Текст книги "101 ключевая идея: Астрономия"
Автор книги: Джим Брейтот
Жанры:
Прочая научная литература
,сообщить о нарушении
Текущая страница: 5 (всего у книги 11 страниц)
ЛУНА 1: НАБЛЮДЕНИЯ С ЗЕМЛИ
Луна вращается вокруг Земли на среднем расстоянии 384 000 км с периодом 27,3 суток, но при наблюдении с Земли она проходит через полный цикл своих фаз через каждые 29,5 суток. Это происходит потому, что часть освещенной Солнцем поверхности Луны, видимой с Земли, изменяет свою форму по мере того, как Луна движется вокруг Земли.
В новолуние можно видеть тонкий серп Луны, концы которого указывают в восточном направлении. Луна в этот период расположена между Землей и Солнцем таким образом, что почти вся ее освещенная поверхность обращена от Земли. По мере того как Луна движется по своей орбите на восток, часть ее освещенной Солнцем поверхности, видимая с Земли, постепенно возрастает (или прибывает) до полнолуния, когда на Земле можно наблюдать весь лунный диск. Тогда Луна находится в направлении от Солнца и обращена к Земле. При дальнейшем движении по орбите часть освещенной Солнцем лунной поверхности, видимая с Земли, уменьшается (или убывает) до тонкого полумесяца, концы которого указывают в западном направлении. Затем Луна исчезает и снова появляется в новолуние.
Солнечный свет
Фазы Луны
При наблюдении с Земли на лунной поверхности выделяются яркие и темные области, которые называются лунными "горами" и "морями" соответственно. Кратеры можно видеть на лунной поверхности повсюду, но лучше всего они выделяются на краю освещенной Солнцем части, где их выступы отбрасывают на поверхность длинные тени. "Моря" представляют собой сравнительно ровные области, которые, как считается, вызваны обширными лавовыми излияниями в результате ударов крупных метеоритов на раннем этапе лунной истории, когда ее недра находились частично в жидком состоянии. Полусфера Луны, обращенная к Земле, никогда не меняется, поскольку период вращения Луны вокруг своей оси точно такой же, как период ее вращения вокруг Земли. Этот эффект обусловлен "приливными" гравитационными силами, которые воздействуют на Луну со стороны Земли.
См. также статью «Кратеры».
ЛУНА 2: ЛИБРАЦИЯ
Луна всегда обращена к Земле одной и той же стороной, поскольку она вращается вокруг своей оси со средней скоростью своего вращения по орбите вокруг Земли. Для земного наблюдателя Луна движется в восточном направлении через созвездия около плоскости эклиптики, медленно поворачиваясь против часовой стрелки вокруг своей оси, так что к Земле всегда обращена лишь одна ее сторона. Однако мы можем видеть более половины лунной поверхности, так как иногда определенная ее часть «вокруг краев» и над «полюсами» может быть видна. Эти эффекты известны под соответственными названиями либрация по широте и либрация по долготе.
Либрация по долготе достигает в максимуме ± 7°45́ и происходит потому, что орбита Луны эллиптическая, а не круговая и расстояние от нее до Земли изменяется в пределах от 360 000 км до 406 000 км. Скорость движения Луны по ее орбите тоже незначительно изменяется: она наиболее велика, когда Луна находится ближе всего к Земле, и наименее велика при наибольшем отдалении. Поскольку скорость вращения Луны вокруг ее оси не меняется, а скорость ее орбитального вращения изменяется в незначительных пределах, отдельные участки другой стороны Луны иногда становятся видимыми с Земли.
Когда Луна движется быстрее среднего, мы видим часть ее обычно невидимой поверхности у западного края лунного диска, когда Луна движется медленнее среднего, мы видим часть ее обычно невидимой поверхности у восточного края лунного диска.
Либрация по широте возникает потому, что орбита Луны наклонена под углом почти в 7° по отношению к земной орбите (к эклиптике). Когда Луна находится в высочайшей точке своей орбиты (то есть наиболее отдаленной над плоскостью земной орбиты), мы можем заглянуть под ее южный полюс и увидеть часть поверхности с другой стороны. Когда Луна находится в низшей точке своей орбиты (то есть наиболее отдаленной под плоскостью земной орбиты), мы можем заглянуть через ее северный полюс и увидеть часть поверхности с другой стороны. Либрация по широте в максимуме достигает ±6°41.
См. также статью «Небесная сфера 2».
