355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Дмитрий Мамичев » Простые роботы своими руками или несерьёзная электроника » Текст книги (страница 4)
Простые роботы своими руками или несерьёзная электроника
  • Текст добавлен: 12 апреля 2017, 14:00

Текст книги "Простые роботы своими руками или несерьёзная электроника"


Автор книги: Дмитрий Мамичев



сообщить о нарушении

Текущая страница: 4 (всего у книги 7 страниц)

Глава 4
МЕХАНИКА САМОДЕЛЬНЫХ ИГРУШЕК

При изготовлении подвижных игрушек не обойтись без механики. От её реализации зависят не только внешний вид изделия и функциональность, но и его выразительность, «забавность» – если хотите. Иные «игрушечные проекты» полностью строятся не столько на особенностях управляющей схемы, сколько на оригинальности механики изделия.


Передача движения в механизмах игрушек

Вначале немного теории. Все возможные виды механического движения можно свести к поступательному, вращательному движению или их комбинации. Движение элементов механизмов в основном вращательное.

Большинство изделий «игрушечной направленности» в своей механике содержат, кроме двигателя, исполнительного механизма, ещё один важный элемент – редуктор. Это механизм, передающий и преобразующий крутящий момент от двигателя игрушки к исполнительному устройству. К основным характеристикам редуктора в рамках заявленной темы можно отнести коэффициент полезного действия, передаточное отношение, передаваемую мощность, максимальные угловые скорости валов, количество пар, осуществляющих передачу вращения.

Основная практическая задача игрушечных редукторов – понижать угловую скорость вращения от двигателя к исполнительному механизму в десятки, сотни раз, в зависимости от необходимого. Такие редукторы называют понижающими (демультипликатор). Если на выходном валу его угловая скорость выше, чем угловая скорость входного вала, то такой редуктор называют повышающим (мультипликатор).

Договоримся условно называть пару, осуществляющую вращательное движение, колесами. Колесо, от которого передается вращение, принято называть ведущим, а колесо, получающее движение, – ведомым.

По способу передачи движения от ведущего колеса к ведомому их можно разделить на передачи трением (фрикционные, ременные) и зацеплением (цепные, зубчатые, червячные). На рисунке 1 изображён пример фрикционной передачи, на рисунке 2 – ременной.




Колёса в этом случае называют шкивами. Их отличительная особенность наличие канавки (ручейка) в которой движется (течёт) ремень (резиновый пассик). Рисунок 3 иллюстрирует принцип действия зубчатой передачи, а рис. 4 – червячной (винтовой). Колёса зубчатой передачи это шестерни.



Здесь сделаю небольшое отступление. Набив в «поисковике» словосочетание «шестерня происхождение слова», был невольно вовлечён в жаркую дискуссию с неоднозначными выводами. Одни утверждают, что шестерёнка– это малое шестизубчатое колесо, другие, что любое зубчатое колесо – это шестерня, и произошло оно от слова шест. Из палочек – шестов делали первые зубья. Третьи говорят, что в основе слова цифра 6. Именно столько зубьев взаимодействующей пары колёс входит в постоянное зацепление при их вращении. Я склонюсь, пожалуй, к последнему: любое колесо с зубьями – это шестерня.

Сказал, и тут же ошибся во всём (рис. 5а). Получается вовсе не колесо и совсем не шесть, а пять. Так что вопрос остаётся открытым.


Пример «готового редуктора» представлен на рис. 5.


Направление движения элементов указано стрелками. Быстрое вращательное движение вала ротора двигателя (точка А) преобразуется им в медленное возвратно-поступательное движение ползуна (точка Б). Пары обозначены числами 1–1, 2–2 и т. д. Другими важными элементами редуктора являются вал и ось.

Вал – это деталь редуктора или полного механизма, имеющая форму стержня (цилиндра) и служащая для передачи на другие детали данного механизма крутящего момента (вращения), тем самым создавая общее движение всех расположенных на нем деталей: например шкивов, шестерен, колес. На рисунке 5 это элемент А (вал двигателя).

Ось – это деталь редуктора, предназначенная для соединения и скрепления между собой деталей данного механизма. Ось воспринимает только поперечные нагрузки (напряжение изгиба). На рисунке 5 это элемент В. Ось чаще всего жёстко закреплена к основанию (корпусу) редуктора, хотя может и вращаться. Однако в передаче вращения от двигателя к «исполнителю» она не участвует. В этом заключается её отличие от вала.

