355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Эрвин Шредингер » Что такое жизнь? » Текст книги (страница 4)
Что такое жизнь?
  • Текст добавлен: 10 октября 2016, 04:00

Текст книги "Что такое жизнь?"


Автор книги: Эрвин Шредингер


Соавторы: Григорий Рифтин
сообщить о нарушении

Текущая страница: 4 (всего у книги 9 страниц) [доступный отрывок для чтения: 4 страниц]

Введение некоторых технических терминов

Для большей ясности здесь следует объяснить некоторые технические термины. То, что я называю «версией шифровального кода» – будь она первоначальной или мутантной, – принято обозначать термином «аллель». Когда версии различны, как это показано на рис. 8, особь называется гетерозиготной в отношении этого локуса. Когда они одинаковы, как, например, в немутировавших особях или в случае, изображенном на рис. 10, они называются гомозиготными. Таким образом, рецессивные аллели влияют на признаки только в гомозиготном состоянии, тогда как доминантные аллели производят один и тот же признак как в гомозиготном, так и в гетерозиготном состоянии.

Цвет очень часто доминирует над отсутствием цвета (или белизной). Так, например, горох будет цвести белым цветом, только когда он имеет "рецессивную аллель, ответственную за белый цвет" в обеих соответствующих хромосомах, то есть когда он "гомозиготен по белому"; он будет тогда давать чистое потомство, и все его потомки будут белыми. Но уже одна "красная аллель" (в то время как другая белая – "гетерозиготная особь") сделает цветок красным, и совершенно таким же сделают его и две красные аллели ("гомозиготная особь"). Различие последних двух случаев станет выявляться только в потомстве, когда гетерозиготные красные будут производить некоторое количество белых потомков, а гомозиготные красные будут давать чистое потомство.

То, что две особи могут быть совершенно подобны по внешности и, однако, различаться наследственно, столь важно, что желательно дать этому точную формулировку. Генетик говорит, что у особей один и тот же фенотип, но различный генотип. Содержание предыдущих параграфов может быть, таким образом, суммировано в кратком, но высоко техническом выражении: рецессивная аллель влияет на фенотип, только когда генотип гомозиготен.

Мы будем прибегать время от времени к этим техническим выражениям, напоминая читателю их значение, когда это необходимо.

Вредное действие родственного скрещивания

Рецессивные мутации, пока они гетерозиготны, не служат, конечно, материалом для естественного отбора. Если они вредны, как это часто бывает с мутациями, они, тем не менее, не отбрасываются, потому что они скрыты.

Отсюда следует, что очень большое количество неблагоприятных мутаций может накопляться и не причинять непосредственного вреда. Но они, конечно, передаются половине потомства, и это применимо как к человеку, так и к скоту, домашней птице и другим видам, хорошие физические качества которых имеют для нас непосредственное значение. На рис. 9 предполагается, что мужской индивидуум (скажем, для конкретности, я сам) несет такую рецессивную вредную мутацию в гетерозиготном состоянии, так что она не проявляется. Предположим, что моя жена не имеет ее. Тогда половина наших детей (второй ряд) будет также нести ее, и притом опять в гетерозиготном состоянии. Если все они вступят в брак с немутантными партнерами (опущенными в диаграмме, чтобы избежать путаницы), четвертая часть наших внуков в среднем будет затронута подобным же образом.

Никакой опасности вредных проявлений не возникнет до тех пор, пока такие затронутые индивидуумы не поженятся между собой. Тогда, как показывает простой расчет, четвертая часть детей окажется гомозиготной и проявит вредную мутацию. За исключением самооплодотворения (возможного только у гермафродитных растений) наибольшую опасность представлял бы брак между моим сыном и моей дочерью. Каждый из них имеет одинаковые шансы быть в скрытом виде затронутым или незатронутым, и потому одна четвертая часть таких кровосмесительных союзов была бы опасна, поскольку четвертая часть детей от такого брака проявляла бы вредный признак. Размер опасности для каждого отдельного ребенка, рожденного при кровосмешении, равен, таким образом, 1:16.

