355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Дина Погонышева » Безопасность информационных систем. Учебное пособие » Текст книги (страница 2)
Безопасность информационных систем. Учебное пособие
  • Текст добавлен: 24 сентября 2016, 04:44

Текст книги "Безопасность информационных систем. Учебное пособие"


Автор книги: Дина Погонышева


Соавторы: Илья Степченко,Виктор Ерохин
сообщить о нарушении

Текущая страница: 2 (всего у книги 12 страниц) [доступный отрывок для чтения: 5 страниц]

1.3. Информационная безопасность в условиях функционирования в России глобальных сетей

Цель мероприятий в области информационной безопасности – защитить интересы субъектов информационных отношений. Интересы эти многообразны, но все они концентрируются вокруг трех основных аспектов:

• доступность;

• целостность;

• конфиденциальность.

Первый шаг при построении системы информационной безопасности организации – это ранжирование и детализация этих аспектов.

Важность проблематики информационной безопасности объясняется двумя основными причинами:

• ценностью накопленных информационных ресурсов;

• критической зависимостью от информационных технологий.

Разрушение важной информации, кража конфиденциальных данных, перерыв в работе вследствие отказа – все это приводит к крупным материальным потерям, наносит ущерб репутации организации.

Современные информационные системы сложны и, значит, опасны уже сами по себе, даже без учета активности злоумышленников. Постоянно обнаруживаются новые уязвимые места в программном обеспечении. Необходимо принимать во внимание чрезвычайно большие номенклатуры аппаратного и программного обеспечения, многочисленные связи между их компонентами.

Меняются принципы построения корпоративных ИС. Используются многочисленные внешние информационные сервисы; предоставляются собственные; получил широкое распространение «аутсорсинг», когда часть функций корпоративной ИС передается внешним организациям. Развивается программирование с активными агентами.

Подтверждением сложности проблематики информационной безопасности является параллельный рост затрат на защитные мероприятия и количества нарушений информационной безопасности в сочетании с ростом среднего ущерба от каждого нарушения.

Успех в области информационной безопасности может принести только комплексный подход, сочетающий меры четырех уровней:

• законодательного;

• административного;

• процедурного;

• программно-технического.

Проблема информационной безопасности не только техническая, но и законодательная. Без законодательной базы, без постоянного внимания руководства организации и выделения необходимых ресурсов, без мер управления персоналом и физической защиты решить проблему информационной безопасности невозможно. Комплексность также усложняет проблематику информационной безопасности, т. е. требуется взаимодействие специалистов из разных областей.

В качестве основного инструмента борьбы со сложностью используется объектно-ориентированный подход. Инкапсуляция, наследование, полиморфизм, выделение граней объектов, варьирование уровня детализации – все это универсальные понятия, знание которых необходимо всем специалистам по информационной безопасности.

Законодательный уровень является важнейшим для обеспечения информационной безопасности. На законодательном уровне особого внимания заслуживают правовые акты и стандарты.

Российские правовые акты в большинстве своем имеют ограничительную направленность. Сами по себе лицензирование и сертификация не обеспечивают безопасности. К тому же в законах не предусмотрена ответственность государственных органов за нарушения информационной безопасности.

Главная задача мер административного уровня – это сформировать программу работ в области информационной безопасности и обеспечить ее выполнение, выделяя необходимые ресурсы и контролируя состояние дел.

Основой программы является политика безопасности, отража ющая подход организации к защите своих информационных активов.

Разработка политики и программы безопасности начинается с анализа рисков, первым этапом которого является ознакомление с наиболее распространенными угрозами.

Главные угрозы – это внутренняя сложность ИС, непреднамеренные ошибки штатных пользователей, операторов, системных администраторов и других лиц, обслуживающих информационные системы.

На втором месте по размеру ущерба стоят кражи и подлоги. Реальную опасность представляют пожары и другие аварии поддерживающей инфраструктуры.

Для подавляющего большинства организаций достаточно общего знакомства с рисками. Ориентация на типовые, апробированные решения позволит обеспечить базовый уровень безопасности при минимальных интеллектуальных и материальных затратах.

