Текст книги "Логика. Учебное пособие"
Автор книги: Дмитрий Гусев
Жанр:
Философия
сообщить о нарушении
Текущая страница: 4 (всего у книги 6 страниц)
1.12. Правила деления
Существует несколько логических правил деления понятия. Нарушение хотя бы одного из них приводит к тому, что объем понятия не раскрывается, и деление не достигает своей цели, являясь неверным. Рассмотрим эти правила и ошибки, возникающие при их нарушении.
1. Деление должно проводиться по одному основанию, т. е. при делении понятия следует придерживаться только одного выбранного признака. Например, в делении: Люди бывают мужчинами, женщинами и учителями используются два разных основания – пол и профессия, что недопустимо. Ошибка, возникающая при нарушении этого правила, называется подменой основания. В делении с подменой основания может использоваться не только два разных основания, как в приведенном выше примере, но и больше. Например, в делении: Люди бывают мужчинами, женщинами, китайцами и блондинами, как видим, используются три различных основания – пол, национальность и цвет волос, что, конечно же, тоже является ошибкой.
2. Деление должно быть полным, т. е. надо перечислить все возможные результаты деления (суммарный объем всех результатов деления должен быть равен объему исходного делимого понятия). Например, деление: Учебные заведения бывают начальными и средними является неполным, т. к. не указан еще один результат деления – высшие учебные заведения. Но как быть, если надо перечислять не два или три, а десятки или сотни результатов деления. В этом случае можно употреблять понятия: и другие, и прочие, и так далее, и тому подобное, которые будут включать в себя не перечисленные результаты деления. Например: Люди бывают русскими, немцами, китайцами, японцами и представителями других национальностей.
3. Результаты деления не должны пересекаться, т. е. понятиям, представляющим собой результаты деления, следует быть несовместимыми, их объемы не должны иметь общих элементов (на схеме Эйлера круги, обозначающие результаты деления, не должны соприкасаться, располагаясь отдельно друг от друга). Например, в делении: Страны мира делятся на северные, южные, восточные и западные допущена ошибка – пересечение результатов деления. На первый взгляд приведенное в качестве примера деление кажется безошибочным: оно проведено по одному основанию (сторона света) и является полным (все стороны света перечислены). Чтобы увидеть ошибку в данном делении надо рассуждать так. Возьмем какую-нибудь страну, например, Канаду и ответим на вопрос – является ли она северной? Конечно, является, т. к. расположена в северном полушарии Земли. Теперь ответим на вопрос, является ли Канада западной страной? Да, потому что она расположена в западном полушарии Земли. Таким образом, получается, что Канада – одновременно и северная, и западная страна, т. е. она является общим элементом объемов понятий северные страны и западные страны, а значит, эти понятия, а вернее их объемы, пересекаются. То же самое можно сказать и относительно понятий южные страны и восточные страны. На схеме Эйлера результаты деления из нашего примера будут располагаться так:
Вспомним, каждая классификация построена таким образом, что любой элемент, попадающий в одну ее группу (часть, вид), ни в коем случае не попадает в другие. Это и есть следствие непересечения результатов деления или их взаимоисключения при составлении какой угодно классификации.
4. Деление должно быть последовательным, т. е. не допускающим пропусков и скачков. Рассмотрим следующее деление: Леса бывают хвойными, лиственными, смешанными и сосновыми. Явно лишним здесь выглядит понятие сосновые леса, в силу чего допущенная в делении ошибка напоминает подмену основания (см. первое правило). Однако основание в данном случае не менялось: деление было проведено по одному и тому же основанию – тип древесных листьев. Подмена основания присутствует в таком, например, делении: Леса бывают хвойными, лиственными, смешанными, подмосковными и таежными. (Деление проведено по двум разным основаниям – тип древесных листьев и географическое местонахождение леса). Вернемся к нашему первому примеру. Правильно было бы разделить леса на хвойные, лиственные и смешанные, а потом произвести второе деление – разделить хвойные леса на сосновые и еловые. Таким образом, надо было совершить два последовательных деления, а в приведенном примере второе деление пропущено, через него как бы перескочили, в результате чего два деления смешались в одно. Такая ошибка называется скачком в делении. Еще раз отметим, что скачок в делении не следует путать с подменой основания. Например, в делении: Учебные заведения бывают начальными, средними, высшими и университетами присутствует скачок, а в делении: Учебные заведения бывают начальными, средними, высшими и коммерческими допущена подмена основания.
