355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Димитри Маекс » Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть » Текст книги (страница 4)
Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть
  • Текст добавлен: 7 октября 2016, 12:17

Текст книги "Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть"


Автор книги: Димитри Маекс



сообщить о нарушении

Текущая страница: 4 (всего у книги 15 страниц) [доступный отрывок для чтения: 4 страниц]

Со вторым компонентом – вероятностью сохранения клиента – дела обстояли чуть сложнее. Как только BT утратила свою монополию на рынке телефонных услуг, многие клиенты решили уйти к ее конкурентам. Соответственно, нам нужно было попытаться предсказать вероятность того, когда текущий клиент может уйти от BT, для чего мы выстроили модель «ухода клиентов», основанную на информации от бывших потребителей BT. Если многие из них относились к определенному географическому региону (и уходили вследствие присутствия в этом регионе успешного конкурента), то существующие клиенты, живущие в том же регионе, получают более высокий балл по шкале ухода, то есть обладают большей потенциальной возможностью покинуть компанию. Если мы видим, что бывшим клиентам было свойственно делать больше международных звонков (конкурент предоставлял более выгодные условия по этой услуге), то клиенты, делающие много международных звонков, получают более высокий балл по шкале ухода.

Выстроенная нами модель принимала во внимание такие данные, как общее количество звонков, количество звонков в течение определенного времени дня и недели, а также баланс между местными, региональными и международными звонками. Она позволила выявить места, где наблюдались самые явные различия между бывшими и текущими клиентами. Мы использовали соответствующие переменные, чтобы рассчитать вероятность ухода текущего клиента. В частности, мы создали рейтинг для каждого существующего клиента в базе данных BT по шкале от 1 до 100. Клиент с рейтингом «1» почти гарантированно оставался с компанией. Клиент с рейтингом «100» уже почти захлопнул за собой дверь. Чуть позже в этой главе мы объясним, каким образом работают модели ухода клиента на практике.

Что касается третьего компонента – интенсивности лояльности клиента к BT, – то для его расчета мы придумали собственную модель. Это было особенно важно именно в то время, так как BT пыталась изменить свое позиционирование от поставщика телефонных услуг на поставщика интегрированных коммуникационных технологий, предлагавшего не только телефонные услуги, но и мобильные сетевые решения, решения в области безопасности данных и многое другое.

Мы создали довольно простое решение: проранжировали все продукты BT по шкале от 1 до 5, при этом единица означала базовый продукт, типа стандартной телефонии, а пятерка – продвинутый продукт, наподобие комплексных решений в области сетевой безопасности. Затем мы рассчитали для каждого клиента долю расходов по каждому продукту, приходившуюся на BT.

Позвольте мне детально рассказать о математическом аппарате в приведенной ниже таблице.

Наш результат мы использовали для расчета средневзвешенного показателя сложности продукта для каждого отдельно взятого клиента. Колонка со средневзвешенным значением получила название «Показатель интенсивности».

Далее, для колонки продуктов BT, мы использовали название «Показатель интенсивности продукта». Стационарная связь получила оценку «1», так как это – простой сервис со сравнительно низкой прибылью. Продукты, связанные с обеспечением безопасности, получили отметку «5», потому что были более сложными и позволяли компании получить более высокую прибыль.

Колонки третья и четвертая в разделе «Расходы» показывают, сколько тратит компания B на каждый продукт, а колонки пятая и шестая («Расходы») показывают долю BT в их расходах на продукт. К примеру, компания А тратит 55,6 % своего телекоммуникационного бюджета на стационарную телефонную связь (100–180 долларов).

Для расчета показателя интенсивности (компания A) мы умножали значение показателя на величину расходов в процентах по каждому продукту (например, показатель интенсивности для Интернета, равный двум, умножался на 27,8 % доли общих расходов), а затем складывали вместе все значения в колонке. В итоге компания A получала показатель интенсивности «183». Для компании B нам требовалось умножить значение в колонке «Показатель интенсивности» на значение показателя «Расходы, в %», а результат занести в восьмую колонку. Согласно данным этой колонки, мы видим, что компания B имеет показатель интенсивности «118». Чем выше число, тем ценнее клиент.