Итак, обобщим: механика многих игрушек может содержать редуктор. В его состав входит корпус-основание, колёса, передающие вращение, валы и оси.


Общие количественно-качественные характеристики выбора редуктора при изготовлении самоделок

Первым условием выбора, конечно, является передаточное число (отношение) редуктора. Его можно определить как отношение числа оборотов ведущего колеса или входного вала к числу оборотов выходного вала или колеса за одно и то же время. Иными словами – это дробь, в числителе которой частота вращения вала мотора игрушки, в знаменателе – частота вращения конечной (выходной) шестерни редуктора (вала на которой она закреплена). Чем больше эта величина, тем медленнее движения исполнительного механизма, но больше его усилие. Говоря совершенно просто, паровозик поедет медленно, но потянет за собой много вагонов. Так, если мы имеем мотор с номинальной частотой вращения 1200 оборотов в минуту, а хотим чтобы колесо робота совершало 60 оборотов в минуту, значит, нам понадобится редуктор с отношением, равным 200.

Как его оценить в готовом редукторе? Самый простой и оправданный способ, особенно если «внутренности» редуктора недоступны глазу, поступить так: поставить риски-метки на входной и выходной валы или передаточные колёса; прокручивая входной вал подсчитать число его оборотов до того момента пока выходной вал не сделает полный оборот. Подсчитанное число и есть передаточное.

А как быть, если метки ставить неудобно или редуктор не прокручивается или нужны точные данные? Здесь придётся проникать в его «недра» и проводить теоретические вычисления. Вновь вернёмся к редуктору – взглянем на рис. 6.


Нетрудно сообразить, что любая крайняя точка колёс любой взаимодействующей пары движется с одинаковой по модулю линейной скоростью (V(A) = V(B)). В противном случае колёса проскальзывали бы друг относительно друга, чего в исправном редукторе не бывает. Пока точка В совершит один оборот точка А сделает примерно три, ведь пути точек из-за равенства скоростей одинаковые и длина обода шкива А в три раза меньше длины обода шкива В. Такое же соотношение имеют диаметры пар колёс. Вывод: во сколько раз диаметр одного взаимодействующего колеса, больше диаметра другого, во столько раз меньше частота его вращения по сравнению с частотой вращения другого. То есть первая пара (рис. 5) понижает частоту вращения втрое, вторая грубо тоже втрое, третья и четвёртая так же. В итоге редуктор снижает частоту вращения шестерни С (рис. 6) в 81 (перемножение получившихся отношений) раз по сравнению с частотой вращения вала (шкив А) мотора. Более точно передаточное число находится при измерении диаметров шестерён и шкивов (колёс) штангельциркулем и вычислении на калькуляторе их отношений.

Вторым условием выбора редуктора можно считать условие количества передаточных пар, величины передаваемою крутящего момента. В конечном итоге речь идёт о массогабаритах редуктора, материалах его изготовления, потерях электроэнергии на поддержание вращения всех его элементов во время передачи вращения.

В игрушечном конструировании оптимальным, по мнению автора, является редуктор с габаритным объёмом в границах от 8 до 125 кубических сантиметров с числом передаточных пар 1–4. Материал корпуса и элементов – пластмасса. Колёса, передающие вращение в основном шестерни, допустимы шкивы. Например, по рисунку 6 редуктор состоит из следующей передающей движение цепочки: шкив на шкив-шестерню; на двойную шестерню; на двойную шестерню; на шестерню с кривошипом и шатуном.

Почему такой выбор? Попробую объяснить «методом от противного». Итак, недостатки фрикционной передачи (рис. 1): проскальзывание, ведущее к непостоянству передаточного числа и потери энергии; необходимость обеспечения прижима, что резко снижает КПД редуктора и, в конечном счете, делает его ненадёжным. Избавится от этих недостатков можно, делая прижим «пружинистым», например как в ходовой части Маавта (Мамичев Д. Игра «Выживание Маавта»// РАДИО 2010; № 10; с.51), но такой вариант существенно усложняет конструкцию редуктора. Ременная передача (рис. 2) так же имеет недостатки, а именно: провисание ремня (резинового пассика), его разрушение со временем, особенно при воздействии низких температур, проскальзывание при вращении. Металлические шестерни и шкивы надёжнее и долговечнее пластмассовых изделий, но их сложнее найти и дороже приобрести. Редуктор из них тяжелее.

