355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Евгений Банников » Сварка » Текст книги (страница 4)
Сварка
  • Текст добавлен: 20 сентября 2016, 17:42

Текст книги "Сварка"


Автор книги: Евгений Банников



сообщить о нарушении

Текущая страница: 4 (всего у книги 23 страниц) [доступный отрывок для чтения: 9 страниц]

Оборудование для лазерной сварки и резки:

• высоковольтный выпрямитель для питания ламп накачки;

• блок конденсаторов;

• блок поджига газового разряда;

• собственно лазерная головка (активный элемент, отражатель, лампы накачки);

• оптическая система для фокусировки, юстировки (настройки) и наблюдения;

• система охлаждения установки;

• система перемещения, фиксации и контроля свариваемых деталей;

• система защиты персонала от действия лазерного излучения.

На рисунке 14 представлена схема оптической системы лазерной головки. Резонатор лазера образован двумя сферическими зеркалами (1). Между зеркалами резонатора расположены два соосно установленных осветителя, состоящих из активного элемента (2), импульсной лампы накачки (3) и осветительной камеры (4) в виде стеклянного цилиндрического блока. Излучение проходит через линзы (5, 12, 13) телескопической системы, позволяющей изменять расходимость луча лазера.

Зеркалом (7) излучение направляется на объектив (8), который фокусирует его на поверхность обрабатываемых деталей (10). Защитное стекло (9) предохраняет объектив от загрязнения продуктами взаимодействия излучения с материалом свариваемых деталей. Наводка излучения и визуальный контроль места сварки осуществляется встроенной оптической системой (6). Осветитель (11) служит для освещения места свариваемых деталей.


Рис. 14.

Схема лазерной установки

Преимущества лазерной технологии:

• высокая концентрация энергии в пятне нагрева на малой площади (доли миллиметра) позволяет сваривать миниатюрные детали с толщиной кромок от 50 микрон и выше, а также сваривать термочувствительные элементы;

• малое поперечное сечение сфокусированного луча при достаточно больших расстояниях от лазерной головки до свариваемой детали позволяет производить сварку в труднодоступных местах;

• уникальное свойство лазерного излучения проходить через твердые, прозрачные для луча материалы, позволяет производить сварку в вакууме, в газовых защитных средах;

• импульсный и непрерывный режимы излучения позволяют подводить в зону сварки строго дозированное количество энергии;

• высокая стерильность процесса сварки и отсутствие вредных выделений;

• высокая технологичность процесса;

• высокая степень автоматизации процесса сварки с применением микропроцессорной техники;

• применение лазера во всех технологических процессах обработки конструкционных материалов (резка, сварка, наплавка, прошивка отверстий) при высоких показателях качества и производительности.


Рис. 15.

Термитный карандаш:

1 – проволока; 2 – термит; 3 – «затравка» для зажигания

Недостатки применения лазеров:

• относительно высокая цена аппаратуры по сравнению с другими способами сварки металлов;

• применение высокотехнологичной аппаратуры требует подготовки специалистов соответствующей квалификации;

• применение специальных вибростойких платформ для устранения вибраций;

• защита персонала от воздействия мощного лазерного излучения;

• применение газовых лазеров требует периодической «тренировки» активных элементов для сохранения их работоспособности.

Термитная сварка

Сущность термитной сварки состоит в том, что свариваемые детали помещают в огнеупорную форму, а в установленный тигель сверху засыпают термитный порошок и поджигают его. При горении термита поднимается высокая температура, более 2000 °C, и образуется жидкий металл. Жидкий металл, оплавляя кромки свариваемых деталей и заполняя зазор между деталями, образует сварочный шов.

Обычно термит состоит из смеси 23 % опилок алюминия и 77 % окиси железа. Размер частичек порошка порядка 0,5 мм. При поджигании термитного порошка происходит экзотермическая реакция (т. е. химическая реакция с выделением теплоты). При этом окись железа восстанавливается до чистого железа, а алюминий окисляется. Расплавленное железо участвует в процессе сварки. Иногда термитную сварку выполняют при сварке стыков, когда отсутствуют другие источники теплоты.

