355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Джефф Раскин » Интерфейс: новые направления в проектировании компьютерных систем » Текст книги (страница 9)
Интерфейс: новые направления в проектировании компьютерных систем
  • Текст добавлен: 17 сентября 2016, 19:23

Текст книги "Интерфейс: новые направления в проектировании компьютерных систем"


Автор книги: Джефф Раскин



сообщить о нарушении

Текущая страница: 9 (всего у книги 22 страниц) [доступный отрывок для чтения: 9 страниц]

4. Квантификация

Гармония мира проявляется Формой и Числом, и потому и сердце, и душа, и вся поэзия Натуральной Философии воплощаются в понятиях математической красоты.

Д'Арки Уентуорф Томпсон «О росте и форме» (1917)

Существует множество методов количественного анализа элементов интерфейса. Однако ясное руководство о том, как использовать эти методы, можно встретить редко. В этой главе будет дано простое описание и подробные примеры модели GOMS, разработанной Кардом, Мораном и Ньюэллом, а также критерий эффективности Раскина, закон Хика и закон Фитса.

4.1. Количественный анализ интерфейса

Он все тыкал и тыкал пальцами в компьютер, а Мелроуз просто изумлялся тому, что машина, которая предназначена для избавления человека от всей мелкой, рутинной работы, выполняла такую простую задачу настолько долго, что Буб, наверное, уже десять раз успел бы все сделать руками.

Марта Граймс «The Stargazey» (детективный роман)

Многие количественные и эвристические методы используются для анализа и изучения интерфейсов. Эти методы составляют значительную часть содержания большинства книг, посвященных этой теме, включая и те, которые указаны в библиографическом списке за такими авторами, как Шнейдерман (Shneiderman), Норман (Norman) и Мэйхью (Mayhew). Например, с помощью пассивного наблюдения за тестированием нового интерфейса с участием нескольких добровольцев опытный разработчик интерфейсов может узнать столько же ценной информации, сколько можно получить с помощью любого метода количественного анализа. Здесь я хочу сосредоточиться на количественных методах не для того, чтобы принизить значение качественных методов, но скорее для того, чтобы найти между ними баланс и показать ценность численных и эмпирических методов, которые не являются широко известными. Количественные методы часто могут свести спорные вопросы к простым вычислениям. Еще одним, более важным преимуществом этих методов является то, что они помогают нам понять важнейшие аспекты взаимодействия человека с машиной.

Одним из лучших подходов к количественному анализу моделей интерфейсов является классическая модель GOMS – «правила для целей, объектов, методов и выделения» (the model of goals, objects, methods, and selection rules), которая впервые привлекла к себе внимание в 80-х годах (Card, Moran and Newell, 1983). Моделирование GOMS позволяет предсказать, сколько времени потребуется опытному пользователю на выполнение конкретной операции при использовании данной модели интерфейса. После обсуждения модели GOMS мы рассмотрим количественные методы оценки производительности интерфейсов, скорости движения курсора и времени, необходимого для принятия решения.

4.2. Модель скорости печати GOMS

Цель точной науки заключается в том, чтобы свести проблемы природы к установлению количеств посредством операций с числами.

Джеймс Клерк Максвелл «К вопросу о фарадеевых силовых линиях» (1856)

Здесь я хочу обсудить только один простейший, но довольно ценный аспект метода GOMS – модель, основанная на оценке скорости печати. Разработчики, которые знакомы с методом GOMS, редко проводят детальный и формальный анализ модели интерфейса. Отчасти это происходит из-за того, что основы GOMS и других количественных методов известны им настолько, что они изначально руководствуются этими методами в процессе разработки. К формальному анализу, конечно, прибегают в случаях, когда необходимо выбрать один из двух вариантов разработки, когда даже небольшие различия в скорости могут давать большой экономический и психологический эффект. Иногда разработчики пользуются поражающими своей точностью расширенными моделями GOMS, как, например, анализ с использованием метода критического пути GOMS (critical-path method GOMS, CPM-GOMS) или версия, называемая естественным языком GOMS (natural GOMS language, NGOMSL), в которой учитывается поведение неопытного пользователя, например время, необходимое ему для обучения. С помощью этих методов можно, например, предсказать, сколько времени понадобится пользователю для выполнения некоторого набора действий при использовании данного интерфейса с абсолютной погрешностью менее 5 %. В расширенных моделях почти все оценки не выходят за пределы стандартного отклонения, принятого для измеренных значений времени (Gray, John и Atwood, 1993, с. 278). Для вопросов, которые вызывают жаркие споры и по поводу которых авторитетные разработчики зачастую высказывают совершенно разные мнения, полезно вооружиться количественными методами, имеющими теоретическое обоснование и получившими экспериментальную апробацию. Более полный обзор и библиографию, посвященные различным моделям GOMS, можно найти у Джона (John, 1995); там же можно найти и модель CPM-GOMS, разработанную самим Джоном.