ЛУНА 3: КОСМИЧЕСКИЕ МИССИИ
Лунная поверхность – среда, враждебная для человека, поскольку там нет атмосферы, защищающей от частиц высоких энергий и ультрафиолетового солнечного излучения. Температура на экваторе меняется от 130 °C в середине дня до около -180 °C ночью, поэтому объекты, расположенные на поверхности у лунного экватора, подвержены гораздо большим температурным колебаниям, чем на Земле. В полярных регионах температурные колебания значительно меньше, так как Солнце стоит ниже над горизонтом, чем на экваторе. В глубине кратеров около полюсов не исключается присутствие льда, который может стать источником воды для будущих колоний землян на Луне.
Космические миссии на Луну стали возможны лишь в результате успешного сооружения многоступенчатых ракет, таких, как мощная ракета-носитель "Сатурн", которая унесла в космос астронавтов "Аполлона".
Вот перечень главных космических миссий к Луне.
Русские автоматические лунные зонды
В 1959 году зонд «Луна-2» рухнул в Море Спокойствия, а зонд «Луна-3» обогнул Луну и послал на Землю первые фотографии ее обратной стороны; в 1966 году аппарат «Луна – 13» совершил первую успешную мягкую посадку на Луне, а в 1970 году спускаемый аппарат «Луна-16» доставил на Землю первые образцы лунных пород.
Автоматические американские зонды «Рейнджер»
В 1 960-х годах американские орбитальные зоны и спускаемые аппараты провели детальную фотосъемку значительной части лунной поверхности.
Миссии «Аполлона»
Состоялось несколько полетов в конце 1960-х – начале 1970-х годов; самым известным был исторический полет «Аполлона11» в 1969 году, доставившего на Луну Нейла Армстронга (а также Эдвина Олдрина и Майкла Коллинза), который стал первым человеком, ступившим на ее поверхность; [15]15
20 июля 1969 года на Луну в лунном отсеке корабля высадились Н. Армстронг и Э. Олдрин. М. Коллинз в основном блоке «Аполлона» совершал полет по окололунной орбите. Всего на Луне побывало 12 американских космонавтов.
[Закрыть]сейсмометры, оставленные на Луне «Аполлоном» и другими космическими аппаратами, зарегистрировали «лунотрясения», которые оказались гораздо менее мощными, чем землетрясения; кроме того, на поверхности некоторых лунных регионов с Земли наблюдались выбросы газа.
Непилотируемые полеты после завершения программы «Аполлон»
Автоматический зонд «Клементина» в 1994 году определил присутствие льда на южном полюсе Луны, а «Лунный изыскатель» в 1998 году подтвердил присутствие больших количеств льда у лунных полюсов.
См. также статью «Кратеры!».
ЛУННЫЕ ЗАТМЕНИЯ
Солнечные и лунные затмения происходят, когда Земля, Солнце и Луна находятся на одной линии. Когда Луна находится точно напротив Солнца по отношению к Земле, можно наблюдать лунное затмение, так как Луна проходит через земную тень. При полном лунном затмении Луна не исчезает совершенно, так как часть солнечных лучей преломляется в земной атмосфере и попадает в область тени. Поскольку этот эффект максимален для красной части спектра, лунный диск при полном затмении может приобрести тускло-красный или медный оттенок. Незадолго перед полным затмением или сразу же после него на крае лунного диска могут появиться яркие точки, вызванные преломлением солнечного света на краях кратеров и других выступающих элементов лунной поверхности.
См. также статьи «Кратеры!», «Солнечные затмения».
Лунное затмение не происходит каждое полнолуние. Причина заключается в том, что лунная орбита наклонена на 5° по отношению к земной. В большинстве случаев во время полнолуния Луна проходит над земной тенью или под ней. Две точки, в которых орбита Луны пересекается с плоскостью земной орбиты, называются узлами. Для того чтобы произошло солнечное или лунное затмение, Луна должна находиться в одной из этих двух точек, а сами точки должны находиться на линии, соединяющей Землю и Солнце.
МАРС 1: НАБЛЮДЕНИЯ С ЗЕМЛИ
Марс – ближайшая (за исключением Венеры) к Земле планета Солнечной системы. Его орбита расположена за орбитой Земли, и он совершает полный оборот вокруг Солнца каждые 1,88 года на среднем расстоянии 1,52 астрономической единицы от Солнца. Его диаметр составляет немногим более половины земного, а день на Марсе продолжается на 37 минут дольше, чем на Земле. Ось вращения Марса наклонена примерно на 25° по отношению к оси его орбиты и очень медленно изменяет свое направление. Сила тяготения на поверхности Марса составляет 0,38 земной, а скорость убегания – 5,0 км/с, что меньше половины скорости убегания на поверхности Земли.
