Текст книги "101 ключевая идея: Астрономия"
Автор книги: Джим Брейтот
Жанры:
Прочая научная литература
,сообщить о нарушении
Текущая страница: 3 (всего у книги 11 страниц)
ЗАКОН ТЯГОТЕНИЯ НЬЮТОНА
До того как Ньютон сформулировал всеобщий закон тяготения, считалось, что объекты обладают свойством тяжести, которое тянет вниз, и летучести, которое толкает их вверх. Ньютон развеял концепцию летучести и показал, что между двумя любыми объектами существует сила гравитационного притяжения. Он объяснил движение объекта, падающего на Землю, сказав, что между объектом и Землей существует сила взаимного тяготения. Ньютон воспользовался той же идеей для объяснения движения Луны вокруг Земли и планет вокруг Солнца. Если бы сила тяготения между Солнцем и планетами внезапно перестала существовать, каждая планета продолжала бы поступательные движения по прямой линии, расположенной по касательной к ее орбите. Сила гравитационного притяжения между Солнцем и планетами заставляет планеты обращаться вокруг Солнца.
Ньютон считал, что сила тяготения между двумя объектами, представляемыми в виде точек, пропорциональна массе каждого объекта и обратной величине квадрата расстояния между двумя объектами. Для двух таких точечных объектов с массой m 1и m 2при расстоянии r он выявил следующее уравнение для силы тяжести F между двумя массами.
где G – коэффициент пропорциональности, который он назвал гравитационной постоянной.
Выбор r 2в уравнении Ньютона вместо r или r 3или какой-либо другой степени r был обусловлен его предыдущими открытиями законов движения. Он показал, что тело, которое находится в постоянном круговом движении, всегда испытывает воздействие силы ускорения, направленной к центру круга и равной квадрату скорости, деленному на радиус. Связав это уравнение со своей формулой для силы тяготения, Ньютон доказал третий закон Кеплера для движения планет. Любая другая степень r в его формуле не могла бы доказать третий закон Кеплера. Следующим шагом Ньютона была попытка распространить свои идеи за пределы точечных объектов. Это оказалось очень трудно, и в конце концов после многих лет исследований он доказал, что закон тяготения можно применить к любым двум объектам при условии, что расстояние в его уравнении является расстоянием между двумя центрами тяжести.
См. также статьи «Ньютон», «Законы Кеплера».
ЗАКОН ХАББЛА
Эдвин Хаббл пользовался телескопом обсерватории Маунт-Уилсон с рефлектором диаметром 2,5 метра. Телескоп был установлен на горе Уилсон в Калифорнии, и Хаббл использовал его для оценки расстояний до двух десятков галактик с известным красным смещением, расположенных в пределах 2 млн. парсеков от Галактики Млечный Путь (1 парсек = 3,26 светового года). Результаты его исследований, опубликованные в 1929 году, показали, что с расстоянием красное смещение увеличивается. При нанесении результатов на диаграмму, связывающую красное смещение и расстояние, стало ясно, что скорость удаления галактики пропорциональна расстоянию до нее: v = Hd. Это взаимоотношение называется законом Хаббла. Величина Н в этом отношении называется постоянной Хаббла.
Итак, скорость отдаления v = Hd, где d – расстояние до галактики.
Мильтон Хьюмасон произвел дальнейшие измерения с использованием телескопа обсерватории. К 1935 году Хаббл и Хьюмасон опубликовали результаты наблюдений для более чем 140 галактик, расположенных на расстоянии более 300 млн. парсеков и отдаляющихся со скоростями свыше 40 000 км/с. Эти результаты подтверждали первоначальное открытие Хаббла. Ученые оценили величину постоянной Хаббла в 160 км/с на миллион световых лет расстояния. Дальнейшие измерения с использованием телескопов большей мощности и более современных детекторов снизили величину постоянной Хаббла до ее нынешнего значения – около 20 км/с на миллион световых лет.
Закон Хаббла является экспериментальным законом, применимым в ограниченном масштабе измерений. Возможные объяснения этого закона были предметом бурной дискуссии в течение полувека после открытия. Теперь принято считать, что закон Хаббла является следствием расширения Вселенной после первичного взрыва, который произошел в период между 10 и 15 млрд. лет назад. Этот взрыв, известный как Большой Взрыв, привел к созданию пространственно-временного континиума. Величина Н имеет очень важное значение, поскольку она используется для оценки возраста Вселенной.
