, что стереотипный ответ («равночетыре»), который с самого начала вертится на языке у любого, этим критериям совершенно не удовлетворяет.

О его объективности нам еще придется говорить. Но уже сказанное здесь позволяет со всей уверенностью заключить о том, что этот стереотип страдает значительным субъективизмом. Все это уже хотя бы потому, что он сильно зависит от состава и способа систематизации каких-то общих представлений о мире, вне контекста которых невозможно никакое количественное сравнение. Пример с первобытным мышлением – это вовсе не только пример неразвитого примитивного сознания, – это прежде всего столкновение с другой культурой, иным составом знаний и какими-то другими принципами их обобщения и классификации. Меж тем, если ответ не абсолютен в разных культурах, он в принципе не объективен, а следовательно – не отвечает критериям научности.

О полноте и точности мы также еще поговорим. Что же касается его конкретности, то здесь он не выдерживает вообще никакой критики. Любая попытка конкретизации исходной задачи немедленно обнаруживает затруднения в согласовании получаемого результата с этим, казалось бы, пригодным на все случаи жизни ответом. Действительно, можно сколь угодно много добавлять синевы к и без того синему цвету, его оттенок не изменится ни на йоту. Сливая в одну емкость равные количества разных по своему химическому составу жидкостей мы далеко не всегда удваиваем объем. Две и две капли воды дают совсем не четыре, а только одну. А иногда и все двадцать четыре. Два километра (метра, сантиметра, парсека и так далее) в час плюс два километра (метра, сантиметра, парсека и так далее) в час дают вовсе не четыре. Кто знаком с основными положениями теории относительности, знает, что результат сложения скоростей будет всегда меньше. Суммируя цвета, мы вновь получаем что-то очень далекое от удвоения. Это, кстати, известно каждому, кто хоть когда-то брал в руки кисть: смешивая разные оттенки мы вовсе не продвигаемся от ультрафиолетовой части спектра к инфракрасной, или наоборот, но всегда получаем что-то промежуточное. В конечном же счете вообще обязан получиться белый цвет. Результат скрещивания двух самцов и двух самок во многом зависит от того, что именно считать результатом. Кстати, итог может быть и предельно экзотическим: «не мышонок, не лягушка, а неведома зверушка». Однако и этот результат, несмотря на всю его парадоксальность, в такой же мере количествен, как и все остальное; все дело в том, что количественная шкала и здесь прямо производна от слагаемых «качеств».

Таким образом, как ни считай, иллюзия всеобщности и строгости когда-то в детстве затверженного ответа сохраняется только там, где мыслятся предельно абстрактные умозрительные вещи. Мы же хотим прямо противоположного – предельной конкретности вывода. Повторимся: нам требуется ответ, пригодный для всех уровней той пирамиды явлений, о которой говорилось выше.

Примеры можно множить и множить, но каждый раз, когда мы пытаемся конкретизировать исходную задачу и строго определить, что же именно подвергается «сложению», мы обнаруживаем, что стандартный заведомо известный каждому школьнику ответ требует решительного пересмотра. В лучшем случае – уточнения, ибо каждый раз нам приходится учитывать тонкую специфику именно того класса явлений, которые и подвергаются количественному анализу. Переходя от одного класса явлений к другому, мы обнаруживаем, что та метрика, которой мы пользовались ранее, или уже совсем непригодна, или в новой сфере объективной реальности применима лишь в ограниченной мере, дает лишь приблизительный результат. Эксперименты с разными по своим свойствам вещами показывают, что в действительности единой, равно пригодной для всех случаев жизни метрики просто не существует. Универсальная количественная шкала, как оказывается, существует лишь в нашем воображении (иными словами, является продуктом предельного субъективизма). В действительности же она постоянно подвергается какой-то деформации, что на нее всякий раз оказывают свое воздействие индивидуальные качественные особенности каждого нового класса явлений, включаемых в сферу исследования.

Словом, все свидетельствует о том, что заученный с детства ответ в действительности оказывается не чем иным, как простым предубеждением нашего сознания. Можно сказать и жестче – предрассудком. На поверку анализом он представляет собой яркий пример именно того отвлеченного и не поддающегося никакой верификации схоластического умствования, которое должен решительно искоренять в себе любой, кто ставит своей целью занятие наукой.