Третье условие выбора это, собственно говоря, порядок его обретения. Редуктор можно сделать самому, а можно купить. Сегодня интернет магазины предлагают широкий ассортимент готовых мотор-редукторов (рис. 7).


Однако далеко не всегда имеющийся редуктор подходит под задуманную поделку. В такой ситуации приемлемо изготовить редуктор самому (рис. 8), используя отдельные элементы и части кинематических схем изделий промышленного производства.


Такими «донорами» могут быть старая РЭА, неисправная офисная и бытовая техника, поломанные детские игрушки с «электронной начинкой». Компактные редукторы можно найти в автомобильных CD-приводах, фотоаппаратах «мыльницах». Много шестерёнок, валов и осей можно извлечь из неисправных DVD – приводов компьютеров, принтеров, импортных кассетных магнитофонов, видеомагнитофонов. Готовые редукторы имеются в детских машинках на радиоуправлении и просто электрифицированных с мотором. Механика старых «кварцевых часов» и «ходиков» содержит много полезных вещей, часто реализованных в металле.

Итак, обобщим: при использовании редуктора желательно знать его передаточное число, возможно, его самостоятельное изготовление из элементов кинематики различной аппаратуры и техники.


Несколько слов о двигателях

В игрушечной электронике приемлемо использование достаточно большого ассортимента двигателей постоянного тока (рис. 9).


Начиная с моторчиков виброзвонков сотовых телефонов (1 и 2), двигателей компьютерных приводов, автомобильных проигрывателей дисков (3, 4, 5, 6) и заканчивая «китайскими моторами» от игрушек (7).

«Тяжеловесами» для относительно крупных поделок могут стать двигатели из кинематики принтеров (8), старых кассетных магнитофонов (9) и наконец, отечественная гордость – двигатели серии ДПМ (10). Что касается рабочих напряжений и потребляемых токов многое зависит от конкретного применения в конструкции. Так большинство двигателей типоразмера 1 и 2 «живут в игрушках, не греясь» при подаваемых напряжениях 1,5-3В и потребляемых токах 20-100 мА.

Моторы группы 3–6 функционируют в диапазоне 3–6 В (некоторые рассчитаны на 9 вольт) и потребляемых токах, в зависимости от механической нагрузки, в 30-150 мА. Электродвигатели типа 7 лучше не использовать – при напряжении в 3–4 В они потребляют токи в 150–300 мА даже на холостом ходу. По этой же причине сегодня не находят должного применения «советские игрушечные моторы» (рис. 10).


Двигатели 8-10 в основном рассчитаны на напряжение питания 9-12 вольт и выше. Данные на дорогие и качественные двигатели ДПМ с диаметром корпуса 20 и 25 мм сведены в таблицу (исходные данные позаимствованы из книги В.А. Днищенко «Дистанционное управление моделями», изд. НиТ, 2007 г.).


Конечно, при выборе двигателя под изделие можно полагаться на сугубо теоретические расчёты, но в нашем несерьёзном занятии проще обходится экспериментальными испытаниями двигателей. Итак, попробуем сформулировать основные этапы подбора двигателя под конструкцию.

1. Оценка линейных размеров будущего изделия и массо-габаритов источника питания. (Именно он довольно часто определяет вид будущего мотора игрушки). Так для элементов типа LR44 подойдут двигатели 1, 2. Разумный размер поделки, если она вмещается в куб с ребром 5–6 см. Для двигателей 3, 4 удобнее использовать элементы типа ААА («мизинчиковые батарейки»), сама конструкция может размещаться в кубе с ребром до 10–12 см.

Самые ходовые моторы 5, 6 «созданы» для «солевых батареек» типа АА. Двигатели 8-10 для «алкалиновых элементов», аккумуляторов и прочих более «тяжелых калибров солевых батареек». Кубик-гараж для таких поделок может иметь длину ребра от 15 см и выше.

2. Выбор конкретных моторов по массо – размерам.

3. Выбор наилучшего варианта из имеющихся вариантов. Для испытаний двигателя понадобится источник постоянного тока с регулировкой напряжения от 0 до 12–15 В. Желательно, чтобы источник мог обеспечить ток в нагрузке до 0,5 ампера. Совсем здорово если в блоке питания будет встроенный вольтметр и амперметр. Если их нет не беда, можно собрать простую электрическую цепь (рис. 11). Вольтметр и амперметр так же должны быть рассчитаны на измерение напряжения и силы тока в указанных пределах.