См. также статьи «Большой Взрыв», «Расширение Вселенной», «Красное смещение».
ЗВЕЗДНАЯ ВЕЛИЧИНА
Считается, что наша нынешняя система классификации звезд по их блеску была создана во II веке до нашей эры Гиппархом, который разделил звезды на 6 категорий согласно их яркости.
Ярчайшие звезды назывались звездами первой величины, а самые тусклые, едва видимые невооруженным глазом, назывались звездами шестой величины. В XIX веке астрономы измерили интенсивность светового потока для звезд разной величины и перевели шкалу звездной величины на научную основу; теперь различие в 5 звездных величин соответствовало стократному увеличению количества света. Таким образом, возрастание на одну звездную величину соответствует увеличению яркости в 2,512 раза, следовательно, отношение блеска звезд первой звездной величины к звездам шестой величины составляет 2,512×2,512×2,512×2,512 x 2,512 = 100. Классификация от первой до шестой величины была продолжена в оба конца шкалы, так что звездам, видимым лишь с помощью телескопа, была присвоена звездная величина более шестой, а очень ярким звездам были присвоены значения от 1 до 0 и менее О. [5]5
После точного измерения блеска звезд пришлось ввести не только отрицательные, но и дробные звездные величины!
[Закрыть]
Для сравнения истинной светимости различных звезд необходимо вычислить звездную величину, которую имела бы каждая звезда, если бы она находилась на одинаковом расстоянии от Солнечной системы. Для удобства было выбрано стандартное расстояние в 10 парсеков. Величина звезды, наблюдаемой на этом расстоянии, называется абсолютной звездной величиной (М).
Абсолютную звездную величину можно вычислить по видимой звездной величине. Расчеты основаны на принципе, что интенсивность света от точечного источника на определенном расстоянии меняется в отношении обратно пропорциональном квадрату расстояния. Этот принцип подразумевает, что интенсивность света меняется в соотношении (d/10) 2при движении от расстояния d до 10 парсеков от звезды. Если Dm представляет соответствующую разницу звездной величины, то 100 Δm/5= (d/10) 2Пользуясь шкалой десятичных логарифмов, получаем уравнение Δm = 5 log d – 5; следовательно, М = т + 5–5log d (где 5 – абсолютная величина Солнца).
См. также статью «Светимость».
ЗВЕЗДНОЕ И СОЛНЕЧНОЕ ВРЕМЯ
Ход нашей повседневной жизни измеряется солнечным временем. Одни солнечные сутки – это интервал времени между последовательными переходами Солнца через нижний меридиан, который составляет половину меридиана, находящегося за горизонтом. Солнечные сутки продолжаются с полуночи до следующей полуночи; разумеется, один полдень отделен от следующего таким же временным интервалом. Солнечные сутки разделяются на 24 часа.
Земля вращается с постоянной скоростью, в результате чего все звезды, кроме Полярной, движутся по ночному небу. Перемещение звезды на небосводе похоже на движение часовой стрелки, совершающей полный оборот за одни сутки. Промежуток времени между двумя последовательными пересечениями меридиана отдельно взятой звездой называется звездными сутками. Продолжительность звездных суток составляет 23 часа и 56 минут в единицах измерения солнечных суток. Это происходит потому, что Земля тоже движется по своей орбите вокруг Солнца, поэтому созвездия в ночном небе постепенно меняются. Звезды, которые не находятся в полярном регионе, каждую следующую ночь восходят на 4 минуты раньше из-за того, что Земля смещается примерно на 1° в сутки по своей орбите. Таким образом, через месяц звезда восходит примерно на 2 часа раньше.
В астрономических обсерваториях обычно есть часы, измеряющие звездное время наряду с солнечным временем. Звездные сутки наступают, когда первая точка Тельца пересекает верхний меридиан обсерватории.