Марс находится в противостоянии с Землей каждые 2 года и 50 дней. Благодаря характерному рыже-красному оттенку его легко различить в ночном небе, так как он постепенно движется через созвездия эклиптики. Его возвратное (ретроградное) движение в течение примерно одного месяца, когда Земля догоняет и перегоняет его незадолго до и после противостояния, можно легко проследить на фоне звезд. При наблюдении в телескоп в канун противостояния Марс виден как красноватый диск с темными пятнами и белыми полярными шапками. Размер полярных шапок на Марсе изменяется в соответствии со сменой времен года из-за наклона оси вращения планеты. Поскольку Марс имеет эллиптическую орбиту, его расстояние от Солнца изменяется в пределах от 1,38 астрономической единицы до 1,66 астрономической единицы, а расстояние от Земли в период противостояния изменяется от 0,38 астрономической единицы до 0,66 астрономической единицы. Марс лучше всего наблюдать, когда он находится в противостоянии при наименьшем расстоянии от Земли. Такое наиболее благоприятное расположение планет происходит каждые 14–15 лет в августе или сентябре.
У Марса есть два спутника, Фобос и Деймос, [16]16
Соответственно Страх и Ужас – так звали двух спутников мифологического бога войны, Марса. Спутники были открыты в 1877 году американским астрономом Асафом Холлом.
[Закрыть]которые считаются захваченными астероидами. Фобос совершает оборот вокруг Марса каждые 7 часов 39 минут на высоте примерно 6000 км, Деймос вращается вокруг планеты на высоте около 20 000 км с периодом 30 дней.
См. также статьи «Планеты», «Орбиты планет».
МАРС 2: НАБЛЮДЕНИЯ С КОСМИЧЕСКИХ ЗОНДОВ
Космические зонды, отправленные на Марс, такие, как «Маринер-9» в 1971 году и «Марс Глобал Сарвейор» в 1997 году, показали, что марсианская поверхность усеяна камнями, густо покрыта кратерами и имеет большие пустыни, где возникают пыльные бури, охватывающие обширные регионы планеты. Теперь известно, что красноватый оттенок Марса, некогда объяснявшийся особенностями состава марсианской атмосферы, вызван цветом минералов на его поверхности. Орбитальные космические зонды провели детальную фотосъемку гор, каньонов, вулканов, долин, хребтов и сухих речных русел. Гору Олимп – вулкан диаметром 600 км у основания и высотой 23 км – можно наблюдать с Земли с помощью достаточно мощного телескопа. Сейчас считается, что полярные шапки Марса состоят из твердого углекислого газа и обычного льда. Северная полярная шапка уменьшается в весеннее время, что подразумевает таяние углекислого льда; обычный лед не тает при такой низкой температуре. Высохшие речные русла явно свидетельствуют о том, что вода на Марсе некогда существовала в жидком состоянии.
Марсианская атмосфера состоит из моноокиси углерода, углекислого газа, кислорода и водорода при давлении менее 1 % от атмосферного давления Земли на уровне моря. Хотя иногда в атмосфере образуются тонкие облака, тепловое излучение с поверхности по ночам приводит к тому, что температура на поверхности Марса опускается с максимальной отметки +10 °C в середине дня на экваторе до -75 °C ночью и до -20 °C на полярных шапках. Жидкая вода не присутствует на Марсе, поскольку водяной лед превращается непосредственно в водяной пар при очень низком давлении. Однако в прошлом наклон оси вращения планеты мог составлять до 35°, что приводило к гораздо более жаркому климату и более высокому атмосферному давлению на поверхности планеты. Космические зонды серии "Викинг", приземлявшиеся на Марсе в 1976–1977 годах, не обнаружили свидетельств жизни в образцах почвы, которые впоследствии были проанализированы, хотя возможно, что жизнь в виде микробов существует в отдельных "карманах" внутри кратеров. Явных доказательств существования жизни не было обнаружено и при дальнейших анализах в 1977 году, выполненных "марсоходом", опущенным на поверхность планеты с помощью аппарата "Марс Патфайндер". Однако наличие окатанной гальки в некоторых марсианских отложениях свидетельствует о том, что вода существовала на Марсе в жидком состоянии.
См. также статьи «Атмосфера Земли», «Кратеры».