Приведем еще несколько примеров правильного деления, а также – деления, в котором нарушены рассмотренные правила и допущены различные ошибки.
а) Транспорт бывает наземным, подземным, водным, воздушным, общественным и личным (подмена основания).
б) По темпераменту люди делятся на сангвиников, меланхоликов, флегматиков и холериков (пересечение результатов деления).
в) Геометрические фигуры делятся на плоские, объемные, треугольники и квадраты (скачок в делении).
г) Отбор в живой природе бывает искусственным или естественным (правильное деление).
д) Художественные романы бывают приключенческими, детективными, фантастическими, историческими, любовными и другими (пересечение результатов деления).
е) Запоминания бывают произвольными и непроизвольными (правильное деление – дихотомическое).
ж) Математические действия делятся на сложение, вычитание, умножение, деление, возведение в степень, извлечение корня и нахождение логарифма (правильное деление).
з) Животные делятся на хищников, травоядных, всеядных и млекопитающих (подмена основания).
и) Энергия бывает механической и химической (неполное деление).
1.13. Как складываются и умножаются понятия?
Помимо ограничения, обобщения, определения и деления понятий существуют еще две логические операции – сложение и умножение понятий.
Сложение понятий – это логическая операция объединения двух и большего количества понятий, в результате которой образуется новое понятие с объемом, охватывающим собой все элементы объемов исходных понятий. Например, при сложении понятий школьник и спортсмен образуется новое понятие, в объем которого входят как все школьники, так и все спортсмены. Результат сложения понятий, часто называемый логической суммой, на схеме Эйлера изображается штриховкой:
Умножение понятий – это логическая операция объединения двух и большего количества понятий, в результате которой образуется новое понятие с объемом, охватывающим собой только совпадающие элементы объемов исходных понятий. Например, при умножении понятий школьник и спортсмен образуется новое понятие, в объем которого входят только школьники, являющиеся спортсменами и спортсмены, являющиеся школьниками. Результат умножения понятий, часто называемый логическим произведением, на схеме Эйлера изображается штриховкой (так же, как и результат сложения):
Мы привели примеры сложения и умножения понятий, которые находятся между собой в отношении пересечения (школьник и спортсмен). В других случаях отношений между понятиями результаты сложения и умножения (логическая сумма и логическое произведение), разумеется, будут иными. Читатель без труда сможет определить их для всех случаев отношений между понятиями с помощью круговых схем. Так, если два понятия находятся в отношении подчинения, например, карась и рыба, то результатом их сложения является родовое понятие рыба (т. е. логической суммой понятий карась и рыба будет множество всех рыб):
Результатом умножения понятий карась и рыба, находящихся в отношении родовидового подчинения, будет видовое понятие карась (т. е. логическим произведением понятий карась и рыба является множество всех карасей):
Так же, если два понятия находятся в отношении соподчинения, например, береза и сосна, то результат их сложения – это два объема данных понятий (т. е. логической суммой понятий береза и сосна будет как множество всех берез, так и множество всех сосен):
Результатом умножения соподчиненных понятий береза и сосна является нулевое понятие (т. е. логическое произведение понятий береза и сосна представляет собой пустое множество – не существует ни одной березы, которая могла бы быть сосной и наоборот):
Точно так же устанавливаются результаты сложения и умножения объемов двух понятий, которые находятся в отношениях равнозначности, противоположности и противоречия (см. 1.5.). Так, например, нетрудно догадаться, что если два понятия находятся в отношении равнозначности, то результат их сложения будет полностью совпадать с результатом их умножения (логическая сумма равнозначных понятий равна их логическому произведению). Так же понятно, что результатом умножения противоположных и противоречащих понятий является нулевое понятие и т. п.