Прямым восхождением звезды
Прямым восхождением звезды называется интервал времени (измеряемый в звездных часах) от перехода первой точки Тельца через меридиан до перехода звезды. Поэтому звезда пересекает меридиан обсерватории, когда время на звездных часах обсерватории равно ее прямому восхождению. Для точного времяисчисления используются атомные часы, так как скорость вращения Земли слегка изменяется. В атомных часах секунда определяется в терминах частоты вибрации определенного вида атомов. Для того чтобы ход атомных часов совпадал с солнечным временем, периодически добавляются или убавляются «переходные» секунды.
См. также стать ю «Небесная сфера 3».
ЗВЕЗДНЫЕ СКОПЛЕНИЯ
Звездными скоплениями называются большие группы звезд, объединенные силой взаимного притяжения.
Диаметр рассеянного, или галактического, звездного скопления варьируется от нескольких световых лет до 50 и более световых лет. В целом в открытых скоплениях преобладают голубые звезды и, поскольку эти звезды имеют гораздо более короткий срок жизни, чем красные звезды, рассеянные скопления состоят из сравнительно молодых звезд. К наиболее известным звездным скоплениям относятся М45, скопление Плеяд в созвездии Тельца, Гиады в созвездии Тельца и М44 в созвездии Персея. Скопление Плеяд в регионе, диаметр которого составляет более 20 световых лет, состоит из голубых звезд, окруженных диффузными серебристыми облаками космической пыли. С другой стороны, рассеянное скопление Гиад состоит из большого количества звезд, расположившихся в пределах более 80 световых лет и движущихся параллельно друг другу. Скопление М44, известное под названием Пчелиный Улей, содержит около 200 звезд в регионе диаметром около 40 световых лет. В спиральных рукавах Галактики Млечный Путь было обнаружено более 1000 рассеянных звездных скоплений. В целом звезды в таких скоплениях удаляются друг от друга, и со временем скопление прекращает свое существование.
Шаровое звездное скопление
Шаровое звездное скопление представляет собой тесный массив сферической формы, состоящий из миллионов звезд, удерживаемых вместе силой их тяготения. Диаметр шарового скопления составляет от 50 до 300 световых лет. Шаровые скопления в Млечном Пути расположены над и под плоскостью Галактики и более или менее распространены во всех направлениях от ее центра. Всего в Галактике Млечный Путь наблюдается около 100 шаровых звездных скоплений. В них преобладают бедные металлом красные звезды, указывающие на то, что эти скопления имеют очень древний возраст. Гравитационное притяжение звезд в шаровом скоплении достаточно сильное, чтобы предотвратить их рассеивание, поэтому шаровые скопления очень стабильны. Самым ярким шаровым скоплением является Омега Центавра, объект четвертой звездной величины, расположенный в Южном полушарии небесной сферы. Он содержит около миллиона звезд в сферическом регионе диаметром примерно 160 световых лет на расстоянии более 20 000 световых лет от Земли.
См. также статьи «Дистанционные измерения 2», «Звездная величина», «Переменные звезды».
ЗВЕЗДЫ 1: ИЗУЧЕНИЕ ЗВЕЗД
Солнце – типичная звезда. Звезды варьируют по размеру от карликов до гигантов и сверхгигантов, диаметр которых в сотни раз превосходит диаметр Солнца. Звезды видны в ночном небе как точечные объекты, потому что они находятся на огромном расстоянии. Свет от звезды дает некоторую информацию о расстоянии до нее, ее скорости, химическом составе, температуре поверхности, радиусе, мощности излучения, массе и сроке жизни.
Если звезда расположена достаточно близко к нам, расстояние до нее можно измерить методом параллакса, то есть измерив угол ее смещения за период 6 месяцев. Расстояние до звезды, расположенной за пределами 300 световых лет, нельзя измерить методом параллакса, его можно вычислить на основании абсолютной звездной величины, если известно положение звезды на диаграмме Герцшпрунга – Ресселла.
Скорость звезды определяется через измерение радиального и тангенциального компонентов скорости. Доплеровское смещение линий спектра необходимо измерить для вычисления радиального компонента; тангенциальный компонент скорости можно определить, если известно собственное движение звезды и расстояние до нее.
Химический состав звезды определяется через измерение длины волн в линиях ее эмиссионного спектра. Эти линии характерны для определенных видов атомов, излучающих свет, и, следовательно, их можно использовать для определения химических элементов.