Необходимым условием для построения надежной, экономичной защиты является рассмотрение жизненного цикла ИС и синхронизация с ним мер безопасности. Выделяют следующие этапы жизненного цикла:

• инициация;

• закупка;

• установка;

• эксплуатация;

• выведение из эксплуатации.

Безопасность невозможно добавить к системе, ее нужно закладывать с самого начала и поддерживать до конца.

Меры процедурного уровня ориентированы на людей, а не на технические средства, и подразделяются на следующие виды:

• управление персоналом;

• физическая защита;

• поддержание работоспособности;

• реагирование на нарушения режима безопасности;

• планирование восстановительных работ.

На этом уровне применимы важные принципы безопасности:

• непрерывность защиты в пространстве и времени;

• разделение обязанностей;

• минимизация привилегий.

Информационная безопасность во многом зависит от аккуратного ведения текущей работы, которая включает:

• поддержку пользователей;

• поддержку программного обеспечения;

• конфигурационное управление;

• резервное копирование;

• управление носителями;

• документирование;

• регламентные работы.

Элементом повседневной деятельности является отслеживание информации в области информационной безопасности. Администратор безопасности должен подписаться на список рассылки по новым проблемам в защите и своевременно знакомиться с поступающими сообщениями.

Необходимо заранее готовиться к нарушениям информационной безопасности. Заранее продуманная реакция на нарушения режима безопасности преследует три главные цели:

• локализация инцидента и уменьшение наносимого вреда;

• выявление нарушителя;

• предупреждение повторных нарушений.

Выявление нарушителя – сложный процесс, но первый и третий пункты необходимо тщательно продумывать и отрабатывать.

В случае серьезных аварий необходимо проведение восстановительных работ. Процесс планирования таких работ можно разделить на следующие этапы:

• выявление критически важных функций организации, установление приоритетов;

• идентификация ресурсов, необходимых для выполнения критически важных функций;

• определение перечня возможных аварий;

• разработка стратегии восстановительных работ;

• подготовка реализации выбранной стратегии;

• проверка стратегии.

Программно-технические меры, направленные на контроль компьютерных сущностей – это оборудование, программы и данные. Эти меры образуют последний и самый важный рубеж информационной безопасности. На этом рубеже становятся очевидными не только позитивные, но и негативные последствия быстрого прогресса информационных технологий. Во-первых, дополнительные возможности появляются не только у специалистов по информационной безопасности, но и у злоумышленников. Во-вторых, информационные системы постоянно модернизируются, перестраиваются, к ним добавляются недостаточно проверенные компоненты (в первую очередь программные), что затрудняет соблюдение режима безопасности.

Меры безопасности делятся на следующие основные виды:

• превентивные меры, которые препятствуют нарушениям информационной безопасности;

• меры обнаружения нарушений;

• локализующие меры, которые сужают зону воздействия нарушений;

• меры по выявлению нарушителя;

• меры восстановления режима безопасности.

В продуманной архитектуре безопасности все указанные меры должны присутствовать.

Важными также являются следующие принципы архитектурной безопасности:

• непрерывность защиты в пространстве и времени, невозможность миновать защитные средства;

• следование признанным стандартам, использование апробированных решений;

• иерархическая организация ИС с небольшим числом сущностей на каждом уровне;

• усиление самого слабого звена;

• невозможность перехода в небезопасное состояние;

• минимизация привилегий;

• разделение обязанностей;

• многоуровневая оборона;

• разнообразие защитных средств;

• простота и управляемость информационной системы.

Основным для программно-технического уровня является понятие сервиса безопасности. В число таких сервисов входят:

• идентификация и аутентификация;

• управление доступом;

• протоколирование и аудит;

• шифрование;

• контроль целостности;

• экранирование;

• анализ защищенности;

• обеспечение отказоустойчивости;

• обеспечение безопасного восстановления;

• туннелирование;

• управление.