Как правило, в естественном языке (т. е. том, на котором мы общаемся) результат сложения понятий выражается союзом или, а умножения – союзом и. В результате сложения понятий школьник и спортсмен образуется новое понятие, в объем которого входит любой человек, если он является или школьником, или спортсменом, а в результате умножения этих понятий в объем нового понятия входит любой человек, если он является и школьником, и спортсменом одновременно.
Относительно употребления союзов или и и в естественном языке в качестве выражения результатов логических операций сложения и умножения понятий удачный пример приводит в своем учебнике по логике известный отечественный автор В. И. Свинцов (Логика. Элементарный курс для гуманитарных специальностей. М.: Скорина, 1998. С. 60–61), отрывок из которого приводится ниже. «Что касается союзов «или» и «и», то нужно отметить их многозначность, способную в известных ситуациях создавать достаточно неопределенное представление о характере связи между некоторыми исходными понятиями. Удачна ли, например, следующая формулировка одного из правил пользования городским транспортом: «Безбилетный проезд и бесплатный провоз багажа наказывается штрафом»? Представим себе два подмножества, которые могут быть выделены во множестве пассажиров-нарушителей. В одно из них войдут пассажиры, не взявшие билета, в другое – не оплатившие провоз багажа. Если союз «и» рассматривать как показатель логического умножения, то придется признать, что штраф должен быть наложен только на тех пассажиров, которые совершили сразу два проступка (но не какой-то один из них). Разумеется, житейский смысл ситуации, предусмотренной данным правилом, настолько ясен, что всякие разночтения этой формулировки, вероятно, были бы признаны казуистикой, но все же использование союза «или» здесь следует признать предпочтительным».
Здесь следует отметить неоднозначность разделительного союза или, который может употребляться в нестрогом (неисключающем) значении и в строгом (исключающем). Например, в высказывании: Можно изучать английский язык или немецкий союз или употребляется в нестрогом значении, т. к. можно изучать и тот, и другой язык одновременно, одно другое не исключает. В данном случае разделительный союз или очень близок к соединительному союзу и. С другой стороны, в высказывании: Он родился в 1987 году или в 1989 году союз или употребляется в строгом значении, т. к. если он родился в 1987 году, то – никак не в 1989 году и наоборот, два варианта здесь друг друга исключают. (О различных значениях союза или мы еще будем говорить далее). Если в рассмотренное выше правило пользования городским транспортом поставить союз или вместо союза и, как предлагает В. И. Свинцов, то получится следующее: «Безбилетный проезд или бесплатный провоз багажа наказываются штрафом». В данном случае союз или, являющийся показателем логического сложения, надо воспринимать в его нестрогом, неисключающем значении. Но ведь в указанной фразе этот союз можно истолковать и в строгом, исключающем значении. Тогда получится, что штраф накладывается или только на тех пассажиров, которые не оплатили проезд, или же только на тех, которые бесплатно провозят багаж. Правда, в этом случае не совсем понятно, кто же наказывается штрафом – те или другие. Поразмыслив, можно прийти к выводу, что штрафу подвергаются то те, то другие – на усмотрение контролера и в зависимости от ситуации.
В силу всего сказанного надо отметить, что употребление союза или всякий раз нуждается в комментарии относительно того, в строгом или нестрогом значении он используется. Понятно, что без этого комментария вполне возможны разночтения, которые нередко приводят к различным и существенным недоразумениям.
Вопросы и задания к главе 1
1. Что такое логика? Чем она отличается от многих наук, которые занимаются мышлением? Что такое содержание и форма мышления? Почему логика часто называется формальной логикой? Какие существуют формы мышления? Приведите несколько примеров понятий, суждений и умозаключений. Что такое законы логики? Какую роль они играют в нашем мышлении? Что такое софизмы?
2. Когда и где появилась логика? Кто считается ее создателем? Что такое традиционная логика? Когда появилась символическая, или математическая логика? Какие идеи лежат в ее основе? Чем отличается традиционная логика от символической, и в чем заключается их сходство? Являются ли традиционная логика и символическая логика различными науками? Что называется «исчислениями» в символической логике?