Итак, плавно увеличивая напряжение на контактных лепестках мотора, фиксируем значение силы тока, и напряжения при котором его ротор придёт в постоянное вращение (чем ниже ток, тем «приятнее мотор»). Слегка увеличим напряжение, приложим указательный палец к валу мотора и постепенно начнём надавливать, одновременно увеличивая напряжение. Вновь заметим показания приборов, при которых ток увеличился в 2–3 раза по сравнению с первым фиксированным значением. Подержим вал под пальцем около минуты. Если корпус двигателя слегка нагрелся (кожа ощущает тепло) значит, такой режим работы двигателя приемлем. При этом фиксируем значение питающего напряжения, силы тока, а «на палец запоминаем» крутящий момент и частоту вращения вала при нагрузке. Повторяем «процедуру» для всех экземпляров моторов. Делаем свой выбор по принципу: «Побеждает самый упорный и менее прожорливый!».

4. Далее следует определиться с входным колесом будущего редуктора (рис. 12). Это может быть шестерёнка 1, шкив 2, резиновый валик 3, червяк 4. Диаметры валов моторов составляют ряд 0,7 мм, 1 мм, 1,5 мм, 2 мм. Колесо должно плотно, с усилием надеваться на вал. Проще всего подобрать вариант 3, сложнее всего вариант 4.


Итак, обобщим: Если двигатель выбран верно, то значение величины тока, потребляемого двигателями самоделок, должно находиться в пределах 50-150 мА, при напряжении источника 3–9 вольт.


Исполнительные устройства – механизмы

В игрушках их может быть много, и они могут быть разные. Например, колесо мобильного робота (рис. 13) или гребной винт на валопроводе (рис. 14), или устройство ударного молоточка (рис. 15).




Это может быть довольно сложная система ходовой части жука-проволочника (рис. 16) или капризная в настройке колебательная система маятника (рис. 17).



Но в любом случае они обеспечивают движение и взаимодействие изделия (его частей) с окружающей средой (полигоном), их основная задача преобразовать вращательное движение выходного вала (колеса) редуктора или двигателя в «нужное» движение изделия или (и) его частей.

Рассмотрим пару самых «ходовых» механизмов. Итак, кривошипно-шатунный механизм (рис. 18) предназначен для преобразования вращательного (точка А) движения в возвратно-поступательное движение (точка В). Механизм является обратимым, следовательно, может преобразовывать возвратно – поступательное движение в движение по окружности.


К основным элементам механизма относятся: кривошип, шатун и ползун. Они связаны друг с другом парой шарниров. Если нужно «организовать» на одном валу несколько взаимосвязанных механизмов, прибегают к использованию коленвала. Принцип действия механизма, конечно, не меняется. Наглядно представить работу механизма позволяют рисунки 19, 20.



Движение его ползуна неравномерное. В окрестностях «мёртвого хода» ползун движется с наименьшими скоростями.

Шарнирно-рычажные механизмы. Они предназначены для смены направления движения одной части механизма относительно другой части. Кроме этого данные механизмы призваны менять длину хода рабочего рычага, увеличивая или уменьшая её. К их основным составным элементам относятся рычаги (звенья) и шарниры. Длина хода в этих механизмах увеличивается за счёт увеличения длины плеча рычага. Один из самых распространённых механизмов это четырёхзвенник (рис. 21). Каждый, наверное, по детству помнит лягушку-попрыгушку (рис. 22). Действие механизма этой игрушки приводило в восторг не одно поколение детей.



Ну а «школьники прошлого века» вероятно, помнят такой своеобразный ручной копир-сканер (рис. 23) под названием пантограф.


С его помощью можно было копировать контуры различных фигур, планов, чертежей, географических карт.

В игрушечном конструировании данные механизмы в явном виде используются при конструировании шагающих игрушек, моделирующих походку человека или насекомого.

Более подробно с другими интересными разновидностями приспособлений исполнительных устройств можно ознакомиться в книге – пособии «ТЕХНИЧЕСКОЕ ТВОРЧЕСТВО», изданной в 1956 году в издательстве «Молодая гвардия».