Эти сервисы должны функционировать в открытой сетевой среде с разнородными компонентами, т. е. быть устойчивыми к соответствующим угрозам, а их применение должно быть удобным для пользователей и администраторов. Например, современные средства идентификации/ аутентификации должны быть устойчивыми к пассивному и активному прослушиванию сети и поддерживать концепцию единого входа в сеть.

Основные моменты для каждого из перечисленных сервисов безопасности:

1. Предпочтительными являются криптографические методы аутентификации, реализуемые программным или аппаратно-программным способом. Парольная защита стала анахронизмом, биометрические методы нуждаются в дальнейшей проверке в сетевой среде.

2. При разграничении доступа должна учитываться семантика операций.

3. Простота администрирования в условиях большого числа пользователей и ресурсов и непрерывных изменений конфигурации.

Протоколирование и аудит должны быть всепроникающими и многоуровневыми, с фильтрацией данных при переходе на более высокий уровень. Это необходимое условие управляемости. Желательно применение средств активного аудита. Однако нужно осознавать ограниченность их возможностей и рассматривать эти средства как один из рубежей многоуровневой обороны. Следует конфигурировать их таким образом, чтобы минимизировать число ложных тревог и не совершать опасных действий при автоматическом реагировании.

Все, что связано с криптографией, сложно не столько с технической, сколько с юридической точки зрения. Данный сервис является инфраструктурным, его реализация должна присутствовать на всех аппаратно-программных платформах и удовлетворять жестким требованиям не только к безопасности, но и к производительности. Пока же единственным доступным выходом является применение свободно распространяемого программного обеспечения.

Надежный контроль целостности также базируется на криптографических методах с аналогичными проблемами и методами их решения. К статической целостности есть и некриптографические подходы, основанные на использовании запоминающих устройств, данные на которых доступны только для чтения. Если в системе разделить статическую и динамическую составляющие и поместить первую в постоянное запоминающее устройство или на компакт-диск, можно в основном пресечь угрозы целостности. В этом случае наиболее рационально записывать регистрационную информацию на устройства с однократной записью.

Экранирование является сервисом безопасности, который реализуется через межсетевые экраны, ограничивающие интерфейсы и виртуальные локальные сети. Экран инкапсулирует защищаемый объект и контролирует его внешнее представление. Современные межсетевые экраны достигли очень высокого уровня защищенности, удобства использования и администрирования. В сетевой среде они являются первым и весьма эффективным рубежом защиты информации. Целесообразно применение всех видов межсетевых экранов от персональной до внешней корпоративной системы. Контролю должны подлежать действия внешних и внутренних пользователей.

Анализ защищенности – это инструмент поддержки безопасности жизненного цикла. С активным аудитом его роднит эвристичность, необходимость практически непрерывного обновления базы знаний. Анализ защищенности не самый надежный, но необходимый защитный рубеж, на котором можно расположить свободно распространяемый продукт.

Обеспечение отказоустойчивости и безопасного восстановления – это аспекты высокой доступности. При их реализации решаются архитектурные вопросы, в первую очередь – внесение в конфигурацию (как аппаратную, так и программную) определенной избыточности, с учетом возможных угроз и соответствующих зон поражения.

Безопасное восстановление – это последний уровень защиты, требующий особого внимания, тщательности при проектировании, реализации и сопровождении.

Туннелирование – не основной, но необходимый элемент сервисов безопасности. Он важен в комбинации с шифрованием и экранированием для реализации виртуальных частных сетей.

Управление – это инфраструктурный сервис. Безопасная система должна быть управляемой. Всегда должна быть возможность узнать, что на самом деле происходит в ИС (а в идеале и получить прогноз развития ситуации). Наиболее практичным решением для большинства организаций является использование какого-либо свободно распространяемого программного или технического каркаса с постепенным дополнением на него собственных функций.

В Доктрине информационной безопасности Российской Федерации защита от несанкционированного доступа к информационным ресурсам, обеспечение безопасности информационных и телекоммуникационных систем выделены в качестве важных составляющих национальных интересов РФ в информационной сфере.