Последний компонент – доля в клиентском кошельке, которую BT не получала, – рассчитывается с помощью уже вышеописанной манипуляции с долей кошелька для каждого продукта и услуги, предлагаемых BT. Мы сопоставили этот показатель с данными отраслевых исследований. Например, оказалось довольно простым делом получить данные по расходам на информационно-коммуникационные технологии (ИКТ) для компаний в определенных категориях рынка с разбивкой по размеру компаний и их местонахождению. Всегда полезно проверять правильность созданной модели с помощью сторонних достоверных данных.

Расчет расходов, приходящихся на долю других поставщиков, был крайне важен, так как он позволял нам выявить имеющиеся у компании возможности для роста. Мы создали детальный, более сложный вариант модели ценностного спектра. Нам удалось обнаружить значительную корреляцию между общими расходами клиентов и расходами, приходившимися на долю BT. Иными словами, если вы тратили много денег на телефонию, то скорее всего тратили их на BT. В этом не было ничего удивительного. Монополия BT исчезла совсем недавно, и мало кто успел переключиться на других поставщиков. Возможно, вы помните, что нечто подобное происходило в США в начале 1980-х годов, сразу после разделения компании AT&T.

После того как мы рассчитали величины четырех ценностных компонентов для каждого текущего и потенциального клиента, пришло время совместить их в общий рейтинг, позволявший с первого взгляда оценить ценность клиента. Это всегда хорошо. Чем более простым способом вы можете получить данные, тем лучше.

В итоге мы выявили шесть ценностных сегментов, приведенных в следующей таблице. (Помните, категория «интенсивности» связана со степенью лояльности клиентов к бренду BT.)

Понимание новой сегментации дало BT совершенно иное ви́дение своего места на рынке. К примеру, мы выявили 6 миллиардов долларов потенциального дохода в третьем сегменте. BT прежде не концентрировала внимание на этом сегменте, так как никогда не принимала во внимание суммы, которые их клиенты тратят на работу с конкурентами. Как вы видите, компания также смогла выявить восемь тысяч клиентов с крайне высокой степенью ценности, расходы которых в десять и более раз превышали величину расходов следующего за ним второго сегмента. Это позволяло BT сосредоточить усилия на удержании этих крайне важных клиентов в первом сегменте.

Как видно из таблицы, в нижней части шкалы имелось несколько больших сегментов с очень ограниченным доходом. Для BT стало ясно, что для обслуживания столь большого количества клиентов необходимо разработать новые, финансово эффективные методы работы.

Если у вас нет данных, то вы наверняка сможете их создать

История BT – это отличный пример обработки всех имеющихся у вас данных о клиентах. Разумеется, у BT их было много. Но что произойдет, если у вас нет нужной информации? Представим, что вы работаете в автомобильной промышленности. Люди покупают автомобиль каждые несколько лет. Автопроизводитель может считать себя счастливчиком, если в промежутке между покупками машин клиент будет приезжать к местному дилеру за сервисом. Однако по мере того, как машины становятся более качественными, сроки технического обслуживания сдвигаются все дальше, делая общение с дилером крайне редким.

В подобных ситуациях вы можете положиться на внешних поставщиков как на отправную точку для сбора необходимой вам конкретной информации. Возьмем, например, производителей очень дорогих автомобилей. Каким образом они могли бы воспользоваться данными для увеличения количества перспективных потенциальных клиентов?

Покупатели роскошных автомобилей – люди особенные. Их привлекает богатое наследие бренда и его уникальный стиль (не говоря уже о высококачественной работе). Однако, принимая во внимание жесткую конкуренцию на рынке роскошных автомобилей, привлечение нужных новых клиентов представляет для бренда постоянную проблему.

Для ее решения в контексте маркетинга (за который отвечали мы) имелся целый ряд возможностей. Первая – компания могла купить списки клиентов других игроков на рынке предметов роскоши, предположив, что тех может заинтересовать бренд роскошного автомобиля. Однако эти списки обычно незначительны по размеру, а для выполнения плана по продажам требовалось больше имен. Все прочие списки, к которым у компании имелся доступ, имели слишком общий характер и не позволяли обеспечить должный уровень ответной реакции и долю конверсии (мы обсудим различные типы источников данных в четвертой главе). Разумеется, компания могла создать собственные списки. Но стоит ли заново изобретать колесо? Если у нас была бы возможность определить критерии участников, которые могли с достаточной вероятностью купить такие машины, то на следующем этапе мы применили бы их к общим спискам и получили бы в итоге только нужные имена.