МЕРКУРИЙ
Меркурий – ближайшая к Солнцу планета, поэтому его очень трудно наблюдать с Земли. Его угловое расстояние от Солнца никогда не превышает 28°; это означает, что он заходит не позднее, чем через 2 часа после заката и восходит не раньше, чем за 2 часа до рассвета. Он расположен на расстоянии 0,39 астрономических единиц от Солнца и совершает полный оборот вокруг него каждые 88 суток. Сильно эллиптическая орбита Меркурия, варьирующая от 0,31 до 0,47 астрономических единиц от Солнца, наклонена под углом 7° по отношению к земной орбите.
Диаметр Меркурия составляет около 0,4 диаметра Земли. Считается, что температура на его поверхности поднимается до 35 °C в середине дня и падает почти до -110 °C в середине ночи. Меркурий совершает полный оборот вокруг своей оси каждые 59 суток, то есть примерно за 2/3 своего года. Сила тяготения на его поверхности (0,36 земной) недостаточно велика, чтобы удерживать атмосферу. [17]17
По данным, полученным с «Маринера-10», плотность атмосферы1 Меркурия не превосходит плотности земной атмосферы1 на высоте 620 км.
[Закрыть]Поверхность Меркурия была сфотографирована космическим зондом «Маринер -10», который дважды пролетел мимо планеты – в 1974 году и в 1975 году, – послав на Землю фотографии кратеров, гор и долин. Считается, что кольцевая структура бассейна Калорис диаметром 1300 км с углубленным ложем, окруженным горами до двух километров высотой, образовалась в результате удара крупного метеорита.
Меркурий периодически можно наблюдать, когда он проходит прямо между Землей и Солнцем. Если спроецировать изображение Солнца на подходящую поверхность, то можно видеть черную точку, постепенно движущуюся по солнечному диску. Этого не происходит каждый раз, когда Меркурий проходит между Землей и Солнцем, так как наклон орбиты Меркурия по отношению к земной орбите превосходит угловую ширину солнечного диска.
Перигелий орбиты Меркурия постепенно движется вперед со скоростью 0,16° за 100 лет. Этот эффект, открытый в 1859 году, нельзя полностью объяснить с использованием ньютоновской теории тяготения. В1916 году Эйнштейн убедительно объяснил его с помощью своей общей теории относительности.
См. также статьи «Эйнштейн», «Планеты», «Орбиты планет».
МЕТЕОРЫ И МЕТЕОРИТЫ
Метеором называется космическая частица, которая попадает в земную атмосферу на высокой скорости и полностью сгорает, оставляя за собой яркую светящуюся траекторию, в просторечии называемую падающей звездой. Продолжительность этого явления и цвет траектории могут меняться, хотя большинство метеоров появляется и исчезает за долю секунды.
Метеорит представляет собой более крупный фрагмент космического вещества, который не полностью сгорает в атмосфере и падает на Землю. Вокруг Солнца вращается множество таких фрагментов, различающихся по размеру от нескольких километров до менее 1 мм. Некоторые из них являются частицами комет, подвергшихся распаду или прошедших через внутреннюю часть Солнечной системы.
Единичные метеоры, которые попадают в земную атмосферу случайно, называются спорадическими метеорами. В определенное время, когда Земля пересекает орбиту кометы или остатков кометы, случаются метеорные дожди.
При наблюдении с Земли траектории метеоров во время метеорного дождя как будто исходят из определенной точки созвездия, которая называется радиантом метеорного дождя. Этот феномен возникает из-за того, что частицы находятся на одной орбите с кометой, фрагментами которой они являются. Они попадают в атмосферу Земли с определенного направления, соответствующего направлению орбиты при наблюдении с Земли. К наиболее заметным метеорным дождям относятся Леониды (в ноябре) и Персеиды (в конце июля). Ежегодно метеорный дождь бывает особенно сильным, когда частицы собираются в плотный рой на орбите и Земля проходит через этот рой.
Метеориты, как правило, бывают железными, каменными или железокаменными. Скорее всего, они образуются в результате столкновений между более крупными телами в поясе астероидов, когда отдельные каменные фрагменты разлетаются по орбитам, пересекающим орбиту Земли. Самый крупный из обнаруженных метеоритов весом в 60 тонн упал в Юго-Западной Африке. Считается, что падение очень крупного метеорита ознаменовало конец эпохи динозавров много миллионов лет назад. В 1969 году метеорит распался в небе над Мексикой, разбросав тысячи фрагментов на большой площади. Последующий анализ этих фрагментов привел к теории, согласно которой метеорит образовался в результате взрыва ближайшей сверхновой несколько миллиардов лет назад.