4.2.1. Временные интервалы в интерфейсе

Точность цифр есть истинная душа науки.

Д'Арки Уентуорф Томпсон «О росте и форме» (1917)

Разработчики модели GOMS во время ее создания заметили, что время, требующееся для выполнения какой-то задачи системой «пользователь – компьютер», является суммой всех временных интервалов, которые потребовались системе на выполнение последовательности элементарных жестов, составляющих данную задачу. Хотя для разных пользователей время выполнения того или иного жеста может сильно отличаться, исследователи обнаружили, что для большей части сравнительного анализа задач, включающих использование клавиатуры и графического устройства ввода, вместо проведения измерений для каждого отдельного пользователя можно применить набор стандартных интервалов. С помощью тщательных лабораторных исследований был получен набор временных интервалов, требуемых для выполнения различных жестов. Ниже приводится оригинальная номенклатура, в которой каждый интервал обозначен одной буквой (Card, Moran и Newell, 1983).


На практике указанные значения могут варьироваться в широких пределах. Для опытного пользователя, способного печатать со скоростью 135 слов/мин., значение K может составлять 0.08 с, для обычного пользователя, имеющего скорость 55 слов/мин., – 0.2 с, для среднего неопытного пользователя, имеющего скорость 40 слов/мин., – 0.28 с, а для начинающего – 1.2 с. Нельзя сказать, что скорость набора не зависит от того, что именно набирается. Для того чтобы набрать одну букву из группы случайно взятых букв, большинству людей требуется около 0.5 с. Если же это какой-то запутанный код (например, адрес электронной почты), то у большинства людей скорость набора составит около 0.75 символов в секунду. Значение K включает в себя и то время, которое необходимо пользователю для исправления сразу замеченных ошибок. Клавиша «Shift» считается за отдельное нажатие.

Широкая изменяемость каждой из представленных мер объясняет, почему эта упрощенная модель не может использоваться для получения абсолютных временных значений с какой-либо степенью точности. Тем не менее, с помощью типичных значений мы можем сделать правильную сравнительную оценку между какими-то двумя интерфейсами по уровню эффективности их использования. Если оцениваются сложные интерфейсы, включающие пересекающиеся временные зависимости, или если должны быть с точностью достигнуты определенные временные интервалы, то следует применять более сложные модели (например, CPM-GOMS), которые не рассматриваются в этой книге.

Двойная «дискликсия»[20]20
  Дискликсия (dysclicksia) – от англ. слова click (щелкнуть мышью) и приставки dis– (нарушение функции). – Примеч. пер.


[Закрыть]

Интерфейсная техника, называемая «двойным кликом», т. е. двойное нажатие кнопки ГУВ за короткий временной промежуток и без какого-либо значительного перемещения курсора между двумя нажатиями, имеет некоторые недостатки. Вы не можете точно сказать, какие объекты на экране ответят на двойной клик, а какие нет. Кроме того, не всегда ясно, какой именно может быть ответ. Отображаемые на экране монитора элементы не имеют каких-либо признаков, означающих, что двойной клик может вызвать какой-то результат, – т. е. эта функциональность является невидимой. То, каким образом двойной клик используется во многих сегодняшних интерфейсах, вынуждает пользователей запоминать не только то, по каким именно элементам можно дважды щелкать мышью, но и то, какой результат возникает в ответ на этой действие по отношению к разным классам элементов интерфейса.

Первые две проблемы можно, по крайней мере, частично решить с помощью использования новых условностей. Что касается двойного клика, то он сам по себе представляет проблему. Двойной клик требует использования кнопки мыши дважды в одном и том же месте или при небольшом перемещении и, в большинстве случаев, в течение небольшого промежутка времени, приблизительно за 500 мс. Если пользователь щелкает слишком медленно, машина воспринимает это как два отдельных клика, а не как один двойной клик. Если пользователь слишком сильно двигает мышью в промежутке между двумя кликами, может произойти та же самая ошибка. Если пользователь слишком быстро нажимает кнопку ГУВ, например, как при работе с некоторыми текстовыми процессорами при попытке выделить буквы внутри слова, система может воспринять два нажатия как двойной клик и в результате будет выделено все слово.