Некоторые практические замечания по конструированию механики игрушек

1. Если размеры редуктора не критичны, можно его изготовить из самодельных пластмассовых колёс. Например, в модели речного колёсного пароходика (рис. 24). Редуктор состоит из пары колёс 1, 2. Вертикальное колесо снабжено резиновым кантом 3 и «подпружинено» через планку 4 пружиной 5. Слева колесо-основание 1 «подпружинено» валом мотора 7. Он сам крепится к П-образной пластинке 8, ограниченной в пространстве П-образной скобой 6 и парой вертикальных направляющих штырей 9. Между ними расположена пружина, притягивающая элемент 8 к основанию 10. «Ходовая в сборе» изображена на рисунке 25, она состоит из двух симметричных частей.



2. Если предполагается, что игрушка будет ездить по ровной плоской поверхности на маленьких колёсах, то редуктор можно строить на одной понижающей паре (рис. 26).


К некоторым неудобствам относится то, что валы двигателя и колеса расположены под острым углом к основанию. Подробно такой тип ходовой части описан в моей книге «Роботы своими руками. Игрушечная электроника», вышедшей в издательстве Солон-пресс.

3. Основные трудности при сборке и подгонке элементов механики сводятся к необходимости обеспечения лёгкого вращения колёс на осях с их ограничением движения вдоль оси и жёсткого крепления на валах с ограничением их продольного хождения.

Кроме этого большое значение имеет параллельность всех осей и валов друг другу, и точность расположения посадочных отверстий под неподвижные оси и отверстий – подшипников скольжения для валов. Несоблюдение этих условий приводит к «неравномерному» вращению шестерен с заеданием или их прощёлкиванию относительно друг друга. В связи с вышесказанным желательно иметь в арсенале наборы свёрл с шагом в 0,5 мм, например ряд 1 мм, 1,5 мм, 2 мм, 3 мм, 4 мм и свёрла с близкими значениями диаметра с расхождением в 0,1 мм в большую сторону. Осевой люфт легко ограничивается посадкой на оси и валы ограничительных отрезков изоляции проводов, подходящего диаметра или отрезков ПВХ трубки. При этом между подвижной и неподвижной частью детали желательно одевать стальную шайбу, соответствующего размера.

Возможно, после монтажа придётся смещать положение осей или валов относительно друг друга. Такую возможность можно предусмотреть заранее.

В заключение рассмотрим пример изготовления такого редуктора. Время его сборки и подгонки заняло у меня полчаса. Итак, расходные материалы изображены на рисунке 27.


Шестерня, сдвоенная шестерня, шестерня-переходник, скрепка, отрезки стальной спицы и проволоки, мотор с червяком, прямоугольник «толстой пластмассы».

Сначала вставляем шестерню 3 в шестерню 1. Фиксируем каплей клея. Затем одеваем с усилием шестерню на вал 4. Разрезаем пластмассовое основание на две части 2 и 6, лишнее выбрасываем. Навиваем проволоку канцелярской скрепки на вал 4, получаем некое подобие катушки соленоида с выводами. Откусываем лишнее, оставляя длину 5–6 мм. Сверлим в верхней части пластины 2 пару отверстий под крепление детали 5. Вставляем её в основание, вставляем в неё вал 4 с шестерней 1, предварительно надев отрезок ПВХ трубки в качестве ограничителя 10. ВДВИГАЯ И ВЫДВИГАЯ ЭЛЕМЕНТ 5 В ОСНОВАНИЕ, МЫ ПОЛУЧИЛИ ВОЗМОЖНОСТЬ РЕГУЛИРОВКИ ЗАЗОРА МЕЖДУ ШЕСТЕРНЯМИ В РЕДУКТОРЕ. Далее сверлим по месту отверстие под ось 9 в торце пластины 2. Вклеиваем ось и ставим шестерню 8. Регулируем сцепление зубьев элементом 5 и так же фиксируем его на клей. Приклеиваем по месту мотор 7 к основанию 6. И УЖЕ ЗАТЕМ, ОПЯТЬ ЖЕ ПО МЕСТУ, СОЕДИНЯЕМ С ПОМОЩЬЮ КЛЕЯ ОСНОВАНИЕ 2 И ОСНОВАНИЕ 6, РЕГУЛИРУЯ ОДНОВРЕМЕННО ВЕЛИЧИНУ СЦЕПЛЕНИЯ ВИНТА И ЗУБЬЕВ ШЕСТЕРНИ.

Всё! Редуктор готов!



    Ваша оценка произведения:

Популярные книги за неделю