Попытка же получить объективный, действительно независящий от нашего сознания, поддающийся строгой экспериментальной проверке результат приводит нас к неожиданному выводу: количественная метрика каждого явления строго индивидуальна.

Выводы

Подведем предварительные итоги.

1. Мы обнаружили, что предложенная к решению задача вовсе не так проста, как это кажется на первый взгляд. Ее элементарность обусловлена единственно тем, что еще в раннем детстве, мы осваиваем и автоматизируем какой-то базисный комплекс операций диалектической логики. Именно этот комплекс и выполняется где-то под поверхностью обыденного сознания всякий раз, когда перед нами встает та или иная проблема. Поскольку же он выполняется автоматически, незаметно для нашего самосознания, ее решение и выглядит простым.

2. Сама возможность операций количественного сравнения разнородных вещей, явлений, процессов опирается на сложный и развитый комплекс каких-то общих представлений об окружающем нас мире. Именно они формируют остов всего нашего опыта, всех наших знаний, и стоит только исключить хотя бы некоторые из них из нашего умственного багажа, как весь он окажется чем-то вроде толстого тома, написанного на недоступном нам языке. Одним из таких опорных обобщающих представлений является положение о том, что количественно соизмеряемые образования должны быть предварительно приведены к какому-то единому качеству.

3. Начальный набор всех тех диалектических функций, которые автоматически выполняются под поверхностью обыденного сознания, очень ограничен. Это лишь базисный комплекс, который формируется нами еще в детстве, еще до того, как наше сознание начинает шлифоваться систематическим образованием. Он вполне пригоден для общебытовых нужд, но не срабатывает там, где сложность решаемых задач переходит какой-то критический уровень. Правда, он способен неограниченно пополняться, и направленное его пополнение, а также «автоматизация» навыков работы с ним является основным залогом интеллектуального развития человека. Только умение организовывать и упорядочивать ту скрытую умственную работу, которой большинство из нас вообще не придает никакого значения и является критерием подлинного мастерства. Без навыков такой организации никакое увеличение объема прочитанных книг или собранных фактов не научит самостоятельному мышлению никого. Поэтому культура и дисциплина мысли в первую очередь заключается в способности упорядочивать стихийный поток мета-логической обработки общих представлений.

4. Единого универсального «количества» в природе вообще не существует. Все количественные характеристики любого класса явлений неразрывным образом связаны с их качественными особенностями. Поэтому строгая индивидуальность качественных характеристик вещей дополняется абсолютной исключительностью того «количества», которое соответствует им и только им.

Глава 2. Что такое «сколько будет»?

В самом деле, что стоит за математическим знаком равенства, что это вообще означает «равняться» чему бы то ни было? Ведь если мы ставим своей задачей получить по возможности предельно конкретный ответ на поставленный с самого начала вопрос, мы обязаны до конца уяснить себе и эту его составляющую.

Очевидно, что и здесь прежде всего необходимо найти некое физическое (химическое, биологическое, социальное и так далее) содержание тех конкретных объектов, процессов, явлений, над которыми мы совершаем известные операции, и уже только потом восходить к каким-то более высоким обобщениям.

Имеет смысл предположить, что в контексте равенства речь должна идти о том, что совокупность свойств, характеристик, качеств слагаемых объектов, которые с самого начала берутся нами в учет, обязана быть строго тождественна, или по меньшей мере эквивалентна сумме свойств, характеристик, качеств некоего интегрального образования, получающегося в результате нашего «сложения». Действительно, если нет такого тождества или такой эквивалентности, – нет (и вообще не может быть) никакого равенства. Математическое равенство, как впрочем, и все в математике, – вещь очень и очень строгая поэтому до тех пор, пока сохраняется хотя бы какое-то – пусть даже микроскопическое – отличие, мы вправе говорить лишь о той или иной степени приближения к истине и не более того. Между тем никакой приблизительный результат нас удовлетворить не может, ибо математические задачи могут считаться решенными только там, где достигается абсолютная степень точности.