Температура поверхности звезды определяется ее спектральным типом (то есть цветом). К примеру, температура поверхности красной звезды класса М составляет около 3000К. Для более точного определения необходимо измерение интенсивности спектра в разных длинах волн, чтобы найти длину волны, соответствующую максимальной интенсивности. Затем температура звезды вычисляется по закону Вина.
См. также статьи «Дистанционные измерения 1 и 2», «Диаграмма Герцшпрунга – Ресселла», «Звездная величина», «Собственное движение», «Тепловое излучение».
ЗВЕЗДЫ 2: КЛАССИФИКАЦИЯ
Звезды различаются по цвету и яркости. Бетельгейзе в созвездии Ориона – красный гигант. Ригель в том же созвездии – голубой гигант. Спектр излучения звезды представляет собой непрерывную полосу цветов от красного и оранжевого через желтый и зеленый до синего и фиолетового. Непрерывный спектр пересекается темными линиями поглощения, возникающими из-за того, что разные виды атомов во внешних слоях звезды поглощают свет с определенной длиной волны, излучаемый внутренними слоями звезды.
Интенсивность каждой части спектра изменяется вместе с цветом и зависит от температуры поверхности звезды. Чем горячее звезда, тем ближе максимальная интенсивность ее излучения находится к голубому концу спектра. Таким образом, цвет звезды определяется температурой ее поверхности. Звезды классифицируются в соответствии с цветом, температурой и линиями поглощения в их спектре. Система классификации с присвоением букв алфавита разным оттенкам цвета была разработана до того, как удалось установить точную связь между цветом и температурой. После экспериментов с использованием лабораторных источников света при разных температурах порядок букв пришлось изменить, как указано в таблице, чтобы создать температурную последовательность.
См. также статьи «Диаграмма Герцшпрунга – Ресселла», «Светимость», «Звездная величина», «Красный гигант», «Спектр оптический», «Тепловое излучение».
ЗВЕЗДЫ 3: КАРЛИКИ И ГИГАНТЫ
Светимость, или количество энергии света в секунду, излучаемое звездой, зависит от температуры и площади ее поверхности в соответствии с законом Стефана (см. ниже). При известной температуре поверхности и радиусе звезды можно вычислить ее светимость. Радиус Солнца можно рассчитать по его расстоянию от Земли и угловой ширине на небосводе. Судя по цвету Солнца, мы знаем, что температура на его поверхности составляет примерно 6000К. Энергия, излучаемая Солнцем за 1 секунду, равна 400 миллионов миллионов миллионов миллионов ватт. [6]6
4 10 20МВт.
[Закрыть]
Светимость любой другой звезды можно вычислить при сравнении ее абсолютной звездной величины с абсолютной звездной величиной Солнца. К примеру, если блеск звезды на 5 величин превышает блеск Солнца, она излучает в секунду в 100 раз больше энергии.
С помощью закона Стефана при известной светимости и температуре поверхности звезды можно вычислить площадь ее поверхности и радиус. Закона Стефана гласит: количество энергии, излучаемое звездой в секунду на квадратный метр ее площади, пропорционально четвертой степени температуры ее поверхности. Таким образом, каждый квадратный метр поверхности звезды на половину менее горячей, чем Солнце, излучает 1/16 часть энергии в секунду на единицу площади по отношению к Солнцу. Если в целом такая звезда излучает в секунду в 100 раз больше энергии, чем Солнце, то площадь ее поверхности должна быть в 1600 раз больше, а радиус – в 40 раз больше, чем Солнце. Такая звезда называется красным гигантом. Сходным образом можно доказать, что звезда вдвое более горячая, чем Солнце, но менее мощная имеет гораздо меньший диаметр. Такая звезда называется карликовой звездой. К примеру, диаметр звезды, уступающей Солнцу в блеске на 5 звездных величин и вдвое более горячей, будет в 40 раз меньше диаметра Солнца.
См. также статьи «Светимость», «Звездная величина», «Красный гигант», «Тепловое излучение».
ЗВЕЗДЫ 4: МАССА И СРОК ЖИЗНИ
Массу звезды Главной последовательности можно определить по ее светимости в соответствии с отношением между массой и светимостью, открытым сэром Артуром Эддингтоном. Изучая двойные звезды, Эддингтон смог показать, что светимость звезды Главной последовательности приблизительно пропорциональна кубу ее массы.