Поэтому (в процессе работы для одного клиента) мы изучили характеристики имевшихся клиентов и обнаружили, что они чаще всего жили в богатых пригородах. В основном эти люди жили одни, без семьи, и их возраст приближался к шестидесяти годам. После этого (как и в случае с Cisco, описанном в первой главе) мы выстроили статистическую модель, позволявшую выявить в списках людей, которые теоретически могли бы стать ключевыми клиентами.

Этот подход имел двойное преимущество. Прежде всего он позволил автопроизводителю получить значительно больше имен для проведения рекламной рассылки, а кроме того (что более важно), позволял бренду обеспечить более высокую долю продаж в сравнении с прежним ограниченным и дорогостоящим подходом.

Этот случай наглядно демонстрирует, каким образом вы можете более эффективно приобретать новых клиентов с помощью анализа профиля существующих.

Пожизненная ценность клиента – идеальный прогноз

Еще один показатель с огромным потенциалом – пожизненная ценность. Если вы можете рассчитать, чему будет равна ценность имеющихся (или потенциальных) клиентов для вашей организации в течение всего срока их «жизни», то вам не составит труда понять, какую сумму вы вправе инвестировать в приобретение клиентов и развитие отношений с ними.

И хотя концепция пожизненной ценности довольно прямолинейна – суть ее связана с расчетом того, сколько денег потратит на вас потенциальный потребитель, если вы превратите его в клиента уже сегодня и сможете удержать навсегда, – сам расчет представляется сравнительно непростым делом. Если выражаться языком финансистов, то пожизненная ценность представляет собой дисконтированный денежный поток будущих доходов от клиента. А если перейти на обычный язык, то вы вычисляете сумму, которую некий человек будет готов потратить на вас за весь период ваших отношений, а потом корректируете ее с учетом инфляции.

Таким образом, речь идет о функции трех параметров.

1. Текущая ценность. Сколько денег тратит на вас потребитель сейчас?

2. Рост или снижение ценности в будущем. Насколько больше или меньше денег он станет на вас тратить?

3. Продолжительность связи. Как долго клиент останется с вами?

Последний компонент – продолжительность связи – рассчитать сложнее всего. Вы знаете – или можете легко вычислить, – сколько денег тот или иной клиент платит вам сейчас. Со временем вы сможете понять, увеличивается или уменьшается эта сумма. Однако остается существенный вопрос: как долго клиент останется с вами. Как об этом узнать? Хотите верьте, хотите нет, но об этом вполне способна сказать уже имеющаяся у вас информация.

Позвольте мне показать это с помощью теоретического примера, разработанного мной для крупной европейской авиакомпании (назовем ее Continent Air). Компания попросила нас повысить степень лояльности клиентов. Значительная часть этого задания состояла в том, чтобы выявить клиентов, склонных уйти. Если нам удалось бы это сделать, то с помощью новой программы лояльности мы попытались бы убедить их остаться.

Как и у любой другой авиакомпании, у Continent Air имелась масса данных: когда именно садится в самолет каждый ее клиент; как часто он летает; каким классом он пользуется (эконом-класс, первый, бизнес-класс); куда он собирается лететь. Взяв выборку из общего массива, мы попытались рассчитать величину дохода от клиентов из группы риска (то есть сумму, которой может лишиться авиакомпания).

Мы разработали формулу, позволявшую рассчитывать эту величину в зависимости от:

• нынешней ценности клиентов из группы риска;

• вероятности того, что доход, связанный с ними, снизится;

• ориентировочной доли такого снижения.

Если вы перемножите между собой эти значения, то получите величину дохода от клиента из группы риска (revenue at risk, далее – RAR).

При правильном объяснении концепция RAR может быть невероятно мощной и важной. Поэтому мы решили найти способ объяснять ее быстро и четко, даже для аудитории, не владеющей вычислительными навыками. В частности, нам предстояло ответить на вопросы: «Каким образом статистические модели предсказывают, что кто-то потратит на нас меньше денег (а то и вообще перестанет с нами сотрудничать) в следующие пару месяцев?»; «А это не напоминает гадание на кофейной гуще или шаманство?»