Другая проблема возникает, когда пользователь пытается выделить графический элемент, который можно переместить с помощью ГУВ. Поскольку при быстром нажатии на кнопку ГУВ это устройство очень легко сдвинуть с места, графические программы могут воспринять это действие не как двойной клик, а как попытку переноса объекта в другое место (drag-and-drop). Аналогичным образом, чтобы изменить текст в окне, пользователь может посчитать необходимым изменить местоположение случайно сдвинутого окна и внести в текст поправки, которые изначально предполагались.

Некоторые из нас не страдают от дискликсии. Эти счастливые люди никогда не промахиваются мышью. Они могут вполне беззаботно и с особым своеобразием делать и один, и два клика по мыши и никоим образом не страдать от каких-то побочных эффектов. Они всегда помнят, что может система ответить на двойной щелчок, а что не может. Такие люди способны попасть из револьвера калибра 0,357 в летящую птицу, двигаясь при этом на автомобиле по извилистой горной дороге. Однако нельзя рассчитывать на то, что все пользователи настолько удачливы. Поэтому интерфейс необходимо разрабатывать с учетом пользователей, страдающих от дискликсии, а также с учетом проблем, присущих использованию двойного клика.[21]21
  Термин дискликсия (dysclicksia), означающий заболевание, единственным лекарством от которого является хорошо разработанный интерфейс, был предложен Памом Мартином (Pam Martin) (переписка, 1997).


[Закрыть]

____________

Длительность ответа, поступающего от компьютера, R, может оказывать неожиданный эффект на действия пользователя. Если при использовании какого-то управляющего элемента на экране монитора в течение приблизительно 250 мс ничего не возникает, пользователь, скорее всего, может почувствовать беспокойство, решит сделать еще одну попытку или подумает, что система неисправна.

Нельзя сделать такой продукт, который мог бы завершать все операции за время, не превышающее времени реакции пользователя, но можно сделать такие интерфейсы, в которых в течение этого времени всегда бы выдавалось сообщение о том, что информация от пользователя принята и правильно распознана. В противном случае действия пользователя во время задержки – чаще всего просто молотьба по клавиатуре с целью получить хоть какой-то ответ – могут привести к нежелательным реакциям со стороны системы, приводя тем самым к еще большей задержке или даже повреждению содержания. Например, при попытке скачать какой-нибудь файл с America Online с помощью броузера (например, Netscape) очень часто возникает большая задержка. При этом не появляется никакого признака, что действительно что-то происходит. Возникает только небольшое статическое сообщение о том, что компьютер ждет ответа, но оно находится далеко за пределами локуса внимания пользователя. Через несколько секунд неопытный пользователь начинает кликать по кнопкам на экране, что приводит к остановке загрузки файла – опять же без всякого сообщения об этом.

Если задержки неизбежны, важно, чтобы в интерфейсе была предусмотрена сообщающая о них обратная связь, – например, можно использовать индикатор хода выполнения задачи (status bar) (рис. 4.1), отражающий время, оставшееся до конца операции. Если неизвестно, сколько именно времени займет операция, так и скажите об этом пользователю! Нельзя лгать пользователю или вводить его в заблуждение.

Рис. 4.1. Индикатор хода выполнения задачи. Важно, чтобы отображение времени было линейным. Текстовое сообщение об оставшемся времени, если оно точное, также можно считать человекоориентированным решением в тех случаях, когда задержки неизбежны.

4.2.2. Расчеты по модели GOMS

Вычисления времени, необходимого на выполнение того или иного действия (например, «переместить руку с графического устройства ввода на клавиатуру и набрать букву»), с помощью модели GOMS начинаются с перечисления операций из списка жестов модели GOMS (см. раздел 4.2.1.), которые составляют это действие (в приведенном примере это H K). Перечисление движений (K, P и H) – это довольно простая часть модели GOMS. Более сложным, например, в модели скорости печати GOMS, является определение точек, в которых пользователь остановится, чтобы выполнить бессознательную ментальную операцию, – интервалы ментальной подготовки, которые обозначаются символом M. Основные правила (по Card, Moran и Newell, 1983, с. 265), позволяющие определить, в какие моменты будут проходить ментальные операции, представлены в табл. 4.1. В разделе 4.2.3 мы рассмотрим, как эти правила применяются на практике.