Но стоит нам только сформулировать такое предположение, как тут же появляется сильное сомнение в самой возможности достижения строгого тождества суммы исходных качеств с суммой конечных. Общие характеристики четырех метров колючей проволоки совсем не тождественны индивидуальным особенностям двух ежей и двух ужей. Интегральные свойства четырех единиц «домашнего скота» не тождественны качествам двух коров и двух лошадей. Причем нужно заметить, что такое сомнение по всей видимости заложено уже в самой природе человека, вернее сказать человеческого сознания, ибо с ним мы чуть ли не появляемся на свет.

Рассмотрим пример задачи, род которой, часто задают маленькие дети: кто «лучше», солдат, милиционер, или доктор? Слово «лучше» берется здесь в кавычки, по той простой причине, что чаще всего вообще непонятно, что именно имеет в виду ребенок. Но ведь ребенок-то ищет точный ответ на то, что занимает его пытливую голову, – и, самое удивительное, пользуясь какой-то своей логикой, находит его.

Анализ этой скрытой от внешнего взгляда логики показывает, что не знающий никаких формальных правил мышления ребенок тем не менее действует в полном соответствии со строгой методикой. В сущности то же самой, какой пользуются и отмеченные учеными степенями специалисты. Он выявляет условные основания количественного сравнения: скажем, «война», «порядок» и «болезнь» и ранжирует каждый из анализируемых объектов именно по ним. Поэтому по первому основанию (и совершенно справедливо) максимальную оценку получает солдат. Оно и понятно. Милиционеру, конечно, приходится быть готовым к встрече с каким-нибудь хулиганом, но все же до первого ему далеко. И потом, в пороховом дыму на поле славы в нарядном мундире в красивом строю под развевающимися знаменами солдат выглядит куда импозантней второго и уж тем более третьего. О докторе и вообще говорить не приходится, к тому же его белый халат и въевшийся запах карболки отдают чем-то не очень мужественным. По второму приоритет, разумеется, принадлежит милиционеру, наконец, по третьему – отдается доктору. Честное слово, не знаю, что думают по этому поводу глупые девчонки, но в достойной золота по мрамору системе ценностей взрастающего мужчины неоспоримый приоритет, по полному на то праву, принадлежит воинской доблести. Отсюда два солдата оказываются куда «лучше», чем два врача или два милиционера и даже все четверо последних вместе. Поэтому умей он считать, он с легкостью вывел бы логически безупречное заключение о том, что два врача и два милиционера вовсе не эквивалентны четырем солдатам.

Абсолютно строгое и, заметим, методологически выверенное решение! Кстати, оно со всей наглядностью показывает две весьма знаковые в рассматриваемом нами контексте вещи. Во-первых, то, что для ребенка, сознание которого еще полностью свободно от каких бы то ни было штампов, «два плюс два равно четыре» – это вовсе не абсолютная истина в последней инстанции. Во-вторых, то, что способность к выполнению сложных интеллектуальных операций формируется у всех нас еще в каком-то «досознательном» возрасте прямо из «воздуха» той этнокультурной среды, в которой мы появляемся на свет, и что именно она является непременным условием всего последующего интеллектуального развития человека. Просто сам этот «воздух» уже напитан многим из того, что за тысячелетия развития нашей цивилизации прочно вошло в состав диалектики.

Находимое ребенком решение – и с этим, наверное, согласятся многие – в значительной мере отражает реальную действительность: в боевой обстановке «среднестатистический» солдат и в самом деле куда более эффективен, нежели «среднестатистический» милиционер или (тем более) врач. Если, конечно, оценивать их всех именно по тому заранее избранному основанию, на каком строит свои выводы ребенок.