ФСТЭК России предполагает выполнение двух РД – Классификацию автоматизированных систем (АС) по уровню защищенности от несанкционированного доступа к информации (НСД) и аналогичную классификацию межсетевых экранов (МЭ).

Согласно первому из них устанавливается девять классов защищенности АС от НСД к информации.

Каждый класс характеризуется определенной минимальной совокупностью требований по защите.

Классы подразделяются на три группы, отличающиеся особенностями обработки информации в АС.

В пределах каждой группы соблюдается иерархия требований по защите в зависимости от ценности (конфиденциальности) информации и, следовательно, иерархия классов защищенности АС.

Третья группа классифицирует АС, в которых работает один пользователь, имеющий доступ ко всей информации АС, размещенной на носителях одного уровня конфиденциальности. Группа содержит два класса – 3Б и 3А.

Вторая группа классифицирует АС, в которых пользователи имеют одинаковые права доступа (полномочия) ко всей информации АС, обрабатываемой и (или) хранящейся на носителях различного уровня конфиденциальности.

Группа содержит два класса – 2Б и 2А. Первая группа классифицирует многопользовательские АС, в которых одновременно обрабатывается и (или) хранится информация разных уровней конфиденциальности и не все пользователи имеют право доступа ко всей информации АС. Группа содержит пять классов – 1Д, 1Г, 1В, 1Б и 1А.

В табл. 2 приведены требования ко всем девяти классам защищенности АС.

Таблица 2

Требования к защищенности автоматизированных систем



Примечание к табл. 2: «—» нет требований к данному классу; «+» есть требования к данному классу; СЗИ НСД система защиты информации от несанкционированного доступа.

По существу это минимум требований, которым необходимо следовать, чтобы обеспечить конфиденциальность информации. Целостность представлена отдельной подсистемой (номер 4), но непосредственно к интересующему нас предмету имеет отношение только пункт 4.1. Доступность (точнее, восстановление) предусмотрено только для самих средств защиты.

В принципиально важном РД «Классификация межсетевых экранов» описываются сервисы безопасности относительно использования межсетевого разграничения доступа. Основным критерием классификации МЭ служит протокольный уровень (в соответствии с эталонной семиуровневой моделью), на котором осуществляется фильтрация информации. Чем выше уровень, тем больше информации на нем доступно и, следовательно, тем более тонкую и надежную фильтрацию можно реализовать. Значительное внимание в РД уделено собственной безопасности служб обеспечения защиты и вопросам согласованного администрирования распределенных конфигураций.

Контрольные вопросы к главе 1

1. Назовите международные стандарты информационного обмена.

2. Назовите общие сведения о стандартах и спецификациях в области информационной безопасности.

3. Какова структура системной классификации угроз информации?

4. Назовите основные составляющие информационной безопасности. 5. В чем важность и сложность проблемы информационной безопасности? 6. Дайте характеристику требованиям к защищенности автоматизированных систем.

7. Сформулируйте источники, виды и методы дестабилизирующего воздействия на защищаемую информацию.

8. Изложите особенности специфики проблемы компьютерной преступности в РФ.

Глава 2
Нарушение и защита информационных систем

2.1. Виды противников или «нарушителей»

Существуют четыре атакующих средства информационного воздействия:

1. Компьютерные вирусы, способные размножаться, прикрепляться к программам, передаваться по линиям связи и сетям передачи данных, проникать в электронные телефонные станции и системы управления и выводить их из строя.

2. Логические бомбы, так называемые программные закладные устройства, заранее внедряемые в информационно-управля– ющие центры военной и гражданской инфраструктуры, которые по сигналу или в установленное время приводятся в действие, уничтожая или искажая информацию или дезорганизуя работу программно-технических средств. Одна из разновидностей такой бомбы – «троянский конь» – программа, позволяющая осуществить скрытый НСД к информационным ресурсам противника для добывания разведывательной информации.