Некоторые фирмы выпускают термитные карандаши (рис. 15). Термитный карандаш представляет собой отрезок проволоки из углеродистой стали диаметром 2–5 мм. На проволоку наносится термит, замешанный на клею, обычно нитроцеллюлозном.

На одном из концов расположена затравка для поджигания термита. Обычно используют 1 весовую часть бертолетовой соли (КСlО3) и 0,5 весовой части мелких алюминиевых опилок, также замешанных на нитроцеллюлозном клею. При сварке термитным карандашом пользуются щитком и держателем для электродов, как и при электрической дуговой сварке. Сварку термитным карандашом применяют на аварийных и экстренных работах, при отсутствии источников энергии. Например для сварки рельсов, проводов связи, кабельных линий. Для этих целей промышленность выпускает термитные патроны (термитные шашки) и специальные спички к ним. Принцип их действия аналогичен рассмотренному выше.

Преимущества термитной сварки:

• простота в использовании и низкая себестоимость;

• возможность производить сварку в экстренных случаях.

Недостатки термитной сварки:

• высокая способность поглощать влагу (гигроскопичность);

• чувствительность к механическим и тепловым воздействиям (пожароопасность);

• возможность взрыва при попадании воды на горящую термитную шашку;

• невозможность управления процессом горения термитной смеси.

Глава 2
Механический класс сварки

Классификация видов сварки давлением

К механическому классу относят виды сварки, осуществляемые с использованием механической энергии и давления.

К механическому классу относят следующие виды сварки:

• холодная сварка;

• сварка взрывом;

• сварка трением;

• ультразвуковая сварка.

Механическая энергия используется для сближения поверхностей на уровень межатомных взаимодействий элементов свариваемых деталей с образованием устойчивых связей.

Простота оборудования и высокая скорость процесса сварки позволили занять механическому классу сварки достойное место в различных технологических процессах.

Холодная сварка

Холодную сварку выполняют без нагрева, при нормальных или пониженных температурах. Метод холодной сварки основан на использовании пластической деформации, с помощью которой разрушают окисную пленку на свариваемых поверхностях и сближают свариваемые поверхности до образования металлических связей между ними. Эти связи возникают при сближении поверхностей соединяемых металлов на расстояние порядка нескольких ангстрем в результате образования общего электронного облака, взаимодействующего с ионизированными атомами обоих металлических поверхностей. Такое сближение достигается приложением больших удельных усилий в месте соединения. В результате происходит совместная пластическая деформация. Большое усилие сжатия обеспечивает разрушение пленки оксидов на свариваемых поверхностях и образование чистых поверхностей металла.

С помощью холодной сварки можно сваривать металлы, обладающие высокими пластическими свойствами при нормальной температуре. К этим металлам относятся: алюминий, золото, серебро, кадмий, свинец, цинк, титан, медь, никель, олово и их сплавы. Этот метод также применим для сварки разнородных металлов, например, меди с алюминием.

В недостаточно пластичных материалах при больших деформациях могут образоваться трещины. Высокопрочные металлы и сплавы холодной сваркой не сваривают, так как для этого требуются большие удельные усилия, которые трудно осуществить.

Если при сварке плавлением механизм образования соединения нагляден (например по расплавленным кромкам металла), то при холодной сварке давлением образование прочного соединения (схватывание) элементов происходит в твердой фазе. Таким образом, зона соединения недоступна для непосредственного наблюдения. В схватывании участвует огромное число атомов – до 1014 атомов/см2 со стороны каждого из металлов, а на скорость соединения влияет большое число внешних (температура, состав среды, давление) и внутренних (структура материала, механические свойства, состояние поверхности) факторов.

В проблему объяснения механизмов схватывания материалов в твердой фазе в конце XIX столетия внесли существенный вклад советские ученые: академики С. Б. Айбиндер, А. А. Бочвар, К. К. Хренов, профессора А. П. Семенов, Ю. Л. Красулин, К. А. Кочергин, В. П. Алехин и многие другие.