3. Как вы думаете, зачем нужна человеку логика? Какую роль она играет в его жизни? Можно ли, на ваш взгляд, без нее обойтись? Что такое интуитивная логика? Попытайтесь привести примеры, иллюстрирующие тот факт, что даже никогда не изучавшие логику люди все равно интуитивно ей пользуются.
4. Что такое понятие? Как соотносятся понятие и слово? Можно ли утверждать, что понятие и слово – это одно и то же? Что такое содержание и объем понятия? Как они соотносятся? Что представляет собой принцип обратного отношения между содержанием и объемом понятия? Приведите примеры понятий, иллюстрирующие этот принцип.
5. Какими бывают понятия по объему и содержанию? Приведите по 10 примеров для понятий единичных, общих, нулевых, собирательных, несобирательных, конкретных, абстрактных, положительных, отрицательных. Что такое логическая характеристика понятия? Как она составляется? Какие ошибки часто допускаются при составлении логической характеристики понятий?
6. Дайте логическую характеристику следующим понятиям: 1. Луна, 2. растение, 3. столица государства, 4. музыкальный коллектив, 5. знаменитый художник, 6. кентавр, 7. датский физик Нильс Бор, 8. древний философ, 9. Антарктида, 10. Атлантида, 11. сборная России, 12. лист бумаги, 13. молекула воды, 14. преступное сообщество, 15. уровень преступности, 16. невежество, 17. глупость, 18. умный человек, 19. драгоценный камень, 20. пьяная компания, 21. неправда, 22. водород, 23. геометрия, 24. рота солдат, 25. несправедливость, 26. эксплуатация, 27. воздух, 28. философы милетской школы, 29. знаменитое произведение искусства, 30. тишина.
7. Придумайте понятия, соответствующие следующим логическим характеристикам:
а) общее, несобирательное, конкретное, положительное.
б) единичное, несобирательное, конкретное, положительное.
в) единичное, собирательное, конкретное, положительное.
г) общее, собирательное, конкретное, положительное.
д) общее, несобирательное, абстрактное, отрицательное.
е) нулевое, несобирательное, абстрактное, положительное.
ж) нулевое, собирательное, конкретное, положительное.
з) общее, собирательное, конкретное, отрицательное.
е) единичное, несобирательное, абстрактное, положительное.
и) нулевое, несобирательное, конкретное, отрицательное.
8. Что такое определенное понятие? В каком случае можно говорить, что понятие имеет ясное содержание и резкий объем? Что представляют собой неопределенные понятия? Объясните, что такое неясное содержание и нерезкий объем понятия? Каковы основные причины появления и существования неопределенных понятий? Можно ли без них обойтись, вообще исключив их из мышления и языка? Если невозможно, то почему?
9. Представляют ли неопределенные понятия сами по себе, вне зависимости от ситуации, в которой они употребляются, коммуникативные помехи? Почему, на ваш взгляд, употребление неопределенных понятий в повседневном общении не приводит нас к коммуникативным затруднениям? В каких случаях неопределенные понятия могут стать причиной различных затруднений и сыграть негативную роль? Каким образом возможно бороться с ними в этих ситуациях?
10. Почему процедура превращения неопределенного понятия в определенное всегда условна и относительна, в силу чего неопределенное понятие, в конечном итоге, остается неопределенным?
Приведите по десять примеров для определенных и неопределенных понятий.
11. Какие из следующих понятий являются определенными, а какие неопределенными: 1. карась, 2. млекопитающее животное, 3. большая собака, 4. дикая кошка, 5. престижное учебное заведение, 6. московское учебное заведение, 7.планета Нептун, 8. яркая звезда, 9. талантливый человек, 10. богач, 11. бездарный преподаватель, 12. кандидат физико-математических наук, 13. хулиган, 14. известный писатель,
15. высокие горы, 16. учебник по химии, 17. хорошая музыка, 18. скучная лекция, 19. добротная одежда, 20. скромная пища, 21. сборная России по футболу, 22. крупный город, 23. столица государства?