3. Средства подавления информационного обмена в телекоммуникационных сетях, его фальсификация, передача по каналам государственного и военного управления, а также по каналам массовой информации нужной с позиции противодействующей стороны информации.

4. Способы и средства, позволяющие внедрять компьютерные вирусы и логические бомбы в государственные и корпоративные информационные сети и системы и управлять ими на расстоянии (от внедрения микропроцессоров и других компонентов в электронную аппаратуру, продаваемую на мировом рынке, до создания международных информационных сетей и систем, курируемых НАТО и США).

Средства ведения информационной войны предусматривают использование всего диапазона возможностей воздействия на информационные системы противника: проведение психологических операций, огневое уничтожение элементов инфраструктуры, активное подавление каналов связи, применение специальных средств воздействия на информационно-программный ресурс информационных систем.

Основной проблемой защиты информации является полнота выявления угроз информации, потенциально возможных в автоматизированных системах обработки данных (АСОД). Даже один неучтенный (невыявленный или непринятый во внимание) дестабилизирующий фактор может в значительной мере снизить эффективность защиты.

Причины нарушения целостности информации (ПНЦИ) – это дестабилизирующие факторы, следствием проявления которых может быть нарушение физической целостности информации, т. е. ее искажение или уничтожение.

Каналы несанкционированного получения информации (КНПИ) – это дестабилизирующие факторы, следствием которых может быть получение (или опасность получения) защищаемой информации лицами или процессами, не имеющими на это законных полномочий.

Сформированные перечни КНПИ представляются следующим образом.

КНПИ 1-го класса – каналы, проявляющиеся безотносительно к обработке информации и без доступа злоумышленника к элементам ЭВТ:

1) хищение носителей информации;

2) подслушивание разговоров лиц, имеющих отношение к АСОД; 3) провоцирование на разговоры лиц, имеющих отношение к АСОД; 4) использование злоумышленником визуальных средств;

5) использование злоумышленником оптических средств;

6) использование злоумышленником акустических средств.

КНПИ 2-го класса – каналы, проявляющиеся в процессе обработки информации без доступа злоумышленника к элементам АСОД:

1) электромагнитные излучения устройств наглядного отображения; 2) электромагнитные излучения процессоров;

3) электромагнитные излучения внешних запоминающих устройств; 4) электромагнитные излучения аппаратуры связи;

5) электромагнитные излучения линий связи;

6) электромагнитные излучения вспомогательной аппаратуры;

7) электромагнитные излучения групповых устройств ввода-вывода информации;

8) электромагнитные излучения устройств подготовки данных;

9) паразитные наводки в коммуникациях водоснабжения;

10) паразитные наводки в системах канализации;

11) паразитные наводки в сетях теплоснабжения;

12) паразитные наводки в системах вентиляции;

13) паразитные наводки в шинах заземления;

14) паразитные наводки в цепях часофикации;

15) паразитные наводки в цепях радиофикации;

16) паразитные наводки в цепях телефонизации;

17) паразитные наводки в сетях питания по цепи 50 Гц;

18) паразитные наводки в сетях питания по цепи 400 Гц;

19) подключение генераторов помех;

20) подключение регистрирующей аппаратуры;

21) осмотр отходов производств, попадающих за пределы контролируемой зоны.

КНПИ 3-го класса – каналы, проявляющиеся безотносительно к обработке информации с доступом злоумышленника к элементам АСОД, но без изменения последних:

1) копирование бланков с исходными данными;

2) копирование перфоносителей;

3) копирование магнитных носителей;

4) копирование с устройств отображения;

5) копирование выходных документов;

6) копирование других документов;

7) хищение производственных отходов.

КНПИ 4-го класса – каналы, проявляющиеся в процессе обработки информации с доступом злоумышленника к элементам АСОД, но без изменения последних:

1) запоминание информации на бланках с исходными данными; 2) запоминание информации с устройств наглядного отображения; 3) запоминание информации на выходных документах;

4) запоминание служебных данных;

5) копирование (фотографирование) информации в процессе обработки;

6) изготовление дубликатов массивов и выходных документов;

7) копирование распечатки массивов;

8) использование программных закладок;

9) маскировка под зарегистрированного пользователя;

10) использование недостатков языков программирования;

11) использование недостатков операционных систем;

12) использование пораженности программного обеспечения вредоносными закладками.