См. также статьи «Атмосфера Земли», «Кометы», «Сверхновая».
МЛЕЧНЫЙ ПУТЬ
Солнце – одна из многих миллиардов звезд в Млечном Пути, спиральной Галактике диаметром около 100 000 световых лет. Солнце расположено в одном из рукавов спиральной Галактики. Сама Галактика вращается, совершая один полный оборот примерно за 240 млн. лет.
Тот факт, что скорость вращения внешних спиральных рукавов почти совпадает со скоростью вращения внутренних рукавов, указывает на присутствие внутри Галактики темного вещества.
Расположение Солнца
Шаровые скопления расположены выше и ниже плоскости спиральных рукавов. Из – за пылевых облаков свет, излучаемый ядром Галактики, не доходит до нас. Однако пыль не влияет на распространение радиоволн, которые были использованы для картирования структуры Млечного Пути. Горячие голубые звезды, богатые металлами, которые называются звездами первого поколения, преобладают в спиральных рукавах, в то время как бедные металлами красные гиганты, называемые звездами второго поколения, преобладают в шаровых скоплениях и в центре Галактики. Считается, что звезды поколения II сформировались, когда возраст Вселенной ненамного превышал 1 млрд. лет. Короткоживущие массивные звезды поколения II, образовавшиеся в спиральных рукавах Галактики в ту эпоху, давно превратились в сверхновые звезды и взорвались, оставив богатые металлом пылевые облака, из которых впоследствии сформировались звезды поколения I.
В ясную ночь Млечный Путь предстает перед невооруженным глазом как тусклая светящаяся лента неправильной формы, пересекающая небосвод. Центр Галактики расположен в направлении созвездия Стрельца, хотя между Солнцем и галактическим ядром находятся два спиральных рукава. Наш рукав Млечного Пути называется рукавом Ориона в честь созвездия Ориона, которое расположено в том же спиральном рукаве, что и Солнечная система.
См. также статьи «Темное вещество», «Галактики 3», «Сверхновая».
МОДЕЛИ ВСЕЛЕННОЙ
В 1929 году Элвин Хаббл обнаружил, что, чем дальше находится галактика, тем быстрее она отдаляется от нас. Этот феномен объясняется теорией о расширении Вселенной. За два века до открытия Хаббла Исаак Ньютон осознал, что если Вселенная конечна, то звезды не могут быть неподвижными, иначе они оказались бы притянутыми друг к другу силой своего тяготения и собрались в огромную массу, но у Ньютона не было доказательств такого движения, поэтому Ньютон считал, что Вселенная статична и бесконечна.
Ньютоновская модель Вселенной оставалась неизменной до появления так называемого парадокса Ольберса. [18]18
Ольберс Генрих Вильгельм (1758–1840) – немецкий астроном. Открыл 7 новых комет, в том числе долгопериодическую, названную его именем. Открыл малые планеты! Палладу и Весту; высказал предположение о неполной прозрачности межзвездного пространства.
[Закрыть]Он основан на очень простом наблюдении, а именно, что ночное небо темное, а не светлое! Это на первый взгляд тривиальное наблюдение было впервые проанализировано Генрихом Ольберсом в 1826 году. Он математически доказал, что если бы Вселенная состояла из бесконечного количества звезд, то небо постоянно оставалось бы ярким. Отсюда он заключил, что Вселенная конечна, так как ночью небо темное. Поскольку конечная и статичная Вселенная должна коллапсировать согласно законам Ньютона, Ольберс пришел к выводу, что Вселенная расширяется.
Эйнштейн воспользовался своей общей теорией относительности для предсказания того, что конечная и статичная Вселенная без границ возможна, подобно поверхности Земли, но только не в трех измерениях, а в четырех. Эйнштейну пришлось ввести в свои уравнения новый вид отталкивающей силы, действие которой проявлялось лишь в космологических масштабах. Эйнштейн считал эту отталкивающую силу необходимой для преодоления силы притяжения, возникающей в результате гравитации, которая в противном случае привела бы к коллапсу конечной и статичной Вселенной.
Однако в 1927 году Жорж Леметр, бельгийский священник и математик, обнаружил новые решения уравнений Эйнштейна, допускавшие расширение Вселенной без необходимости существования космологической силы. Леметр также узнал, что его решения были обнаружены на 5 лет раньше русским математиком Александром Фридманом, который умер в 1925 году. Наиболее интересным решением является то, в котором Вселенная сначала расширяется, а затем сжимается.
См. также статьи «Эйнштейн», «Закон Хаббла», «Ньютон».