Сходные рассуждения показывают, что размер опасности составляет 1:64 для потомства в случае брака моих внуков, которые в то же время являются двоюродными братом и сестрой. Это уже не кажется таким страшным, и действительно, последний случай брака обыкновенно считается терпимым. Но не надо забывать, что мы анализировали последствия только одного скрытого повреждения у одного партнера из пары предков ("я и моя жена"). В действительности же оба они, весьма возможно, несут в себе более чем один латентный недостаток этого рода. Если вы знаете, что вы сами носите определенный скрытый недостаток, вы должны предполагать с вероятностью 1:8, что ваши двоюродные братья и сестры также разделяют его с вами!

Эксперименты с растениями и животными, по-видимому, указывают, что в добавление к сравнительно редким дефектам серьезного характера имеется масса меньших, случайные комбинации которых ухудшают в целом потомство от родственных скрещиваний. Поскольку мы более не склонны удалять неудачных потомков тем жестоким путем, каким пользовались лакедемоняне на Тайгетской скале [23] 23
  Слабых детей сбрасывали со скалы и таким образом старались освободить свой народ от слабых и больных потомков. (Прим. перев.)


[Закрыть]
, мы должны обращать особенно серьезное внимание на близкородственные браки у человека, для которого естественный отбор наиболее приспособленных большей частью ограничен, и даже более того, – обращен в свою противоположность. Антиселективное действие современных массовых убийств здоровых юношей всех национальностей вряд ли оправдывается соображениями, что в более первобытных условиях война могла иметь положительную ценность для отбора, давая возможность пережить наиболее приспособленным племенам

Общие и исторические замечания

Представляется удивительным, что рецессивные аллели в гетерозиготном состоянии полностью подавляются доминантными и совершенно не производят видимого действия. Надо, по крайней мере, упомянуть, что из этого имеются исключения. Когда гомозиготный белый львиный зев скрещивается с гомозиготным же малиновым львиным зевом, все непосредственные потомки оказываются промежуточными по окраске, то есть розовыми (а не малиновыми, как можно было ожидать). Более важный случай двух аллелей, выявляющих свое действие одновременно, наблюдается в кровяных группах, но мы не можем вдаваться здесь в это подробнее. Я не был бы удивлен, если бы в конце концов оказалось, что рецессивность может быть различных степеней и что ее обнаружение зависит от чувствительности приемов, применяемых при изучении «фенотипа».

Здесь, может быть, уместно рассказать о ранней истории генетики. Костяком теории, а именно законами передачи в последующие поколения признаков, которыми различались родители, и в частности, открытием рецессивных и доминантных признаков мы обязаны всемирно известному августинскому аббату Грегору Менделю (1822-1884). Мендель ничего не знал относительно мутаций и хромосом. В своем монастырском саду в Брюнне (Брно) он ставил опыты с садовым горошком, культивируя различные сорта, скрещивая их и наблюдая их потомство в 1-м, 2-м, 3-м..., поколениях. Вы можете сказать, что он экспериментировал с мутантами, найдя их уже готовыми в природе. Результаты он опубликовал еще в 1866 г. в трудах "Nalurforschender Verein in Вrunn". Никто, казалось, не интересовался занятиями аббата и никто, конечно, не имел ни малейшего представления о том, что в двадцатом столетии его открытие станет путеводной звездой совершенно новой ветви науки, возможно, наиболее интересной в наши дни. Его работа была забыта, и ее снова обнаружили только в 1900 г. одновременно и независимо друг от друга Корренс (Берлин), де-Фриз (Лейден) и Чермак (Вена).

Необходимость того, чтобы мутации были редким событием

До сих пор мы обращали наше внимание на вредные мутации, которые, может быть, более многочисленны; однако следует определенно указать, что мы встречаемся также и с полезными мутациями. Если самопроизвольная мутация представляет собой небольшую ступеньку в развитии вида, то создается впечатление, что известное изменение «испытывается» вслепую – с риском, что оно может оказаться вредным и в таком случае будет автоматически элиминировано. Отсюда вытекает один очень важный момент. Чтобы быть подходящим материалом для работы естественного отбора, мутации должны быть достаточно редкими событиями, какими они в действительности и оказываются. Если бы они были настолько частыми, что существовала бы большая вероятность появления у одной особи, скажем, дюжины различных мутаций, то вредные, как правило, преобладали бы над полезными, и виды, вместо того чтобы улучшаться путем отбора, оставались бы неулучшенными или погибали бы. Сравнительный консерватизм, являющийся результатом высокой устойчивости генов, имеет очень существенное значение. Аналогию этому можно усмотреть, например, в работе сложного фабричного оборудования на каком-нибудь заводе.