КНПИ 5-го класса – каналы, проявляющиеся безотносительно к обработке информации с доступом злоумышленника к элементам ЭВТ с изменением последних:

1) подмена или хищение бланков;

2) подмена или хищение перфоносителей;

3) подмена или хищение магнитных носителей;

4) подмена или хищение выходных документов;

5) подмена аппаратуры;

7) подмена элементов программ;

8) подмена элементов баз данных;

9) хищение других документов;

10) включение в программы блоков типа «троянский конь», «бомба» и т. п.;

11) чтение остаточной информации в ОЗУ после выполнения санкционированных запросов.

КНПИ 6-го класса – каналы, проявляющиеся в процессе обработки информации с доступом злоумышленника к элементам ЭВТ с изменением последних:

1) незаконное подключение к аппаратуре;

2) незаконное подключение к линиям связи;

3) снятие информации на шинах питания устройств наглядного отображения;

4) снятие информации на шинах питания процессора;

5) снятие информации на шинах питания аппаратуры связи;

6) снятие информации на шинах питания линий связи;

7) снятие информации на шинах питания печатающих устройств; 8) снятие информации на шинах питания внешних запоминающих устройств;

9) снятие информации на шинах питания вспомогательной аппаратуры.

Мотивы совершения компьютерных преступлений распределяются следующим образом: корыстные соображения – 66 %; шпионаж, диверсия – 17 %; исследовательский интерес – 7 %; хулиганство – 5 %; месть – 5 %.

Специфика проблемы компьютерной преступности в РФ характеризуется:

1. Отсутствием отлаженной системы правового и организационно-технического обеспечения законных интересов граждан, государства и общества в области информационной безопасности.

2. Ограниченными возможностями бюджетного финансирования работ по созданию правовой, организационной и технической базы информационной безопасности.

3. Недостаточным сознанием органами государственной власти на федеральном и региональном уровнях возможных политических, экономических, моральных и юридических последствий компьютерных преступлений.

4. Слабостью координации усилий правоохранительных органов, органов суда и прокуратуры в борьбе с компьютерными правонарушениями и неподготовленностью их кадрового состава к эффективному предупреждению, выявлению и расследованию таких деяний.

5. Неналаженностью системы единого учета правонарушений, совершаемых с использованием средств информатизации.

6. Серьезным отставанием отечественной индустрии средств и технологий информатизации и ИБ от развитых стран мира.

7. Ухудшением экономического положения научно-технической интеллигенции, непосредственно связанной с созданием информационных систем, что создает предпосылки для утечки научных кадров, осуществления разного рода информационных диверсий и т. д.

К основным способам НСД относятся: 1. Непосредственное обращение к объектам доступа.

2. Создание программных и технических средств, выполняющих обращение к объектам доступа в обход средств защиты.

3. Модификация средств защиты, позволяющая осуществить НДС.

4. Внедрение в технические средства СВТ и АС программных и технических механизмов, нарушающих предполагаемую структуру и функции СВТ или АС и позволяющих осуществить НСД.

Утечки информации могут быть связаны с работой персонала, имеющий непосредственный контакт с циркулирующей информацией, а также может быть организован путем проведения разведывательных мероприятий, реализующих съем информации с технических каналов утечки информации.

Под техническим каналом понимают систему, в состав которой входят:

1) объект разведки;

2) техническое средство, используемое для НСД к информации; 3) физическая среда, в которой распространяется информационный сигнал.

Объектом разведки могут быть помещение, группа помещений или здание с хранящимися материалами ограниченного пользования, технические каналы связи, используемые для передачи сведений, отнесенных к различным видам тайн.

Технические средства по перехвату информации – это средства фото– и видеодокументирования, специальные микрофоны, стетоскопы и лазерные акустические системы, системы радиоперехвата, средства съема информации с проводных линий связи и др.