Но все же было бы абсолютно неправильно вслед за ним экстраполировать полученный вывод на каких-то конкретных персонажей. Этот, как и любой другой количественный результат, должен быть верен только для того уровня явлений, на котором он был получен. Получен же он был для совершенно отвлеченных бездушных и бесплотных начал. А именно – для некоторых совершенно абстрактных «функциональных машин», одна из которых приспособлена для выполнения, скажем, штыковой атаки, другая – для приведения в чувство каких-то хулиганов, третья для залечивания тех ран, которые могут получить и условный «солдат», и столь же условный «милиционер» в ходе выполнения своих профессиональных задач (ну, и, разумеется, для исцеления их маленьких пушистых любимцев). Но стоит только распространить вывод ребенка на «живого» дядю Степу, на известного всем доктора Айболита или на бравых вояк из ставшего классикой «мультика» о бременских музыкантах, как тут же обнаружится какая-то ошибка. И мужественный милиционер дядя Степа, и отважный доктор Айболит все в той же системе ценностей окажутся куда «лучше» этих жалких трусов.

Все это приводит к мысли о том, что в эти, казалось бы, безупречные расчеты вкрадывается какая-то серьезная методологическая ошибка. Как только от совершенно отвлеченных или даже полуабстрактных рассуждений мы переходим к «сложению» вполне реальных (или идентифицируемых с какими-то реальными людьми) персонажей, так сразу обнаруживается явно выраженная количественная аномалия, ибо конечный результат сложения оказывается иногда прямо противоположным тому, который прогнозируется очерченной только что логикой. И именно эта аномалия, именно обнаруживающаяся здесь непонятная «дельта количества» (которая к тому же может иметь еще и разные математические знаки) показывает, что в наших расчетах оказывается неучтенным какое-то таинственное дополнительное свойство, которое либо изначально было присуще всем нашим героям, но так и не обнаружилось нами, либо вновь возникало в самом процессе «сложения». Словом, вырисовывается незримое деформирующее логику действие какой-то таинственной «дельты качества».

Впрочем, ничего таинственного в этой «дельте» на самом деле нет, и в действительности мы легко учитываем ее влияние во всех своих расчетах. Вспомним: еще на уроках физики в средней школе мы привыкали внимательно следить не только за символами математических операций и знаками вводимых нами величин, но также и за физическим их содержанием, или, другими словами, их качественной определенностью. Действительно, мы умножали метры на секунды, массу на ускорение и так далее, но в результате всех этих вычислений нами получалось что-то совершенно отличное и от метров, и от секунд, и от килограммов. Поэтому многие ошибки были следствием не одной только арифметической неаккуратности, но и недостаточной внимательности в оценке физического, иными словами, качественного состава рассчитываемых нами величин. Поначалу калейдоскоп перемен того объективного содержания, которое стояло за всеми вводимыми величинами, вызывал у нас трудность. Однако со временем мы научались легко справляться с ней и автоматически отслеживать живую конкретику каждой переменной, включаемой в наши расчеты.

Рассказывают нечто вроде анектода из рубрики «физики шутят»: на одном ученом диспуте теолог с возмущением говоря о недостатках светского образования, приводил пример кощунственной попытки измерить Бога с помощью физических формул. Так Божественная сила определялась в примере, на который он ссылался, как произведение Божественной массы на Божественное ускорение. (Это и в самом деле кощунство, ибо применять к принципиально внематерильному Началу такие категории, как масса и ускорение – недопустимо.) Ему вторил физик. Суть его ответа сводилась к тому, что результат произведения должен давать «божественность» в квадрате. Однако если возможен квадрат Божественной силы, то что же тогда «просто» всемогущество Бога?

Словом, динамика качественного состава всех измеряемых нами величин имеет весьма и весьма существенное значение.

Но ведь все те отличия результата от исходного состава вводимых нами переменных, с которыми мы учились справляться в физическом классе, и есть проявление той самой «дельта качества», о которой говорится здесь.

Приведем другой вполне реальный пример – один из вариантов экономического расчета, составляющего элемент повседневной рутины практического управления любым производством. Этот расчет наглядно иллюстрирует то, как меняется качественная определенность рассчитываемых нами переменных и до какой степени эта определенность зависит от общего контекста анализа.

Представим: нам нужно ежемесячно перевозить один миллион тонн груза. Скажем, горной породы из некоторого карьера в отвал. Перевозка будет осуществляться на расстояние 5 км (специалисты называют это «плечом отката») со среднетехнической скоростью 20 км/час большегрузными автосамосвалами БЕЛаз-548, грузоподъемность которых округлим до 40 тонн. Задача состоит в том, чтобы рассчитать, сколько нужно машин и сколько водителей для выполнения этой работы. При этом примем, что наша условная фирма работает без остановок на выходные и праздники все 24 часа в сутки.