Получены расчетные данные, выдвинуты гипотезы, но единой теории образования сварочных соединений давлением нет.

Так, по гипотезе (энергетической) профессора А. П. Семенова, были введены количественные показатели процесса схватывания металлов, т. е. той минимальной степени деформации, при которой он начинается:

E = h/s × 100 %,

где: h – минимальная глубина вдавливания пуансона, при которой начиналось схватывание;

s – минимальная толщина в месте схватывания;

E – относительная деформация схватывания.

Процесс схватывания в твердой фазе представляет собой топохимическую (химическая реакция на поверхности) реакцию, при которой между атомами соединяемых поверхностей вещества устанавливаются связи, аналогичные связям в объеме кристаллической решетки.

Таким образом, особенностью сварки в твердом состоянии является то, что для образования физического контакта и создания условия для химического взаимодействия материалов без расплавления к ним необходимо приложить механическую энергию.

Сварное соединение образуется только при условии выноса (выдавливания) из зоны контакта части поверхностного металла вместе с окисной пленкой. Было установлено, что прочность соединения зависит только от относительной пластической деформации металла и не зависит от времени выдержки в сжатом состоянии.

Холодной сваркой выполняют точечные, шовные и стыковые соединения.

Холодная сварка используется при производстве, например, герметизированных полупроводниковых приборов, различных корпусов, предметов хозяйственно-бытового назначения. При использовании ручных гидропрессов – в монтажных работах, например, для холодной сварки кабельных муфт и проводов в сетях электроснабжения.

Холодная точечная сварка (сварка внахлестку)

На рисунке 16 представлена схема холодной точечной сварки.

Свариваемые детали (1) с тщательно зачищенной поверхностью в месте соединения помещают между пуансонами (2), имеющими выступы (3). При сжатии пуансонов усилием Р выступы пуансонов (3) вдавливаются в металл до тех пор, пока они упрутся в наружную поверхность свариваемых заготовок. Форма свариваемой точки зависит от формы выступа в пуансоне.

Холодной сваркой сваривают металлы и сплавы толщиной 0,2–15 мм. Удельные усилия, зависящие от состава и толщины свариваемого материала, в среднем составляют 150–1000 МПа.

В практике применяются следующие методы точечной холодной сварки:

• сварка без предварительного зажатия деталей;

• сварка с предварительным зажатием деталей;

• сварка с односторонним деформированием деталей.


Рис. 16.

Схема холодной точечной сварки:

1 – свариваемые детали;

2 – пуансоны;

3 – выступы пуансонов;

4 – формы пуансонов.

При точечной сварке без предварительного зажатия деталей (рис. 17) с целью получения заданной прочности соединения необходимо приложить соответствующее давление пуансона. Например, для сварки алюминия это давление составляет 17–25 кгс/мм2 площади торца рабочего выступа пуансона. Для сварки меди оно должно быть увеличено в 2–4 раза. Наиболее технологичная форма выступов пуансона – прямоугольная и круглая. Ширина или диаметр рабочего выступа пуансона равны 1–3 толщинам свариваемых деталей – в зависимости от толщины последних. При сварке разнородных материалов диаметры круглых или ширины прямоугольных рабочих выступов пуансонов рекомендуется брать обратно пропорциональными твердости этих материалов.


Рис. 17. Схема холодной сварки без предварительного зажатия свариваемых деталей:

1 – свариваемые детали; 2 – пуансоны.


Рис. 18.

Схема холодной сварки с предварительным зажатием свариваемых деталей:

1 – свариваемые детали;

2 – прижимы; 3 – пуансоны

Недостатком этого способа является коробление деталей, что особенно затрудняет сварку деталей больших толщин (более 4 мм), а также деталей из металлов с малой пластичностью (нагартованная медь, алюминий).