Физическая среда – это строительные конструкции зданий и сооружений, токопроводящие линии, среда распространения акустических сигналов, электромагнитные поля, технические средства обработки информации (СВТ, автоматические телефонные станции, системы звукозаписи).

Группы технических каналов утечки информации:

1) электромагнитные;

2) электрические;

3) каналы утечки видовой информации;

4) каналы утечки акустической информации.

Электромагнитные каналы утечки информации

К ним относятся каналы утечки информации, возникающие за счет побочных электромагнитных излучений технических средств обработки информации. Вся работающая аппаратура и электронные системы создают электромагнитные поля, называемые побочными электромагнитными излучениями. Они способны создавать электромагнитные наводки в расположенных рядом слаботочных, силовых и осветительных сетях, линиях и аппаратуре охранно-пожарной сигнализации, проводных линиях связи, различных приемниках электромагнитных излучений. Канал утечки основан на законе Ленца. В результате побочных электромагнитных излучений возникают каналы утечки информации. Специальные широкополосные приемники считывают электромагнитные излучения, а затем восстанавливают и отображают содержащуюся в них информацию.

При обработке информации на ЭВМ диапазон побочных электромагнитных излучений доходит до нескольких гигагерц. Они возникают за счет работы монитора, дисководов (в меньшей степени), матричного принтера, за счет коротких фронтов импульсов, поступающих на электромагниты печатающей головки. Информативные сигналы могут быть считаны с кабелей компьютера, прежде всего с кабелей питания.

Сравнительно мощные побочные электромагнитные излучения создаются монитором с электроннолучевой трубкой (ЭЛТ). Напряжение на втором аноде ЭЛТ составляет 27 000 В, что непосредственно определяет возникновение электростатического и электромагнитного полей. Электромагнитное излучение модулируется сигналами яркости и цветности, которые несут сведения об информации, обрабатываемой на ЭВМ и отображаемой на экране монитора. Максимальное излучение находится в диапазоне 100…350 МГц. Дальность перехвата до 150 м. При этом возможно считывание с нескольких одновременно работа ющих компьютеров. Даже проведение по существующим стандартам экранирование служебных помещений от электромагнитных излучений не исключает возможности такого перехвата и распознавания.

Электрические каналы утечки информации

Они могут возникать за счет: 1) наводок электромагнитных излучений технических средств обработки информации на коммутационные линии вспомогательных технических систем и средств;

2) утечек информационных сигналов в цепях электропитания технических средств обработки информации;

3) утечек информационных сигналов в цепь заземления электрических устройств.

Например, работающая ЭВМ производит наводки на близко расположенные коммутационные линии вспомогательных технических систем и средств (охранно-пожарная сигнализация, телефонные провода, сети электропитания, металлические трубопроводы). Наводимая на них ЭДС существенна и распознаваема на частотах от десятков кГц до десятков МГц. В этом случае возможен съем информации путем подключения специальной аппаратуры к коммуникационным линиям за пределами контролируемой территории.

Использование соответствующей измерительной аппаратуры, средств технической разведки позволяет несанкционированный перехват информационных сигналов от технических средств обработки информации, просачивающихся как в цепи электропитания, так и в разветвленную цепь заземления.

Каналы утечки видовой информации

Несанкционированное получение видовой или графической информации осуществляется путем наблюдения за объектом. При необходимости могут быть осуществлены фото– или видеосъемка. Технические средства: бинокли, приборы ночного видения, фото– и видео– техника.

Метод съема информации. Миниатюрная аппаратура с дистанционным управлением для передачи как изображения, так и звука по радиоканалу в различных частотных диапазонах снимает видовую информацию. При этом технические средства позволяют осуществить маскировку амплитудно– и частотно-модулированных радиосигналов телевизионного изображения. В случае необходимости может быть осуществлена ретрансляция информационных сигналов либо их передача по проводным линиям.


    Ваша оценка произведения:

Популярные книги за неделю