12. Путем прибавления к содержанию следующих понятий каких-либо признаков превратите их из неопределенных в условно-определенные: высокий человек, старик, богач, лысый, толстая книга, современная музыка, плохая погода, высокая зарплата, хорошие соседи, двоечник, известный писатель, крупное военное сражение, большой стадион, плохой учитель, несвежие продукты, редкая удача, безрассудный поступок.
13. Что такое сравнимые и несравнимые понятия? Приведите по пять примеров для сравнимых и несравнимых понятий. Какие понятия называются в логике совместимыми, а какие – несовместимыми? Приведите по пять примеров для совместимых и несовместимых понятий.
14. В каких отношениях могут быть совместимые понятия? Что представляют собой отношения равнозначности, пересечения и подчинения между понятиями? Что такое видовые и родовые понятия? В каких отношениях могут быть несовместимые понятия? Что представляют собой отношения соподчинения, противоположности и противоречия между понятиями? Чем отличается противоположность от соподчинения и противоречие от противоположности?
15. Каким образом изображаются отношения между понятиями? В каком отношении находятся понятия, обозначающие часть и целое? Почему между этими понятиями не может быть отношения подчинения?
Почему возможно утверждать, что несравнимые понятия находятся в отношении соподчинения? Приведите пять примеров несравнимых понятий для иллюстрации своего ответа, прокомментировав каждый из них.
16. Почему невозможно точно установить отношения между неопределенными понятиями? Приведите примеры, иллюстрирующие ваш ответ. Приведите по три примера для каждого случая отношений между понятиями: равнозначности, пересечения, подчинения, соподчинения, противоположности и противоречия.
17. В каких отношениях находятся следующие понятия: 1. двоечник и студент, 2. композитор и человек, 3. город и деревня, 4. Антарктида и ледовый материк, 5. небесное тело и звезда, 6. треугольник и сторона треугольника, 7. школа № 5 и учебное заведение, 8. майор и россиянин, 9. знаменитый человек и немецкий писатель, 10. дом и крыша дома, 11. собака и кошка, 12. умный человек и неумный человек, 13. монарх и самодержец, 14. физика и химия, 15. геометрия и тригонометрия, 16. столица и населенный пункт, 17. книга и интересная книга, 18. телевизор и планета солнечной системы, 19. растение и крапива, 20. окружность и круг, 21. Николай II и последний русский царь, 22. олимпийские игры и спортивные состязания?
18. С помощью круговых схем Эйлера изобразите отношения между следующими группами понятий:
19. Подберите понятия, соответствующие следующим схемам:
20. Что такое ограничение понятия? Почему для уменьшения объема понятия надо прибавлять какие-либо признаки к его содержанию? Что представляет собой логическая операция обобщения понятия? Каким образом ограничения и обобщения понятий складываются в логические цепочки? Каковы пределы цепочек ограничений и обобщений?
21. Какие ошибки часто допускают при ограничении и обобщении понятий? Продемонстрируйте на самостоятельно подобранных примерах, что целое и часть нельзя путать с видом и родом. Всякое ли понятие можно подвергнуть ограничению и обобщению? Какие понятия не поддаются этим логическим операциям?
22. Подберите десять любых понятий и сделайте с каждым из них ограничение и обобщение, т. е. подберите для каждого из них как видовое, так и родовое понятие, иллюстрируя эти операции круговыми схемами Эйлера. Возьмите какое-либо понятие и постройте логическую цепочку его ограничения до предела. Возьмите какое-либо понятие и постройте цепочку его обобщения до предела.
23. Совершите ограничение и обобщение со следующими понятиями: 1. школа, 2. знаменитый писатель, 3. математическое действие, 4. картина, 5. предмет мебели, 6. университет, 7. планета, 8. американский президент, 9. актер, 10. химический элемент, 11. древнегреческий ученый, 12. балет, 13. уровень преступности, 14. музей, историческое событие, 15. яблоня, 16. всемирно известный спортсмен, 17. материк, 18. книга, 19. хищник, 20. высотное здание, 21. молодой человек, 22. музыкальный коллектив, 23. сборная России, 24. ураган, 25. электричество, 26. стихотворение.