Нет, не напоминает. Хотя алгоритмы часто воспринимаются как волшебные формулы, доступные для понимания одним только математикам, в своем большинстве они просто отражают то, как мы думаем самым естественным образом. Чтобы доказать справедливость этого утверждения, рассмотрим историю трех участников программы постоянных клиентов: Мэри, Сьюзен и Тома. По неизвестным нам причинам все они совершали в этом марте меньше полетов по сравнению с мартом прошлого года. В этом марте Мэри летала всего три раза, однако годом ранее она совершила десять перелетов. Для Сьюзен этот показатель составил один полет, а для Тома – два против девяти годом ранее.

Внимательно посмотрите, как часто они летали в течение двенадцати месяцев перед последним мартом. А теперь попытайтесь заполнить приведенную ниже таблицу.

Какова, на ваш взгляд, вероятность того, что доход компании от путешествий Мэри, Сьюзен и Тома снизится в следующем году соответственно на 80, 50 и 20 %?

Многие люди, которым мы задавали этот вопрос, довольно быстро с ним справлялись.

Ответы их были довольно похожими и все они указывали примерно на то же, что и мой собственный ответ, приведенный ниже.

В течение двенадцати месяцев перед мартом Мэри стабильно летала по восемь или двенадцать раз в месяц. В марте она летала всего три раза. Это довольно необычно для нее – видимо, в этом месяце произошло нечто особенное. Возможно, она взяла отпуск, начала работать дома или просто заболела. С учетом прежних тенденций ее поведения шансы на то, что в течение следующих двенадцати месяцев она будет тратить на полеты на 80 % меньше прежнего, довольно невелики. Куда больше шансы, что доходы от работы с ней снизятся на 20 %, поскольку далее мы заметим в ее поведении два или три месяца низкой активности.

Между предыдущим мартом и ноябрем поведение Сьюзен было похоже на поведение Мэри. Однако с ноября она начала значительно реже пользоваться услугами нашей авиакомпании.

Судя по всему, речь идет о каких-то системных изменениях. Именно поэтому я считаю, что у нее имеется куда бо́льшая вероятность снижения количества полетов в ближайшие двенадцать месяцев, чем у Мэри.

А поведение Тома кажется совсем иным – оно не носит системного характера. Он стал летать всего два раза в месяц, а в последующие месяцы практически совсем прекратил полеты. Вот почему я совершенно не уверен, что будет происходить с доходами от полетов Тома в следующие двенадцать месяцев.

Уверен, вы поставили Мэри, Сьюзен и Тому примерно такие же оценки, ведь мы все склонны интуитивно анализировать поведение людей примерно сходным образом. Мы посмотрели, насколько часто наши участники летали в среднем, насколько сильно могут колебаться данные от месяца к месяцу, насколько сильно просел показатель количества полетов в марте и приняло ли это характер тенденции.

Я могу создать статистический алгоритм, способный анализировать эту информацию так же, как мы это делаем в своем подсознании. Для этого мне нужно преобразовать наши интуитивно важные факторы в математические переменные. Вот как это могло бы работать.

В крайней правой колонке содержатся переменные нашей модели, буквально предсказывающей вероятность снижения доходов. Статистическая модель выявляет клиентов, доход от которых сократился на 20, 50 и 80 % за прошлый год, затем изучает значение предсказывающих переменных (чуть подробнее об этом ниже) за двенадцать месяцев до начала снижения доходов. Это позволит «научить» модель рассчитывать вероятность того, что расходы какого-то клиента могут снизиться на определенный процент. Безусловно, это довольно существенная информация. Если вы знаете, что один (или несколько) из ваших наиболее важных клиентов (приносящих вам доходы и прибыль) собирается уйти от вас, вы можете предпринять шаги по предотвращению этого. Как минимум вы выясните у них причины ухода и, возможно, предложите им стимулы (скидки, улучшение условий обслуживания и что-то еще), заставляющие их остаться.

Итак, мы с вами рассмотрели данные и практически интуитивно поняли, кто перестанет быть нашим клиентом. Однако в подобных ситуациях лучше воспользоваться статистическими моделями, что будет более эффективно, чем ваша интуиция. Модели могут не только принимать решение, подобное нашим, и делать это гораздо быстрее, но и повторять тот же алгоритм размышлений в отношении тысяч, а то и миллионов других мэри, сьюзен и томов. В дополнение к этому модель способна изучать сотни различных предсказывающих переменных. Переменные в таблице можно сопоставить со всеми остальными нашими знаниями о клиенте: возрасте, поле, национальности, почтовом индексе, использовании призовых баллов программы лояльности (для оплаты билетов, покупки товаров или какой-то комбинации обоих вариантов) – причем практически одновременно. Поэтому статистическое моделирование стало таким мощным инструментом.