Не будем перегружать расчет излишними техническими деталями, существенными только для узких специалистов, предельно упростим его, сохранив, однако, физическое содержание всех анализируемых начал.

Итак. Прежде всего умножим наш миллион тонн на 12 (месяцев) и разделим на 40 (тонн грузоподъемности) и получим 300000 рейсов в год.

Далее. 300000 умножаем на 5 км и делим на 20 км/час. В результате получаем 75000 машино-часов.

Вновь опустим подробности, важные только для управленцев и нормировщиков, и поделим 75000 на 365 дней и еще на 3 смены в сутки. Получим 68, 49 единиц, которые, в зависимости от того или иного контекста расчета, примут размерность автомобилей или человек . Пусть нас не смущают дробные доли единицы: все экономические расчеты и в самом деле выполняются с такой, а иногда и с еще большей точностью.

Словом, мы видим, что качественное содержание результата меняется как в калейдоскопе: тонны и километры обращаются в рейсы, машино-часы и людей. При этом понятно, что каждая перемена всегда будет вносить что-то свое, с чем обязан считаться любой нормировщик. Сейчас мы это увидим.

Если мы говорим о персонале, то, оказывается, 68, 49 единиц – это вовсе не те живые люди, которых должен где-то на рынке труда нанять наш отдел кадров, но, так называемая явочная численность в смену, т.е. численность рабочих, которые должны выходить в каждую смену и садиться за «баранку» наших самосвалов. Но живые люди имеют свойство уходить в отпуск, проводить в кругу семьи выходные и праздники, иногда болеть, отпрашиваться у своего начальника по каким-то личным или семейным делам. Кроме того, кое-кому свойственно прогуливать и попадать в медвытрезвитель, и так далее. Поэтому списочная численность всегда будет несколько больше, ибо нужны дополнительные работники, которые должны заменять отсутствующих, поскольку, повторим, наше производство функционирует все 365 дней в году. Поэтому к окошку кассы, где выдается зарплата, в конечном счете выстраивается несколько большее количество людей, чем то, которое каждый день садится за « баранку» наших автомобилей. Существует свой порядок расчета всех отпусков и выходных дней, а также свои поправочные коэффициенты, позволяющие учитывать и все остальное.

Таким образом, списочный работник «качественно» отличается от явочного , ибо последний не знает ни выходных, ни каких-то домашних проблем, ни медвытрезвителя. Словом, переход от явочной численности к списочному штату диктует необходимость строгого учета очень многих параметров (среднюю норму заболеваемости, отвлечения на выполнение государственных и общественных обязанностей, отпусков по разрешению администрации и так далее) той самой «дельты качества», которая начинает действовать здесь. Таким образом, списочный работник (при 3-сменной круглосуточной работе) оказывается примерно в 4 раза «больше», чем явочный. Кстати сказать, в разных странах в зависимости от климатической зоны и степени вредности производства эта величина может варьировать. Поэтому приходится считаться не только с собственными особенностями «явочных» и «списочных» работников, но и с национальным законодательством, национальными системами охраны труда. Так, например, Российское законодательство предусматривает увеличенный ежегодный отпуск для работников Крайнего Севера, а также сокращенную продолжительность рабочей смены в условиях вредных производств. В то же время за рубежом подобные трудоохранные меры, как правило, не практикуются.

Если мы говорим о машинах, то те же 68, 49 – это еще не физические единицы, а только абстрактные расчетные величины. В сущности это такие же «явочные» автомобили, вернее сказать, машины, находящиеся в полной технической готовности. Но ведь машины, для того чтобы быть в полной технической готовности, требуют регулярного технического обслуживания и ремонта, иногда они попадают в аварию. Все это так же требует времени, в течение которого они оказываются в вынужденном простое, а значит, и здесь нужны свои поправки, учет какой-то своей «дельты качества». Поэтому и здесь переход к списочным автомобилям влечет за собой увеличение их количества по сравнению с уже рассчитанной величиной.