Способ сварки с предварительным зажатием деталей (рис. 18) позволяет устранить основные недостатки предыдущего способа (без фиксации деталей). Отличие в том, что рабочий выступ пуансона изготавливают в виде отдельной детали, подвижной относительно опорной части, предназначенной для зажатия деталей с начала процесса сварки и до его окончания. Зажатие деталей между опорными частями (прижимами) (2) производят до вдавливания рабочих выступов пуансонов (3) в металл детали или одновременно с ним. За счет этого устраняется коробление свариваемых деталей и увеличивается прочность сварного соединения. Прочность сварного соединения растет с увеличением глубины вдавливания рабочих пуансонов в металл.

Максимальная прочность получается в том случае, когда рабочие пуансоны углубляются в металл почти на полную его толщину. При этом способе сварки давление на прижимы рекомендуется в пределах 3–5 кгс/мм2. Площадь прижима должна превышать площадь торца рабочего выступа пуансона в 15–20 раз. В частности, при сварке алюминия конечное давление на рабочий пуансон составляет 40–150 кгс/мм2 площади торца его рабочего выступа – в зависимости от толщины свариваемого металла.

Точечная холодная сварка с односторонним деформированием (рис. 19) применяется в том случае, когда по эстетическим или техническим причинам требуется ровная с какой-то одной стороны поверхность сварного соединения. Прочность сварного соединения при одностороннем деформировании достигает максимального значения при глубине вдавливания около 60 % толщины свариваемых деталей. Дальнейшее увеличение углубления пуансона не приводит к росту прочности сварного соединения. При сварке металлов с разной толщиной вдавливание пуансона рекомендуется выполнять со стороны более тонкого металла, а при значительной разнице в толщинах (например, 10 мм + 1 мм) сварка уже невозможна.

Для получения качественного соединения перед сваркой материал необходимо тщательно зачищать от окисных пленок и обезжиривать от любых органических пленок. Даже прикосновение пальцев рук резко снижает прочность сварного соединения. Прочность соединения способом холодной сварки зависит от относительной глубины вдавливания пуансона и качества подготовки поверхности.


Рис. 19.

Схема холодной сварки с односторонним деформированием деталей:

1 – свариваемые детали; 2 – прижим;

3 – пуансон; 4 – основание.

Минимальная глубина вдавливания инструмента определяется свойством материала.

Холодная шовная сварка

Для холодной шовной сварки применяют специальные ролики. При этом способе сварки металл деформируется вдавливанием в него рабочих выступов вращающихся роликов (рис 20). Для сварки прямых листов непрерывные швы непригодны, т. к. уменьшают сечение деталей и по этой линии может происходить излом. Поэтому такой способ используют для сварки кольцевых и продольных швов в замкнутых контурах.

Для различных металлов и их сплавов разработаны технологические приемы холодной шовной сварки. Например, для алюминия и его мягких сплавов рекомендованы следующие параметры:

• диаметр роликов – 50 S;

• ширина рабочего выступа ролика – (1–5) S;

• высота рабочего выступа ролика (0,8–0,9) S,

где S – толщина свариваемых деталей.

Для сварки алюминия и мягких сплавов толщиной 2+1,5 мм усилие, прилагаемое к роликам в рабочем режиме, равно 1,8 тс. Используют два типа шовной сварки:

• с односторонним деформированием металла;

• с двухсторонним деформированием металла.


Рис. 20.

Схема холодной шовной сварки:

1 – свариваемые детали; 2 – ролики;

3 – рабочие выступы роликов

Холодная сварка встык

При этом способе сварки соединяемые детали закрепляют в специальных зажимах, расположенных соосно, а торцы свободных, выпущенных из зажимов концов деталей, примыкают один к другому. При осевой осадке выпущенные концы пластически деформируются, и в месте стыка образуется сварное соединение. Место сварки всегда имеет характерное утолщение по стыку. Величина свободных выпущенных концов зависит от свариваемых сечений и материала деталей.

Используют два типа зажимных устройств:

• с затрудненным истечением металла;

• со свободным истечением металла.

Схемы зажимных устройств показаны на рисунке 21.

Холодная сварка сейчас находит широкое применение благодаря простоте использования. Для соединения методом холодной сварки используют любые прессы (винтовые, гидравлические, рычажные, эксцентриковые и т. п.) как общепромышленного, так и специального назначения.