Для развития лучших методов необходимо испытывать различные нововведения, даже непроверенные раньше. Но чтобы выяснить, увеличивают или уменьшают эти нововведения продукцию завода, важно вводить их по одному, тогда как другие части механизма остаются неизмененными.

Мутации, вызванные х-лучами

Мы теперь должны рассмотреть серию чрезвычайно остроумных генетических исследований, которые окажутся наиболее существенными для нашего анализа.

Процент мутаций в потомстве-так называемый темп мутирования – можно увеличить во много раз по сравнению с естественным мутационным темпом, если освещать родителей х – лучами или γ-лучами. Мутации, вызванные таким путем, ничем (за исключением большей частоты) не отличаются от возникающих самопроизвольно, и создается впечатление, что каждая "естественная" мутация может быть тоже вызвана х -лучами. В обширных культурах Drosophila многие особые мутации повторяются снова и снова; они были локализованы в хромосоме, как это описано в § 16, и получили специальные названия. Были обнаружены так называемые "множественные аллели", то есть две или более различных "версий" или "чтений" (в добавление к нормальной немутировавшей) в том же самом месте хромосомного кода. Это означает, что имеются не только два, но три и больше изменений в данном локусе, причем каждые два из них находятся один к другому в отношении "доминантности-рецессивности", когда они оказываются одновременно на своих соответствующих местах в двух гомологичных хромосомах [24] 24
  Это не совсем точно. Отмечено, что за исключением «дикого» (обычногоаллеломорфа остальные чаще ведут себя не как доминантные и дают в сочетании друг с другом промежуточные формы. {Прим. перев.)


[Закрыть]
.

Эксперименты с мутациями, вызванными х-лучами, создают впечатление, что каждый отдельный "переход", скажем, от нормального инд ивидуума к данному мутанту или наоборот имеет свой индивидуальный "х-лучевой коэффициент", указывающий процент потомства, которое оказывается мутировавшим в данном специальном направлении, если перед зарождением этого потомства родители получили единичную дозу х-лучей.

Первый закон. Мутация является единичным событием

Более того, законы, управляющие частотой появления индуцированных мутаций, крайне просты и бросают чрезвычайно яркий свет на весь вопрос. Я следую здесь изложению Н.В.Тимофеева в Biological Reviews,vol. 9,1934.

В значительной степени оно основывается на собственной прекрасной работе этого автора. Первый закон гласит:

1. Увеличение числа мутаций точно пропорционально дозе лучей, так что можно действительно говорить (как я это и делал) о коэфициенте увеличения.

Мы так привыкли к простой пропорциональности, что склонны недооценивать далеко идущие последствия этого закона. Чтобы оценить их, мы можем вспомнить, что стоимость товара, например, не всегда пропорциональна его количеству. В обычное время то, что вы уже купили шесть апельсинов, может произвести на лавочника такое впечатление, что если вы потом решите взять у него целую дюжину, он, возможно, отдаст вам ее дешевле, чем за двойную цену первых шести. В случае неурожая может случиться обратное. В нашем случае мы заключаем, что первая половина дозы излучения, вызвав, скажем, одну мутацию на тысячу потомков, в то же время совсем не повлияла на остальных потомков ни в сторону предрасположения, ни в сторону иммунизации против мутаций. Ибо в противном случае вторая половина дозы не вызвала бы снова именно одной мутации на тысячу. Мутация, таким образом, не является накопленным результатом последовательного освещения малыми порциями, которые усиливали бы одна другую. Она должна состоять из какого-то единичного явления, происходящего в одной хромосоме во время воздействия х-лучами. Что же это за явление?