Давайте еще раз посмотрим на Сьюзен. Если мы чуть сильнее углубимся в свои знания о ней, то поймем, что она не так давно сменила работу – об этом свидетельствовали изменения в ее профиле участника программы лояльности. Также мы знали, что она переехала на другую квартиру и использовала все накопленные призовые мили, чтобы купить большой телевизор у одного из партнеров авиакомпании. Мы не знаем причин произошедшего, но можем заметить, что и другие клиентки в возрасте Сьюзен (из ее профиля следует, что ей только что исполнилось тридцать шесть лет) совершали подобные вещи и переставали летать на самолетах компании с прежней частотой (это могло быть связано с такими простыми причинами, как снижение частоты путешествий или желание завести семью). Как бы то ни было, но согласно нашему алгоритму будет правильным предположить, что авиакомпания начнет получать меньше доходов от клиенток с таким профилем.

Эта история помогла мне сбросить покров таинственности с процесса статистического моделирования поведения людей. Я понял, что если мне удастся создать детальный список, описывающий клиентов, – не только их имен, но и другой информации (возраст, пол, профессия, уровень дохода, сумма их затрат), – то я смогу сделать вполне обоснованные предположения, сколько продуктов у компании они купят в сравнении с лучшими ее клиентами.

Чтобы лучше представлять ситуацию с будущими продажами, вам имеет смысл пригласить на работу статистика и поручить ему разработку моделей, сходных с той, которую я сделал для авиакомпании. Но в будущем – в течение трех или четырех лет – я ожидаю появления таких программ, которые позволят вам делать все это самостоятельно. Не исключено, что Google даже выпустит бесплатную версию.

Полная детальная модель

В предыдущем сюжете, рассматривая пример авиакомпании, мы опирались лишь на один из трех компонентов, составляющих пожизненную ценность, – изменение дохода в будущем (увеличение или снижение). Порой, когда вытаскиваешь какие-то ключевые данные из имеющейся клиентской базы, требуется создание модели, включающей в себя еще две переменные – ценность индивидуального клиента и продолжительность связи с компанией. Я расскажу, как это делается, на примере нашей работы с крупной розничной сетью. Предположим, эта сеть (назовем ее Retailco) наняла нас для оценки качества своей клиентской базы. Мы начали с классификации каждого домохозяйства по показателю пожизненной ценности, чтобы дать Retailco возможность индивидуального обращения к каждому из них. (Клиенты с самым высоким показателем потенциальной пожизненной ценности по вполне понятным причинам должны были получать от компании больше внимания.)

В то время, когда мы начали работать с Retailco, у нее было около полутора тысяч магазинов. И покупатели, как вы можете понять, снабжали компанию невероятно большими объемами данных. В базе данных содержалась информация почти о двадцати миллионах домохозяйств. Компания знала, что именно приобретало каждое из них, как часто и где. Размер базы данных мог показаться пугающим, но тем, кто любит копаться в цифрах, было где развернуться!

Прежде Retailco уже нанимала на работу опытных маркетологов и поручала им выжимать максимум из своей клиентской базы. Специалистам удалось внедрить некоторые из самых крупных и сложных программ лояльности в розничной отрасли. Теперь Retailco хотела разобраться с показателями пожизненной ценности клиентов, чтобы полностью сосредоточить внимание на лучших для торговой сети покупателях (как настоящих, так и потенциальных) и со временем еще сильнее увеличить их ценность. Модель позволяла нам понять простую, но важную вещь: с ее помощью мы могли знать, сколько денег потратит каждое отдельно взятое домохозяйство на отношения с Retailco в течение следующих трех лет – именно таков срок «всей жизни» в динамичном мире розничной торговли!