Достоинства холодной сварки:

• простота и доступность оборудования (например, любые прессы);

• низкая квалификация персонала;

• отсутствие вредных выделений при сварке;

• возможность сварки пластичных металлов без нагрева;

• высокая степень механизации процесса;

• малый расход энергии;

• высокая производительность.


Рис. 21.

Схема зажимов для стыковой холодной сварки:

1 – с затрудненным истечением металла;

2 – со свободным истечением

Недостатки холодной сварки:

• большие удельные давления;

• относительно малый диапазон толщин материалов при сварке (0,2–15 мм);

• невозможность сварки высокопрочных металлов.

Сварка взрывом

Сварку взрывом можно отнести к видам сварки с оплавлением, при кратковременном нагреве на воздухе, так как на отдельных участках наблюдаются зоны металла, нагретые до оплавления. Однако на других участках температура может быть невысока, и здесь процесс приближается к холодной сварке.

Большинство технологических схем сварки основано на использовании направленного (кумулятивного) взрыва.

На рисунке 22 приведена схема сварки взрывом. Соединяемые поверхности двух заготовок, одна из которых неподвижна и служит основанием, располагают под углом друг к другу на расстоянии h.

На заготовку (3) укладывают взрывчатое вещество (2) толщиной Н, а со стороны, находящейся над вершиной угла, устанавливают детонатор (1). Сваривают на жесткой опоре. Давление, возникающее при взрыве, сообщает импульс расположенной под зарядом пластине. Детонация взрывчатого вещества с выделением газов и теплоты происходит с большой скоростью (несколько тысяч метров в секунду).

В месте соударения метаемой пластины с основанием образуется угол γ, который перемещается вдоль соединяемых поверхностей. При соударении из вершины угла выдуваются тонкие поверхностные слои, оксидные пленки и другие загрязнения. Соударение пластин вызывает течение металла в их поверхностных слоях.

Поверхности сближаются до расстояния действия межатомных сил взаимодействия, и происходит схватывание по всей площади соединения. Продолжительность сварки взрывом не превышает нескольких микросекунд. Этого времени недостаточно для протекания диффузных процессов, сварные соединения не образуют промежуточных соединений между разнородными металлами и сплавами.

Прочность соединений, выполненных сваркой взрывом, выше прочности соединяемых материалов. Разрушение при испытании происходит на некотором расстоянии от плоскости соединения по наименее прочному металлу. Это объясняется упрочнением тонких слоев металла, прилегающих к соединенным поверхностям, при их пластической деформации.


Рис. 22.

Схема сварки взрывом:

1 – детонатор; 2 – взрывчатое вещество (ВВ);

3, 4 – соединяемые поверхности

Параметры сварки взрывом:

• скорость детонации – D;

• нормальная скорость метаемой пластины при соударении с основанием – Vн;

• угол встречи при соударении – γ.

Скорость детонации, определяемая типом взрывчатого вещества и толщиной его слоя, должна обеспечивать образование направленной (кумулятивной) струи без возникновения опасных для металла ударных волн.

Сварка взрывом как способ соединения металлов в твердой фазе была открыта в начале 60-х годов прошлого столетия одновременно в России и США.

Достоинства сварки взрывом:

• высокая скорость (несколько микросекунд) соединения;

• изготовление заготовок из разнородных металлов (биметалл);

• плакирование (покрытие слоем металла) поверхностей сталей металлами и сплавами с особыми физическими и химическими свойствами;

• возможность изготовления прямолинейных и криволинейных заготовок площадью от нескольких квадратных сантиметров до десятков квадратных метров;

• изготовление заготовок для штамповки и ковки;

• простота оборудования (собственно детали и заряд ВВ).

Недостатки сварки взрывом:

• защита персонала от детонационных волн при взрыве зарядов;

• обучение персонала работе со взрывчатыми веществами;

• изготовление специальных камер для сварки взрывом;

• невозможность механизации или автоматизации процесса.


    Ваша оценка произведения:

Популярные книги за неделю