Заметим попутно, что и количественная аномалия, которую мы впервые обнаружили в детской задачке и с которой вновь сталкиваемся во вполне «взрослом» расчете, получает в последнем вполне логичное и доказательное объяснение. Поэтому, несмотря на то, что номинально у нас фигурируют одни и те же единицы, в отличии списочной численности от явочной мы уже не видим никакой ошибки, мы легко соглашаемся с тем, что верны оба результата, но понимаем, что каждый из них справедлив лишь для своего круга условий.

Таким образом, обобщая вывод, который сам собой напрашивается из приведенных примеров, можно сказать, что количественная аномалия, обнаруживаемая в наших расчетах, проступает как строгий индикатор какой-то (возможно, по невнимательности просмотренной нами) «качественной пересортицы». А значит, как строгий индикатор необходимости дальнейшего анализа. Уже отсюда можно сделать вывод о том, что «2+2=4» – это вовсе не запечатленный итог какой-то дискретной операции, но символ никогда не кончаемого процесса. Ведь дополнительный анализ кажущегося конечным результата обнажает перед нами совершенно новый пласт неведомого, который в свою очередь требует внимательного изучения. При этом вполне разумно предположить, что и следующий результат, тот самый, который должен будет пролить свет на этот новый пласт, образует собой лишь очередную ступень для следующего этапа восхождения.

Вглядимся пристальней.

Мы обнаружили, что результат любого сложения, да и любой операции количественного сравнения вообще, в первую очередь отвечает на вопрос: «что» будет?» и только во вторую – на вопрос: «сколько?». При этом «сколько будет?» в значительной мере зависит от того, «что» именно будет. Другими словами, все количественные параметры суммируемых (умножаемых, вычитаемых, делимых) нами свойств конкретных предметов, явлений, процессов будут зависеть от конкретных характеристик именно того нового объединяющего начала, к которому они приводятся. Все это самым непосредственным образом вытекает из того, что универсального «количества», универсальных шкал для измерения всего что угодно, как оказывается, в природе вообще не существует. Любое «количество» всегда строго индивидуально, поскольку нерасторжимо связано со строго определенным «качеством», то есть со строго определенным составом свойств, присущих лишь той или иной группе (виду роду, классу и т.д.) явлений. А значит, пригодно для измерения вещей, относящихся только и только к этим группам (видам, родам, классам и т.д.).

Но если так, то сплошь и рядом должны наблюдаться примеры того, когда трансформация качественной определенности, которая, как мы видели, неизбежна при сложении разнородных вещей, нарушает предсказываемые математикой соотношения. Почему же мы далеко не всегда видим эти нарушения? И не является ли их отсутствие в поле нашего зрения прямым опровержением всего того, о чем говорилось выше?

Впрочем, отсутствуют ли? Может, мы их просто не замечаем? А это уже совсем другое дело, ведь тот факт, что мы их не замечаем, вовсе не значит, что они не существуют вообще. Пример с детской задачкой наглядно подтверждает это. Но подобные ему примеры существуют сплошь и рядом не только в детском мышлении, но и во вполне «взрослой» жизни. Мы постоянно сталкиваемся с ними в нашей практике, но – вот парадокс! – очень часто и в самом деле в упор не видим и как бы проходим сквозь них. Вот, совсем иные иллюстрации, взятые именно их этой «взрослой» реальности. Водород представляет собой горючий газ. Кислород, как известно, хорошо поддерживает горение: в кислородной среде сгорают даже металлы и бетон. Отсюда справедливо было бы ожидать, что их соединение будет создавать какую-то страшно взрывную и опасную смесь. Однако в реальности два атома водорода и один атом кислорода порождают нечто прямо противоположное ожидаемому, а именно – химическое соединение, подавляющее огонь. Другой пример был известен еще нашим далеким предкам. Медь – это очень мягкий металл. Еще более мягкий металл – олово. Но их сплав рождает бронзу, твердость которой через тысячелетия была превзойдена только железом. Мы знаем, что открытие этого парадоксального факта в свое время совершило грандиозную технологическую революцию: еще из школьного курса истории известно о существовании так называемого бронзового века.