Цель была простой, но для ее реализации потребовался сложный и запутанный математический аппарат. Для начала мы выяснили, что означает пожизненная ценность для Retailco на концептуальном уровне, а результат представили в виде диаграммы (см. ниже). Хочу предупредить, что чуть далее приводится самая сложная статистическая модель в этой книге. Если вам удастся понять смысл следующих двух абзацев, то вы не только можете считать себя большим молодцом, но и вправе гордиться, что понимаете суть принципа цепей Маркова.

Как вы можете заметить, мы поместили клиентов в четыре различные группы в зависимости от уровня их расходов. «Отсутствие» означало домохозяйства, не совершавшие в любом из магазинов сети покупок в течение двенадцати месяцев.

Затем мы определили пожизненную ценность домохозяйств следующим образом:

Пожизненная ценность = (Вероятность будущего состояния) × (Ценность в будущем состоянии)

Это означает: пожизненная ценность клиента отчасти состоит из вероятности того, что в последующие три года она окажется в одной из групп (с высоким, средним и низким показателями или показателями отсутствия), а отчасти – из ценности этого домохозяйства в будущем (с высоким, средним или низким показателями). Другими словами, для расчета пожизненной ценности мы должны были сначала предсказать вероятность того, что в следующем году кто-то останется в группе с высоким показателем или, напротив, переместится в другую группу (с низким или средним показателями или его отсутствием). Затем мы умножали эту вероятность на среднюю ценность клиентов, находившихся в том или ином состоянии.

Изложенное мной может показаться слишком сложным, но на практике все было куда проще. Вот вам пример (вполне гипотетический) работы метода. Предположим, мы внимательно изучили данные и заключили, что клиенты Retailco с высоким уровнем ценности тратят 1000 долларов в год, клиенты со средним уровнем – 500 долларов, а с низким – 50 долларов. Предположим также, что сам я отношусь к клиентам Retailco с высоким уровнем ценности.

Затем мы строили две модели. Первая из них предсказывала вероятность, что я останусь клиентом (с использованием метода, который я описал в рассказе об авиакомпании). А вторая предсказывала вероятность, что я останусь клиентом с высокой ценностью или, напротив, перемещусь в группу средней или даже низкой ценности.

Давайте предположим, что, согласно модели, у меня есть 20-процентный шанс перестать быть клиентом, 10-процентный – стать клиентом в группе низкой ценности, 30-процентный – клиентом из средней группы и 40-процентный шанс остаться в группе с высокой ценностью. С помощью приведенной ниже формулы могу рассчитать свою возможную ценность на год второй:

Ценность (второй год) = 20 % × 0 + 10 % × 50 долл. + 30 % × 500 долл. + 40 % × 1000 долл. = 555 долл.

Получив данные для второго года, мы сможем, основываясь на прогнозе, повторить расчет и понять, что скорее всего произойдет в течение третьего года.

Итак, у нас появился идеальный механизм расчета приоритетов для Retailco, позволяющий развивать долгосрочные отношения с клиентами, основанные на предположении, что они собираются стать со временем более ценными. Когда Retailco создаст новые программы лояльности и начнет напрямую работать с клиентами, основываясь на нашей модели пожизненной ценности, то продуктивность компании может оказаться значительно выше эффективности ее конкурентов. Подобный метод работы позволяет вам выявлять лучших клиентов и концентрировать усилия на общении с ними.

Разобравшись с этой моделью, Retailco пошла дальше и решила оценить каждого нового клиента с точки зрения того, какую сумму он сможет потратить за время, проведенное с компанией. Специалисты компании сравнили размер начальной покупки с соответствующими данными о своих существующих клиентах. Однако первая покупка вряд ли способна рассказать о многом. Не исключено, что примерно 23 % всех покупателей, совершающих первую покупку, станут со временем крайне ценными клиентами. Но сама по себе такая покупка ничего не скажет о том, перейдет ли клиент в ключевую группу или останется в 77-процентной группе менее ценных.

Со второй покупкой вы получаете больше информации и уже можете хоть что-то сказать о клиентах: в первый раз им был нужен небольшой ремонт машины; во второй раз они купили детские вещи, а когда заполнили форму на получение карты лояльного покупателя, мы узнали, что они живут в пригороде. Давайте отправим им в августе предложение о 20-процентной скидке на школьные принадлежности, а также предложим особые условия покупок на День матери и День отца!

Если вы точно знаете, что именно вам нужно им сказать, то сможете заработать немалые деньги.