Таблица 4.1. Расстановка ментальных операций

Правило 0. Начальная расстановка операторов M

Операторы M следует устанавливать перед всеми операторами K (нажатие клавиши), а также перед всеми операторами P (указание с помощью ГУВ), предназначенными для выбора команд; но перед операторами P, предназначенными для указания на аргументы этих команд, ставить оператор M не следует.

Правило 1. Удаление ожидаемых операторов M

Если оператор, следующий за оператором M, является полностью ожидаемым с точки зрения оператора, предшествующего M, то этот оператор M может быть удален. Например, если вы перемещаете ГУВ с намерением нажать его кнопку по достижении цели движения, то в соответствии с этим правилом следует удалить оператор M, устанавливаемый по правилу 0. В этом случае последовательность P M K превращается в P K.

Правило 2. Удаление операторов M внутри когнитивных единиц

Если строка вида M K M K M K… принадлежит когнитивной единице, то следует удалить все операторы M, кроме первого. Когнитивной единицей является непрерывная последовательность вводимых символов, которые могут образовывать название команды или аргумент. Например Y, перемещать, Елена Троянская или 4564.23 являются примерами когнитивных единиц.

Правило 3. Удаление операторов M перед последовательными разделителями

Если оператор K означает лишний разделитель, стоящий в конце когнитивной единицы (например, разделитель команды, следующий сразу за разделителем аргумента этой команды), то следует удалить оператор M, стоящий перед ним.

Правило 4. Удаление операторов M, которые являются прерывателями команд

Если оператор K является разделителем, стоящим после постоянной строки (например, название команды или любая последовательность символов, которая каждый раз вводится в неизменном виде), то следует удалить оператор M, стоящий перед ним. (Добавление разделителя станет привычным действием, и поэтому разделитель станет частью строки и не будет требовать специального оператора M.) Но если оператор K является разделителем для строки аргументов или любой другой изменяемой строки, то оператор M следует сохранить перед ним.

Правило 5. Удаление перекрывающих операторов M

Любую часть оператора M, которая перекрывает оператор R, означающий задержку, связанную с ожиданием ответа компьютера, учитывать не следует.

____________

Кроме того, отметим, что в этих правилах под строкой будет пониматься некоторая последовательность символов. Разделителем будет считаться символ, которым обозначено начало или конец значимого фрагмента текста, такого как, например, слово естественного языка или телефонный номер. Например, пробелы являются разделителями для большинства слов. Точка является наиболее распространенным разделителем, который используется в конце предложений. Скобки используются для ограничения пояснений и замечаний и т. д. Операторами являются K, P и H. Если для выполнения команды требуется дополнительная информация (как, например, в случае когда для установки будильника пользователю требуется указать время его включения), эта информация называется аргументом данной команды.

4.2.3. Примеры расчетов по модели GOMS

Разработка интерфейса обычно начинается с определения задачи или набора задач, для которых продукт предназначен. Суть задачи, а также средства, имеющиеся для реализации ее решения, часто формулируют в виде требования или спецификации. В нижеприведенном примере в качестве пользователя выступает лаборант Хол.

Требования

Хол работает на компьютере – печатает отчеты. Иногда его отвлекают экспериментаторы, находящиеся в этой же комнате, чтобы попросить перевести температурные показания из шкалы Фаренгейта в шкалу Цельсия или наоборот. Например, Холу могут сказать: «Переведи, пожалуйста, 302.25 градуса по шкале Фаренгейта в градусы по шкале Цельсия». Значение температуры Хол может ввести только с помощью клавиатуры или ГУВ. Голосовые или другие средства ввода отсутствуют. Просьбы о переводе из одной шкалы в другую поступают приблизительно с равной вероятностью. Приблизительно 25 % значений – отрицательные. 10 % значений являются целочисленными (например, 37°). Результат перевода из одной шкалы в другую должен отражаться на экране монитора. Другие средства вывода результатов не используются. Хол читает вслух экспериментатору полученное значение. Вводимые и выводимые числовые значения температур могут иметь до десяти цифр с каждой стороны от десятичного разделителя.