Иллюстрации такого рода можно было бы множить и множить. Но почему же тогда выученный в далеком детстве ответ с такой силой давит на наше сознание, что мы способны не замечать даже кричащие факты явного противоречия ему? Почему математические истины представляются нам чем-то незыблемым и универсальным? Почему наше сознание упорно настаивает на том, что результат любого сложения должен соответствовать ему, абсолютно независимо от того, что именно подвергается суммированию? Лошади ли, коровы, египетские ли пирамиды, страховые конторы, солдаты или милиционеры – почему каждый раз мы упорно ищем доказательство того, что итоговая сумма должна быть равна именно и только «четырем», независимо от природы слагаемых вещей? Почему мы всякий раз, несмотря ни на что, видим какой-то скрытый подвох, какой-то изощренный софизм, если не сказать заковыристый кульбит мысли, имеющий целью заставить ее потерять правильную ориентацию, когда нам доказывают что-то противоречащее затверженной истине? Почему в любой количественной аномалии мы склонны видеть только простую ошибку математического расчета и ничего более?

Но вглядимся в существо того, что именно суммируется в этом нисходящем к начальной школе примере.

Как только мы начинаем анализировать процедуру сложения, мы обнаруживаем, что ее результат – это вовсе не врожденная истина, но продукт какого-то очень сложного интеллектуального построения. По существу здесь мы сталкиваемся с примером одного из самых высоких уровней абстрагирования и обобщений. Ведь любые формы классификации явлений окружающего нас мира, которые тяготеют к условному основанию той пирамиды классов, родов, видов, что упоминалась выше, рано или поздно обнаруживают нарушающий строгость построений логический изъян, и этот изъян заставляет нас восходить на следующий уровень обобщений. Мы уже видели: для того, чтобы сложить лошадей и коров, нужно было взойти на уровень каких-то родовых понятий; для того, чтобы сложить домашний скот с пароходами, страховыми конторами или египетскими пирамидами, – на еще более высокую ступень, обобщающую памятники материальной культуры всей нашей цивилизации; чтобы прибавить к ним еще и фортепианные концерты Моцарта, – на следующую вершину абстрагирования, которая объединяет в себе все продукты человеческого творчества вообще… И так далее до самого предела. Но где же именно расположен конечный предел этого восхождения ко все более и более абстрактным понятиям? Что скрывает под собой тот высший уровень обобщений, который уже не может содержать в себе никаких логических изъянов, где уже решительно ничто не способно поставить под сомнение всеобщность и абсолютность результата математического сложения?

Думается, что ответ в конечном счете способен найти каждый, кто уже прошел начальную школу организации мышления. И этот ответ гласит о том, что самоочевидная математическая истина оперирует отнюдь не предметами, не физическими процессами, не реальными явлениями материального мира. Образно говоря, здесь фигурируют лишь некоторые условные, лишенные всякой определенности абсолютно безликие «ниши» нашего собственного сознания – и не более того. В этом смысле наше сознание может быть уподоблено какой-то огромной камере хранения, которая создается на вокзалах: ее одинаковые железные ячейки могут скрывать в себе все, что угодно от нехитрого багажа командированного чиновника до контрабандного наркотика. Каждая из этих «ниш-ячеек» – именно в силу своей пустоты – строго подобна и равна любой другой, и вместе с тем каждая из них способна вместить в себя все, что угодно: корову, страховую контору, фортепианный концерт, дядю Степу, бравого солдата Швейка и так далее. Правда, вместить все это в себя она может только «задним числом», только после выполнения каких бы то ни было операций количественного сравнения. Поэтому на самом деле, обращаясь к математическому расчету, мы складываем отнюдь не физические реалии окружающего нас мира, но всякий раз именно эти ничем не заполненные равновеликие «объемы» нашего сознания, и только получив какой-то результат, наполняем их подручным содержанием. А затем уже начинаем обманывать сами себя, самих себя, уверяя, что мы сложили именно конкретные вещи, которые обладают вполне конкретными характеристиками и свойствами.


    Ваша оценка произведения:

Популярные книги за неделю