В результате применения ньютоновской теории тяготения к движению Земли вокруг Солнца известно, что масса Солнца составляет около 2×10 30кг. Для вычисления массы двух звезд в двойной системе необходимо знать расстояние между ними и орбитальный период. Расчеты производятся по третьему закону Кеплера, выраженному в следующей формуле:
масса (в солнечных массах)×период (годы) 2= расстояние (в астрономических единицах) 3.
Массу отдельных звезд в двойной системе легко вычислить из общей массы, так как отношение массы одной звезды к массе другой обратно пропорционально отношению между радиусами их орбит.
Жизненный срок звезды зависит от ее массы, так как звезды состоят в основном из водорода, который является их «топливом». Протоны (то есть ядра водорода) соединяются в ядре звезды, образуя ядра гелия. В ходе этого процесса высвобождается энергия порядка 70 10 12Вт на каждый килограмм водорода в секунду. Поскольку Солнце излучает энергию порядка 4×10 26Вт, следовательно, водород в его ядре превращается в гелий со скоростью 6×10 11= 4×10 26/ 70 х 10 12кг/с. Общая масса Солнца составляет 2×10 30кг, поэтому запасы его водородного топлива будут исчерпаны через 3,5×10 18секунд, что приблизительно равно 10 млрд. лет. Для звезды с массой т, выраженной в эквиваленте солнечных масс, и светимостью L, выраженной в единицах солнечной светимости, срок жизни составит m/L сроков жизни Солнца. Поскольку светимость звезды Главной последовательности приблизительно пропорциональна кубу ее массы, то чем больше масса звезды, тем короче срок ее жизни.
См. также статьи «Двойные звезды», «Законы Кеплера», «Светимость», «Закон тяготения Ньютона».
ЗЕМЛЯ
Земля, третья по порядку от Солнца планета, представляет собой звезду среднего возраста в Галактике, которую мы привыкли называть Млечный Путь. Галактика состоит из сотен миллионов звезд. Возможность существования во Вселенной других планет, похожих на Землю, представляется довольно высокой. Жизнь на Земле развилась потому, что на нашей планете есть вода в жидкой форме, а поверхность Земли защищена от ультрафиолетового излучения Солнца атмосферой. Если бы Земля находилась гораздо ближе к Солнцу, то океаны испарились бы; если бы Земля находилась гораздо дальше от Солнца, океаны превратились бы в лед. Жизнь, скорее всего, не смогла бы развиться в такой обстановке. К счастью, на протяжении большей части земной истории, после формирования планеты около 4,5 млрд. лет назад, она двигалась вокруг Солнца по круговой орбите, сохраняя расстояние в 149,6 млн. км от Солнца с точностью до 0,01 %. Это расстояние в астрономии принято в качестве единицы длины для измерения расстояний между небесными телами в пределах Солнечной системы и называется астрономической единицей (а. е.).
По форме Земля представляет собой сферу, немного уплощенную у полюсов; [7]7
Более точное название поверхности Земли – геоид. Геоид с точностью порядка сотен метров совпадает с эллипсоидом вращения.
[Закрыть]ее полярный радиус составляет 6357 км, что примерно на 13 км меньше экваториального радиуса. Термин «километр» первоначально определялся как 0,0001 расстояния от экватора до Северного полюса. Это определение было заменено другим, основанным на скорости света, согласно которому расстояние от экватора до Северного полюса составляет 9986 км. В центре Земли находится сплошное плотное ядро диаметром около 2500 км, окруженное жидким ядром диаметром около 8000 км. Вязкая мантия над внешним ядром переходит в твердую земную кору неравномерной толщины, составляющей в среднем примерно 40 км. В земной коре содержится значительно больше железа, чем в мантии, которая состоит из менее плотных силикатных материалов. Магнитное поле Земли создается в ее жидком ядре, возможно, в результате температурной конвекции потоков вещества, обладающих электрическим зарядом. Ни одна из других планет земного типа в Солнечной системе не обладает магнитным полем; это свидетельствует о том, что сейчас их недра находятся в твердом состоянии.
См. также статьи «Планеты!», «Атмосфера Земли».