Второй закон. Локализация события

На это отвечает второй закон, а именно:

2. Если вы изменяете качество лучей (длину события волны) в широких пределах от мягких х-лучей до довольно жестких γ-лучей, коэфициент остается постоянным при условии, что вы даете ту же самую дозу в так называемых r-единицах. Иначе говоря, коэфициент не изменяется, если вы измеряете дозу общим количеством ионов, возникающих на единицу объема, в подходящем стандартном веществе в течение времени, когда родители подвергаются действию лучей, и в том же самом месте.

В качестве стандартного вещества выбирают воздух, – не только для удобства, но также по той причине, что"ткани организмов состоят из элементов того же среднего атомного веса, как и воздух. Нижний предел числа ионизации или сопровождающих процессов [25] 25
  Нижний предел, потому что эти другие процессы не учитываются при измерении ионизации, но могут все же иметь значение при вызывании мутаций.


[Закрыть]
(возбуждений) в тканях получается просто умножением количества ионизации в воздухе на отношение плотностей. Таким образом, совершенно ясно (и это подтверждается более детальным исследованием), что единичное явление, вызывающее мутацию, это и есть как раз ионизация (или сходный процесс), происходящая внутри некоторого «критического» объема зародышевой клетки.

Каков же этот критический объем? Он может быть установлен из наблюдающейся частоты мутирования путем следующего рассуждения: если при дозе 50 тыс. ионов на 1см3 вероятность мутировать в данном специальном направлении для каждой отдельной гаметы, находящейся в облучаемом пространстве, равна только 1 : 1000, мы заключаем, что критический объем – "мишень", в которую надо "попасть" ионизации, чтобы возникла эта мутация – будет только 1/1000 от 1/50 000 см3, то есть, иначе говоря, одна пятидесятимиллионная см3. Цифры здесь не точны, и я их привел только для иллюстрации. В действительном расчете мы следуем М. Дельбрюку (в совместной работе его, Н. В. Тимофеева и К. Г. Циммера) [26] 26
  Nachr.a.d.Biologie d.Ges.d.Wiss.Göttingen, Bd.I,s.189,1935.


[Закрыть]
. Эта же работа послужит основным источником при изложении теории в следующих двух главах. Дельбрюк приходит к объему только около десяти средних атомных расстояний в кубе и содержащему, таким образом, только 103 атомов. Простейшее истолкование этого результата сводится к тому, что имеется достаточная вероятность возникновения данной мутации, если ионизация (или возбуждение) происходит не далее, чем на расстоянии около «10 атомов в сторону» от определенного места в хромосоме. Более детально мы это обсудим в дальнейшем.

Статья Тимофеева содержит практический намек, от упоминания о котором я не могу здесь воздержаться, хотя он, конечно, не имеет отношения к настоящему исследованию. В современной жизни бывает множество случаев, когда человек подвергается действию х-лучей. Прямые опасности, включая такие, как ожог, рак, стерилизация, хорошо известны; сестрам и врачам, постоянно имеющим дело с лучами, обеспечивается специальная защита свинцовыми ширмами, фартуками и т.д. Дело, однако, в том, что даже при успешном отражении этих неизбежных опасностей, грозящих индивиду, существует косвенная опасность возникновения небольших вредных мутаций в зачатковых клетках, мутаций того же рода, как и те, с которыми мы встречались, когда речь шла о неблагоприятных результатах родственного скрещивания. Говоря более выразительно – хотя, возможно, это звучит немного наивно, – вредность брака между двоюродными братом и сестрой может быть очень увеличена тем, что их бабушка в течение долгого времени служила сестрой в рентгеновском кабинете. Это не должно быть поводом для беспокойства отдельного человека. Но всякая возможность постепенного заражения человеческого рода нежелательными скрытыми мутациями должна интересовать человеческое общество.

Данные квантовой механики

Und deines Gelstes hоchster Feuerflug

Hat schon am Gleichnis, hat am Bild genug.

Goethe [27] 27
  И пламенный полет твоего духа довольствуется изображениями и подобиями. – Гете.


[Закрыть]
.