Задание на утро следующего понедельника

1. Определите, кто является для вашей компании ценным клиентом. Используйте следующие вопросы:

• сколько денег он тратит на нас в настоящее время?

• считаете ли вы, что он потратит много денег в будущем?

• как долго он был вашим клиентом?

• способен ли он убедить других клиентов покупать ваш бренд?

• дорого ли обходится его обслуживание, то есть является ли общение с ним прибыльным для вас?

• есть ли в нем что-то еще, важное для компании?

2. Переведите свое представление о ценности в нечто реальное – что вы в состоянии измерять и отслеживать (с использованием инструментов, о которых я рассказал в этой главе). Это может быть доля кошелька, пожизненная ценность или что-то другое, более уместное для вашей компании.

3. Отсортируйте своих клиентов по степени ценности для вашей компании (например, высокая, средняя и низкая).

Глава 3

Обретение – о чем следует говорить с клиентами?

Мы знаем, с кем нам стоит разговаривать. Но о чем? Напрашивается ответ: «О том, что мы хотим им продать».

Это правильно – но лишь с нашей точки зрения.

В этой главе я покажу вам, как это сделать.

Мы будем говорить о том, каким образом вам следует собирать и анализировать данные для лучшего понимания мотивации своей целевой аудитории. Начиная с этого момента, мы с вами будем изучать принципы создания сегментов из группы людей, имеющих сходные потребности или мотивации. Мы представим вам технологии, способные предсказать, в каких продуктах или предложениях могут быть сильнее всего заинтересованы ваши клиенты. Мы также увидим, как легко мы можете узнать о потребностях и желаниях аудитории – о них вам расскажут данные, доступные в социальных сетях и других бесплатных источниках. Наконец, мы обсудим новые методы, которые помогут вам буквально вторгаться в мозг клиента, чтобы лучше понимать, как удовлетворять его потребности.

Людям нужна причина, по которой они будут слушать ваше предложение. В нем должно быть что-то интересное для них, а не только то, что вы продаете. Вам необходимо создать так называемый ценностный обмен. Приведенный в первой главе пример Amazon.com наглядно показывает, что я имею в виду. Мне нравится, когда компания отслеживает историю моих покупок, потому что взамен я получаю рекомендации, соответствующие моим интересам.

Пожалуй, еще лучше с идеей ценностного обмена работает компания Netflix. Каждый год она организует соревнование среди аналитиков и программистов, направленное на дальнейшее улучшение алгоритма рекомендаций. Победитель соревнования получает один миллион долларов – и это наглядно показывает, какую важность Netflix уделяет силе своих рекомендаций.

Примеры Netflix и Amazon подчеркивают, что анализ клиентских данных может дать нам немало подсказок, благодаря которым компании получают возможность модифицировать свою маркетинговую коммуникацию. Это и станет предметом нашего разговора.

Amazon и Netflix используют довольно сложные алгоритмы для сортировки данных, но для вас в них нет никакой необходимости. Вы вполне в состоянии просто отслеживать, что говорят о ваших продуктах и услугах в Интернете, а затем откорректировать позиционирование своего бренда. Напомню пример, который уже приводил в первой главе: компания Ceasars, узнав, что клиентам ее гостиницы «Париж» очень нравится вид из окон на Лас-Вегас-Стрип, сразу поменяла картинку на своем сайте, чтобы лишний раз показать людям то, что им приятно видеть. Кроме того, компания обнаружила, что посетителей сайта прежде всего интересовали размер комнат, варианты питания и набор предлагавшихся в гостинице услуг, и она добавила всю интересующую их информацию. В результате заказ номеров через Интернет вырос более чем на 10 %. Этот очень простой пример подтверждает, почему так важно понимать потребности и желания вашего клиента: что им нужно; что им нравится; что они ненавидят. Короче говоря, узнав обо всем, что не оставляет их равнодушными, вы сможете понять, о чем им рассказывать. Как только вы по-настоящему вникнете в мысли своих клиентов, то сможете скорректировать и свое предложение, и обращение к ним, и способ донесения информации, и даже каналы, по которым выстраиваете с ними связь (ниже мы поговорим об этом в деталях). Данные помогут усилить степень вашего влияния. А как показывает опыт Ceasars, это приводит к великолепным финансовым последствиям.


    Ваша оценка произведения:

Популярные книги за неделю