При разработке интерфейса для системы, с помощью которой Хол сможет выполнять такие просьбы, следует минимизировать время, необходимое для перевода из одной шкалы в другую. Скорость и точность операций должны быть максимальными. Рабочая площадь экрана не ограничена. Окно или область экрана, предназначенная для перевода температурных значений, является постоянно активным и готово к вводу данных с помощью клавиатуры или ГУВ. То, каким образом Хол сможет вернуться к выполнению его основной работы, не учитывается. Задача считается выполненной с получением результата перевода.

Для оценки требуемого Холу времени исходите из среднего временного значения на введение четырех символов, включая десятичную запятую. Также, из соображений простоты, будем считать, что Хол вводит все символы без ошибок, и поэтому средства выявления ошибок и сообщения о них не требуются.

____________

Сейчас я предлагаю читателям прервать чтение и попытаться разработать интерфейс по этим простым условиям. Для записи решения включая зарисовки изображений, которые будет наблюдать Хол на экране монитора, не потребуется много времени; поэтому постарайтесь не просто подумать об этой задаче, но и записать ее решение. (Возможно, вы захотите продолжить чтение, проигнорировав мою просьбу, однако я все же прошу вас подумать. Чтение последующих разделов будет намного более интересным, если вы сделаете попытку решить предложенную задачу самостоятельно.) После того как вы закончите разработку интерфейса, ознакомьтесь с анализами, проведенными по методу GOMS, которые будут представлены далее. После этого вы сможете проанализировать свой собственный вариант.

4.2.3.1. Интерфейс для Хола: вариант 1. Диалоговое окно

Инструкции в диалоговом окне (рис. 4.2) довольно просты. На их основе можно описать метод действий, который должен использовать Хол в терминах жестов модели GOMS. Запись по модели GOMS будет представлена последовательно по мере того, как будут добавляться новые жесты.

Рис. 4.2. Вариант диалогового окна с использованием группы переключателей

• Перемещение руки к графическому устройству ввода данных:

H

• Перемещение курсора к необходимому переключателю в группе:

H P

• Нажатие на необходимый переключатель:

H P K

В половине случаев в интерфейсе уже будет выбрано требуемое направление перевода, и поэтому Холу не придется кликать на переключатель. Сейчас мы рассматриваем случай, когда переключатель не установлен в требуемое положение.

• Перемещение рук снова к клавиатуре:

H P K H

• Ввод четырех символов:

H P K H K K K K

• Нажатие клавиши «Enter»:

H P K H K K K K K

Нажатие клавиши «Enter» завершает часть анализа, касающуюся метода. В соответствии с правилом 0 мы ставим оператор M перед всеми операторами K и P за исключением операторов P, указывающих на аргументы, которых в нижеследующем примере нет:

H M P M K H M K M K M K M K M K

Правило 1 предписывает заменить P M K на P K и удалить все другие операторы M, которые являются ожидаемыми (в указанном примере таких нет). Кроме того, правило 2 предписывает удалять операторы M в середине цепочек. После применения этих двух правил остается следующая запись:

H M P K H M K K K K M K

В соответствии с правилом 4 следует оставить оператор M перед конечным K. Правила 3 и 5 в данном примере не применяются.

Следующий шаг – это заменить символы операторов на соответствующие временные интервалы (напомним, что K=0.2; P=1.1; H=0.4; M=1.35).

H + M + P + K + H + M + K + K + K + K + M + K = 0.4 + 1.35 + 1.1 + 0.2 + 0.4 + 1.35 + 4*(0.2) + 1.35 + 0.2 = 7.15 с

В случае когда переключатель уже установлен в требуемое положение, метод действий становится следующим:

M K K K K M K

M + K + K + K + K + M + K = 3.7 с

По условиям задачи оба случая являются равновероятными. Таким образом, среднее время, которое потребуется Холу на использование интерфейса для перевода из одной шкалы в другую, составит (7.15+3.7)/2? 5.4 с. Но поскольку описанные два метода являются разными, Холу будет трудно использовать их автоматично. Нерешенной проблемой количественных методов анализа остается оценка процента появления ошибок при использовании данной модели интерфейса.

Далее мы рассмотрим графический интерфейс, в котором используется известная всем метафора.


    Ваша оценка произведения:

Популярные книги за неделю