24. Какие из приведенных ниже понятий невозможно подвергнуть ограничению или обобщению: 1. тетрадь, 2. МГУ, 3. галактика, 4. русский писатель XIX века, 5. первый космонавт земли, 6. Вселенная, 7. химический элемент, 8. Россия, 9. древнее государство, 10. Солнце, 11. современный автомобиль, 12. млекопитающее животное, 13. небоскреб, 14. атомная электростанция, 15. столица Франции, 16. нечто существующее, 17. планета Юпитер, 18. Третьяковская галерея, 19. московский кинотеатр, 20. толстая книга, 21. бытие?
25. Что представляет собой логическая операция определения понятия? Чем отличаются явные определения от неявных? Придумайте по три примера явных и неявных определений. Что такое реальные и номинальные определения? Как вы думаете, почему возможно утверждать, что любое реальное определение можно свести к номинальному и наоборот?
26. Что представляет собой классический способ определения понятия? Дайте определения каким-нибудь трем понятиям, пользуясь классическим способом определения. Каковы основные правила определения понятия? Какие ошибки возникают при их нарушении? Приведите, подобрав самостоятельно, по три примера для каждой ошибки в определении понятия.
27. Допущены ли ошибки в определениях, приведенных ниже? Если допущены, то какие?
а) Фильтрование – это процесс разделения какого-либо вещества с помощью специального приспособления – фильтра.
б) Кость – это орган, обладающий сложным строением.
в) Бескорыстие – это отсутствие личной заинтересованности при оказании какой-либо помощи.
г) Гравитация – это явление, которое выражается во взаимодействии двух физических тел.
д) Барометр – это метеорологический измерительный прибор.
е) Математика – это гимнастика ума.
ж) Сверхпроводник – это вещество, обнаруживающее явление сверхпроводимости.
з) Логика – это наука о формах и законах правильного мышления.
и) Извлечение квадратного корня – это математическое действие, которое не является ни умножением, ни делением, ни возведением в степень.
28. Что представляет собой логическая операция деления понятия? Чем она отличается от операции определения? Какова структура деления? Что такое основание деления? Какое деление называется дихотомическим? Попробуйте отметить достоинства и недостатки дихотомического деления. Какую роль в научном и повседневном мышлении играет логическая операция деления понятия?
29. Каковы основные логические правила деления понятия? Какие ошибки возникают при их нарушении? Придумайте по три примера для каждой ошибки в делении понятия. Почему дихотомическое деление понятия всегда является безошибочным? Каким образом оно исключает все возможные в делении ошибки?
30. Допущены ли ошибки в приведенных ниже примерах деления? Если допущены, то какие?
а) Воды земного шара бывают пресными и солеными.
б) Учащиеся бывают успевающими, отстающими и отличниками.
в) Речь бывает устной, письменной, путанной и заумной.
г) Спортивные состязания бывают мировыми, международными, олимпийскими и другими.
д) Треугольники бывают тупоугольными и прямоугольными.
е) Жиры бывают растительными, животными и твердыми.
ж) Люди бывают высокими и невысокими.
з) Оружие бывает холодным, огнестрельным и старинным. и) Высшие учебные заведения делятся на университеты, институты, академии и высшие училища.
31. Что представляют собой логические операции сложения и умножения понятий? Что такое логическая сумма и логическое произведение? Возьмите три пары каких-нибудь понятий и сделайте с ними логические операции сложения и умножения, иллюстрируя их результаты с помощью круговых схем Эйлера.
32. Каковы результаты сложения и умножения понятий во всех случаях отношений между ними? Могут ли эти результаты полностью совпадать? Может ли логическая сумма или логическое произведение быть нулевым понятием?
33. Какие союзы естественного языка являются, как правило, выражением результатов сложения и умножения понятий? Проиллюстрируйте свой ответ самостоятельно подобранными примерами. В чем заключается неоднозначность употребления союза или как показателя логического сложения понятий?
34. Произведите сложение и умножение следующих понятий, изобразив результаты этих операций с помощью круговых схем Эйлера: 1. майор и военнослужащий, 2. атом и молекула, 3. квадрат и ромб с прямым углом, 4. известный актер и россиянин, 5. млекопитающее животное и лошадь.