Постоянство, не обьяснимое классической физике

Таким образом, при помощи удивительно тонкого инструмента х -лучей (которые, как помнит физик, дали возможность тридцать лет назад открыть детальную, атомную, решетчатую структуру кристаллов) объединенными усилиями биологов и физиков недавно удалось снизить верхнюю границу размеров микроскопических структур, ответственных за определенные индивидуальные признаки большого масштаба, то есть удалось снизить размеры генов далеко за пределы, указанные в § 17. Мы теперь серьезно стоим перед вопросом: как можно с точки зрения статистической физики примирить то, что генная структура, по-видимому, включает в себя только сравнительно малое число атомов (порядка 1000, возможно, даже еще меньше) и все же проявляет весьма регулярную и закономерную активность и такую долговременность и постоянство, какие граничат с чудом.

Разрешите мне пояснить примером это действительно удивительное положение. Несколько членов Габсбургской династии имели особым образом измененную нижнюю губу("Габсбургская губа"). Ее наследование было изучено очень тщательно, и результаты, вместе с историческими портретами, опубликованы императорской академией в Вене под покровительством самой семьи Габсбургов. Признак оказался настоящей менделеевской "аллелью" по отношению к нормальной губе. Присмотревшись к портрету члена семьи в XVI столетии и к портрету потомка, жившего в XIX столетии, мы можем с уверенностью заявить, что материальная генная структура, ответственная за эту ненормальную черту, была пронесена из поколения в поколение сквозь столетия и в точности воспроизводилась в каждом из не очень многих клеточных делений, лежащих в этом промежутке времени. Более того, количество атомов, заключающихся в соответствующей генной структуре, вероятно, должно быть того же порядка, как и в случаях, проверенных х-лучами. Все это время ген находился при температуре около 35° С. Как понять, что он остался неизменным в течение столетий, несмотря на нарушающую тенденцию теплового движения?

Физик конца прошлого столетия не нашел бы ответа на этот вопрос, если бы приготовился основывать свой ответ только на тех законах природы, которые он тогда действительно понимал. Может быть, после короткого размышления о статистической ситуации, он бы ответил (как мы увидим, правильно): этими материальными структурами могут быть только молекулы. Химия уже получила в то время широкое представление о существовании этих ассоциаций атомов и об их иногда высокой устойчивости. Но это знание было чисто эмпирическим. Природа молекул не была понята – сильные взаимные связи атомов, сохраняющие форму молекулы, были для всех полной загадкой. Действительно, ответ оказывается правильным, но он имеет ограниченную ценность, поскольку загадочная биологическая устойчивость сводится к столь же загадочной химической устойчивости. Указания, что две особенности, сходные по проявлению, основаны на одном и том же принципе, всегда ненадежны до тех пор, пока неизвестен еще сам принцип.

Объяснимо квантовой теорией

В данном случае этот принцип дается квантовой теорией. В свете современного знания механизм наследственности тесно связан с самой основой квантовой теории и даже более того– опирается на нее. Эта теория была сформулирована Максом Планком в 1900 г. Современная генетика может быть датирована с «открытия» менделевской работы де-Фризом, Корренсом и Чермаком(1900г.) и с работы де-Фриза о мутациях (1901-1903 гг.). Таким образом, время рождения двух великих теорий близко совпадает, и неудивительно, что обе должны были достигнуть определенной степени зрелости, прежде чем между ними могла возникнуть связь. Для квантовой теории потребовалось больше четверти столетия до того, как в 1926– 1927 гг. В. Гейтлером и Ф. Лондоном были очерчены основные принципы квантовой теории химических связей. Гейтлер-Лондоновская теория включает в себя наиболее тонкие и сложные понятия позднейшей квантовой теории (называемой «квантовой механикой» или «волновой механикой»). Изложение ее без применения высшей математики почти невозможно или потребовало бы, по крайней мере, небольшой книги. Но, к счастью, теперь, когда вся работа уже выполнена, становится возможным указать более прямым образом связь между «квантовыми скачками» и мутациями. Это мы и постараемся теперь сделать.


    Ваша оценка произведения:

Популярные книги за неделю